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Preface

The last years have witnessed continuous progress in the technology available
both for academic and commercial computing environments. Examples include
more processor performance, increased memory capacity and bandwidth, faster
networking technology, operating system support for cluster computing and the
generalized use of mutiprocessor systems, including in particular multicore mi-
croprocessors. These improvements, combined with recent advances in compi-
lation and implementation technologies, are causing high-level languages to be
regarded as good candidates for programming complex, real world applications.
Techniques aiming at achieving flexibility in the language design make powerful
extensions easier to implement; on the other hand, implementations which reach
good performance in terms of speed and memory consumption make declarative
languages and systems amenable to develop non-trivial applications.

Logic Programming and Constraint Programming, in particular, seem to of-
fer one of the best options, as they couple a high level of abstraction and a
declarative nature with an extreme flexibility in the design of their implementa-
tions and extensions and of their execution model. This adaptability is key to, for
example, the implicit exploitation of alternative execution strategies tailored for
different applications (e.g., for domain-specific languages) without unnecessarily
jeopardizing efficiency.

CICLOPS 2007 continues a tradition of successful workshops on Implemen-
tations of Logic Programming Systems, previously held with in Budapest (1993)
and Ithaca (1994), the Compulog Net workshops on Parallelism and Implemen-
tation Technologies held in Madrid (1993 and 1994), Utrecht (1995) and Bonn
(1996), the Workshop on Parallelism and Implementation Technology for (Con-
straint) Logic Programming Languages (ParImp) held in Port Jefferson (1997),
Manchester (1998), Las Cruces (1999), and London (2000), and more recently the
Colloquium on Implementation of Constraint and LOgic Programming Systems
(CICLOPS) in Paphos (Cyprus, 2001), Copenhagen (2002), Mumbai (2003),
Saint-Malo (France, 2004), Sitges (Spain, 2005), Seattle (USA, 2006), and the
CoLogNet Workshops on Implementation Technology for Computational Logic
Systems held in Madrid (2002), Pisa (2003) and Saint-Malo (France, 2004).
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Mats Carlsson SICS, Sweden
Michael Leuschel Heinrich Heine Universität Düsseldorf, Germany
Michel Ferreira Universidade do Porto, Portugal
Neng-Fa Zhou City University of New York, USA
Paul Tarau University of North Texas, USA
Paulo Moura Universidade da Beira Interior, Portugal
Ricardo Rocha Universidade do Porto, Portugal
Tom Schrijvers K.U. Leuven, Belgium



Table of Contents

Operational Approach to the Modified Reasoning, Based on the Concept
of Repeated Proving and Logical Actors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Alexei Morozov

Rule based classification of documents using Logic Programming . . . . . . . . . 16
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Distributed Multi-Threading in GNU Prolog . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Nuno Morgadinho and Salvador Abreu

Multi-threading programming in Logtalk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Paulo Moura, Paul Crocker and Paulo Nunes

Towards High-Level Execution Primitives for And-parallelism: Preliminary
Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Amadeo Casas, Manuel Carro and Manuel Hermenegildo

Dealing with large predicates: exo-compilation in the WAM and in Mercury117
Bart Demoen, Phuong-Lan Nguyen, V. Santos Costa and Zoltan Som-
ogyi

Some Improvements Over the Continuation Call Tabling Implementation
Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Pablo de Guzmán, M. Carro, M. Hermenegildo, Cláudio Silva and R.
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Abstract. The message of this paper is the following: there is one more
basic principle of operational semantics of logic programming (besides
backtracking, recursion, etc.) that gives a solution of challenging prob-
lem of combining strict declarative semantics of logic languages with the
dynamic behavior (that includes destructive assignment operations and
interaction with dynamic environment). We have developed this princi-
ple, named repeated proving, in the Actor Prolog logic language. In this
paper the repeated proving principle is explained with the help of an
operational semantics (abstract machine) for sequential logic programs
enhanced with logical actors. The problems of soundness and complete-
ness of the control strategy are considered.

Introduction

We address the problem of ensuring strict declarative semantics of logic lan-
guages operating in dynamic environment [1,2,3,4]. Our approach reminds of
so-called perturbation model of constraint-based languages. In the perturbation
model, unlike the standard (refinement) one, at the beginning of execution cycle
variables have specific associated values satisfying the constraints. The value of
one or more variables is perturbed by some outside influence, such as an edit
request from the user, and the task of the prover is to adjust the values of the
variables in such a way as to satisfy the constraints again [5,6].
The problem is closely related to the problem of ensuring the declarative

semantics of the destructive assignment operation in logic languages. One can
consider the updates in the outer world as a kind of destructive assignment that
violates the soundness of the logic program. In this article, this problem is solved
using the principle of repeated proving of sub-goals.
In section 1, the ideas of repeated proving and logical actors are set forth.

In section 2, a special notation is introduced along with the architecture of an
abstract machine implementing a sequential control strategy of logic programs
enhanced with logical actors. In section 3, transition diagrams of the abstract
machine are defined. In section 4, the problems of soundness and completeness
of the operational semantics are discussed.
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2 Alexei A. Morozov

1 The Idea of Repeated Proving and Logical Actors

Let us consider a logic program written in pure Prolog that has a classical
model-theoretic semantics. The idea of repeated proving consists in dividing the
AND-tree of the logic program into separate branches (sub-goals to be proved)
called logical actors (α1,. . . ,αn on the Fig. 1) that should have the following
operational properties:

α3

α1

α2

α5

α4

V1

V4

V3

V2

V5

Fig. 1. The idea of repeated proving of sub-goals.

1. Common variables (V1,. . . ,Vm) are the single channel of data exchange be-
tween the actors.

2. Proving of separate actors can be fulfilled independently in arbitrary order.
3. One can cancel the results of proving of some actors without logic program
backtracking while keeping all other sub-goals of the program. After cancel-
ing results of proving of an actor, its proving is to be repeated.

Thus, one can implement a modification of reasoning. The results and conse-
cution of reasoning itself can be partially modified in the process and after the
logical inference. This makes possible to eliminate contradictions between the
results of logical reasoning and new information income from outer world.
The best example of application of the idea is implementation of long-lived

Web agents. Let us imagine a Web agent written in logic language. The purpose
of the agent is to make a logical inference on the basis of several remote data
sources and to check some assertions about the remote resources. Let us imagine
also that the agent is long-lived, i.e., it operates during a period of time that is
longer than the period of information update. Thus the agent should react on any
modification of remote resources and inform the user about the current state of
the assertions to be checked. The problem is that one cannot repeat execution of
the logic program from the beginning with any change in the outer world — the
repeat of the whole process of data collection performed during the long period of
time is inefficient and, in some cases, technically impossible. Therefore one must
change some branches of logic inference that depend on the modified data and
keep all other branches unchanged. This is the case of modification of reasoning
and the challenge is to provide soundness and (if possible) completeness of logical
reasoning under the modification.
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The Concept of Repeated Proving and Logical Actors 3

Another area that is recognized as a prospective application of the perturba-
tion model of constrain-based languages is graphic user interface management [6].
We have successfully applied the logical actors approach for both the logical
programming of Web agents [7,8] and visual user interface management [9]. An
additional issue of our research is development of logic object-oriented model of
asynchronous concurrent computations based on the logical actors approach [10].
In the following sections a conservative extension of standard control strategy

of (sequential) Prolog is developed that implements the repeated proving of
logical actors.

2 The Architecture of Abstract Machine

Let us consider an abstract machine that implements a sequential control strat-
egy for logic programs enhanced with logical actors. The input language of this
machine is the Horn subset of first order logic formulas enhanced with special
means implementing logical actors.
The abstract machine implements the following general principles:

1. The standard control strategy (depth-first left-to-right search) is a part of
the control strategy implemented by the abstract machine.

2. The AND-tree of logic program is to be divided into separate logical actors,
i.e., any pending sub-goal of the program is a logical actor or a part of a
logical actor.

3. Any logical actor obtains its own (local) substantiation (local values of com-
mon variables).

4. The results of proving of logical actor can be cancelled.
5. The logical actor can be proved once again after the canceling of results of
its previous proving.

6. The states of logical actors are restored during the backtracking.

Thus, the abstract machine implements the standard control strategy exactly
if there is only one logical actor in the program (i.e., all the branches of the AND-
tree belong to the same actor).
Each logical actor A of the program has its own (local) values of variables.

Actor A unifies its values with the values that belong to other actors in the
following cases only:

1. The local values are compared in the course of successful termination of
proving of actor A.

2. The local values are compared when actor A executes the ’:=’ built-in pred-
icate (this predicate will be considered later).

During the comparison of values that belong to different actors, abstract ma-
chine can cancel results of proving of some actors to provide consistency between
remaining actors of the program (to provide existence of the most general uni-
fier for all the values of all the actors of the program that remain uncancelled).
After that the abstract machine tries to prove the cancelled actors once again.

CICLOPS 2007
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4 Alexei A. Morozov

Let us name the operation of canceling of results of proving of the actor as
neutralization of actor.
Thus, the proving of actor A includes the following main stages (see Fig. 2).

Autonomous proving of the actor

↓

Interaction with other actors of the program

Checking consistency
between the actors

→ Neutralization
of some actors

→ Repeated proving of
neutralized actors

Fig. 2. The stages of execution of logical actor.

There are three possible states of the actor:

1. Let us name an actor active if the proving of this actor is performing at this
moment and is not ended yet.

2. The actor that was successfully proved (and was not neutralized yet) is
named proven.

3. The actor is named neutral if the proving of this actor was cancelled and the
repeated proving of it was not started yet.

Neutralization of active actors is prohibited (see the formal rules of select-
ing actors for neutralization in section 3). Thus, sometimes the contradictions
between the actors of the program cannot be eliminated with the help of actor
neutralization. In this case standard backtracking occurs in the program, that
returns actor A to the stage of autonomous proving.
In the case if the abstract machine successfully eliminates contradictions

between the actors with the help of neutralization of some set NA of actors,
repeated proving of all the neutral actors occurs. If proving of all neutral actors
terminates with success (or set NA is empty), the proving of actor A termi-
nates with success. In another case backtracking occurs in the logic program,
that returns actor A to the stage of autonomous proving. Thus, a failure of the
repeated proving of any actor of the NA set will backtrack the program.
Let us introduce some special notions to define the control strategy formally:

– The state of abstract machine is a set of actors:

Γ = {A1, A2, . . . , An} ,

where Ai, i = 1 . . . n, are the actors of the program.
– Actor Ai is a branch of AND-tree created as a result of execution of so-called
actor call of a predicate @m(t1, . . . , tk):

Ai = 〈α,m(t1, . . . , tk), R〉 ,

CICLOPS 2007
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The Concept of Repeated Proving and Logical Actors 5

where α is an (unique) name of actor; m(t1, . . . , tk) is an atomic formula
that corresponds to given actor; R is a list named the results of proving of
the actor.

– The result of proving of an actor is information obtained during the proving
of the actor: instantiations of variables, backtrack points, etc.:

E = 〈β, F 〉 ,

where β is the name of actor that has invoked the proving under consider-
ation; F is a stack of so-called failure continuations that is used for imple-
mentation of backtracking.

– The failure continuation is a stack containing sub-goals to be proved during
investigation of one branch of OR-tree:

C = 〈G, σ,N,B〉 ,

where G is a list of sub-goals; σ is an instantiation of variables used during
investigation of the branch of the OR-tree under consideration; N is a list
of actor names that were neutralized during investigation of given branch of
the OR-tree; B is a list of actor names that were created during investigation
of this branch.

– The Subgoal can be a usual predicate call m(t1, . . . , tk), an actor predicate
call @m(t1, . . . , tk), compositions of sub-goals S1 and S2, S1 or S2, etc.

A special notation (@-language) necessary for definition of abstract machine
states is given in tables 1, 2.

The semantics of formulas of kind Γ.α {GL = S : G,Subst = σ} is the follow-
ing: there is an actor α in the Γ state of abstract machine, that has the following
properties:

1. The GL cell situated on the top of the stack of failure continuations that is
situated on the top of the stack of results of proving of the α actor has value
S : G (a list).

2. The Subst cell situated on the top of the stack of failure continuations that
is situated on the top of the stack of results of proving of the α actor has
value σ.

In a similar manner, a formula of kind Γ.α = 〈α,M,R〉 has the following
semantics: there is an actor α in state Γ of abstract machine. The value of this
actor is equal to 〈α,M,R〉. One can use given formulas in the following sense:
“The Γ state, such that there is an actor α that has the following properties. . . ”.

We will use also formulas of the following kind in the transition diagrams:
Γ ′ = Γ : α {GL :=G}. The semantics of these formulas is “The Γ ′ state of
abstract machine differs from the Γ state in that a new value G was assigned to
the GL cell that is situated on the top of the stack of failure continuations that
is situated on the top of the stack of results of proving of the α actor.”

CICLOPS 2007
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6 Alexei A. Morozov

Table 1. The table of basic symbols of the @-language.

Notion Symbol Definition Typical
elements

Constant Const a, b, c

Variable V ar X, Y, Z

Functor Fun f

Term Term

Const;
V ar;
f(t1, . . . , tk), k ≥ 1

t, v, u

Atomic formula Atom m(t1, . . . , tk), k ≥ 0 M

Name of actor Name
α, β, γ, . . . ; τ ; ξ,
where τ and ξ are special names

Sub-goal Subgoal

true; fail; M ; @M ;
S1 and S2; S1 or S2;
del([α1, . . . , αn]);
back([α1, . . . , αn]);
wait(γ); redo(γ);
neutralize({α1, . . . , αn});
restart({α1, . . . , αn})

S

Procedure Procedure M :− S P

Definition of proce-
dures

Procedures Function Atom→ Subgoal D

Table 2. Definition of the @-language.

Notion Symbol Definition Typical
elements

State of abstract ma-
chine

State {A1, A2, . . . , An}, n ≥ 1 Γ

Actor Actor 〈α,M,R〉 A

List of results of prov-
ing

RL

nil;
E : R, is a list with head E
and rest R.

R

Results of one proving Result
〈β, F 〉; neutral
where neutral is a special symbol

E

Stack of failure con-
tinuations

FL
nil;
C : F

F

Failure continuation Cont 〈G, σ,N,B〉 C

List of sub-goals
(named also success
continuation)

GL nil; success; failure;S : G G

Substitution Subst σ, θ, . . . ; ε (ε is the empty substitution)

List of names of neu-
tral actors

Neutr [α1, . . . , αn] N

List of names of cre-
ated actors

Built [α1, . . . , αn] B

CICLOPS 2007
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The Concept of Repeated Proving and Logical Actors 7

A logic program is defined as a set D of procedures1 (see designations of the
@-language in table 1) and an initial state of the program:

Γ 0(τ) =

〈

τ,m(t1, . . . , tk),
〈
ξ,
〈
m(t1, . . . , tk) : nil, ε, [ ], [ ]

〉
: nil

〉
: nil

〉

,

where τ is the name of an actor (the target actor hereafter) that is active in the
Γ state, and ξ is dummy name of an actor situated in outer world (the external
actor) that has invoked the program under consideration. All the actors except
for the τ actor are proven2 in the Γ 0 state of the abstract machine:

∀α : Γ 0.α {Name 6= τ} : is proven(Γ 0, α)

The abstract machine can reach one of two final states:

1. The success state: ΓSUCCESS .τ {Cont = 〈success, σ,N,B〉}, where τ is the
target actor introduced in the Γ 0 initial state.

2. The failure state: ΓFAILURE .τ {FL = 〈failure, ε, [ ], [ ]〉 : nil}.

Note, that the success and the failure states are alternative in accordance with
given definitions. Deadlocks never occur in the abstract machine.

3 Transition System

The transition system of abstract machine is defined with the help of set of
transition schemas and set Λ of labels (let us denote the typical label by l).
Let us consider the main stages of the proving of logical actor (Fig. 2).

3.1 Autonomous Proving of Actor

Execution of logic program is performed in accordance with the standard control
strategy (depth-first left-to-right search) on this stage of proving of the actor.
This strategy is implemented with the help of the transition schemas: True, Rec,
Loc1, Seq, and Alt. Some auxiliary schemas implement creation, deletion, and
modification of logical actors during the proving.
True — elimination of the true sub-goal during the execution of actor α.

Γ.α {GL = true : G}
〈True,α〉
−−−−−−−−→ Γ.α {GL :=G}

The semantics of this transition schema is the following one: “If current state Γ
of abstract machine is such that an actor α exists and current list of sub-goals
of this actor GL = true : G, then state Γ can be transformed into new one. In
new state of abstract machine current list of sub-goals of actor α is modified:

1 Let us do not use different procedures with the same functor (name and arity) of
heading M to simplify the presentation.

2 The is proven predicate is defined in section 3.2.

CICLOPS 2007
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8 Alexei A. Morozov

GL := G. All other attributes of actor α and all other actors of the abstract
machine will not changed during the transformation.”
Rec — a call of predicate m during the execution of actor α. The rename :

P → P ′ function implements renaming of variables of given procedure in the
standard manner. The mgu : (M1,M2)→ σ function computes the most general
unifier of terms M1, M2 (iff the unifier exists).

Γ.α {GL = m(t1, . . . , tk) : G,Subst = σ}
∃ P ∈ D :

rename(P ) = (m(u′1, . . . , u
′
k):− S

′) ∧
∃ θ = mgu(m(t1, . . . , tk)σ,m(u′1, . . . , u

′
k))

Γ ′ = Γ : α {GL := S′ : G,Subst := σθ}

Γ
〈Rec,α〉
−−−−−−−→ Γ ′

where 〈Rec, α〉 is the label of transition scheme under consideration. The state-
ments over the line determine the conditions when the Rec schema can be per-
formed. The statements under the line explain what is the difference between
old state Γ and new state Γ ′ that can be obtained with the help of the Rec
transition schema.
Loc1 — backtracking of given actor α. The ‘−’ function designates the dif-

ference between lists: L−L′ = L′′, if L′′ = [α1, . . . , αn] and L = [α1, . . . , αn|L′].
The ‘+’ function designates concatenation of lists.

Γ.α {FL = 〈S : G, σ,N,B〉 : (〈G′, σ′, N ′, B′〉 : F ′)} ,
S = fail ∨
(S = m(t1, . . . , tk) ∧ ¬∃ P ∈ D :
rename(P ) = (M ′:− S′) ∧
∃ θ = mgu(m(t1, . . . , tk)σ,M ′))

Γ ′ = Γ : α {FL := 〈back(N ′′ +B′′) : (del(B′′) : G′) , σ′, N ′, B′〉 : F ′} ,
N ′′ = N −N ′, B′′ = B −B′

Γ
〈Loc1,α〉−−−−−−−→ Γ ′

Loc2 — recognition of necessity to transmit backtracking from actor α to the
actor that has invoked current proving of actor α.

Γ.α {FL = 〈S : G, σ,N,B〉 : nil} ,
S = fail ∨
(S = m(t1, . . . , tk) ∧ ¬∃ P ∈ D :
rename(P ) = (M ′:− S′) ∧
∃ θ = mgu(m(t1, . . . , tk)σ,M ′))

Γ ′ = Γ : α {FL := 〈back(N +B) : (del(B) : failure) , ε, [ ], [ ]〉 : nil}

Γ
〈Loc2,α〉−−−−−−−→ Γ ′

Glo — transmission of backtracking from actor α to actor β.

Γ.α {Result = 〈β, 〈failure, ε, [ ], [ ]〉 : nil〉}
Γ.β {Subgoal = wait(α)}
Γ ′ = Γ : β {GL := fail : nil}

Γ
〈Glo,β,α〉

−−−−−−−−→ Γ ′

CICLOPS 2007

Alexei Morozov 8



The Concept of Repeated Proving and Logical Actors 9

Back0 — termination of process of recovering the states of actors during
backtracking of the program.

Γ.α {GL = back([ ]) : G}
〈Back0,α〉−−−−−−−−−→ Γ.α {GL :=G}

Back1 — recovery of the active or the proven state of actor γ during back-
tracking of actor α.

Γ.α {GL = back([γ|BList]) : Gα}
Γ.γ {RL = 〈β, 〈Gγ , σγ , Nγ , Bγ〉 : Fγ〉 : Rγ}
Γ ′ = Γ : α {GL := back(Nγ +Bγ +BList) : (del(Bγ) : Gα)} ,

γ {RL :=Rγ}

Γ
〈Back1,α,γ〉−−−−−−−−−−→ Γ ′

Back2 — recovery of the neutral state of actor γ during backtracking of α.

Γ.α {GL = back([γ|BList]) : Gα}
Γ.γ {RL = neutral : Rγ}
Γ ′ = Γ : α {GL := back(BList) : Gα} ,

γ {RL :=Rγ}

Γ
〈Back2,α,γ〉−−−−−−−−−−→ Γ ′

Del0 — termination of deletion of actors during backtracking of actor α.

Γ.α {GL = del([ ]) : G}
〈Del0,α〉−−−−−−−→ Γ.α {GL :=G}

Del1 — deletion of actor γ during backtracking of actor α. The ‘/’ function
designates deletion of actor: Γ1/γ = Γ2, such that {〈γ,Mγ , Rγ〉} ∪ Γ2 = Γ1,
Γ1 6= Γ2.

Γ.α {Subgoal = del([γ|DList])}
Γ ′ = (Γ : α {Subgoal := del(DList)}) /γ

Γ
〈Del1,α,γ〉−−−−−−−−−→ Γ ′

Seq — execution of conjunction of sub-goals of actor α.

Γ.α {GL = (S1 and S2) : G}
〈Seq,α〉
−−−−−−−→ Γ.α {GL := S1 : (S2 : G)}

Alt — execution of disjunction of sub-goals of actor α.

Γ.α {FL = 〈(S1 or S2) : G, σ,N,B〉 : F}
〈Alt,α〉
−−−−−−→

Γ.α {FL := 〈S1 : G, σ,N,B〉 : (〈S2 : G, σ,N,B〉 : F )}

New1 — execution of actor predicate call @m during execution of actor α.
The code auxiliary function is used for preparation of arguments of actor

predicate call. This function (see Fig. 3) provides transfer of maximal quantity
of information about the values of the arguments of predicate into the γ actor
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10 Alexei A. Morozov

to be created. The code function transfers the values of the instantiated vari-
ables and copies the variables that are unbound. The copy auxiliary function
copies the values of variables. The new variable function creates new variables.
The is variable function checks if the argument is an (unbound) variable. The
not exists(Γ, γ) expression means 〈γ,Mγ , Fγ〉 /∈ Γ .

Γ.α {FL = 〈@m(t1, . . . , tk) : G, σ,N,B〉 : F}
not exists(Γ, γ)
∃ P ∈ D :

rename(P ) = (m(u′1, . . . , u
′
k):− S

′) ∧
([v1, . . . , vk] , σ

′) := code([t1, . . . , tk] , σ) ∧
∃ θ = mgu(m(v1, . . . , vk),m(u′1, . . . , u

′
k))

Γ ′ =

(

Γ : α

{
FL := 〈wait(γ) : G, σ′, N, [γ|B]〉
: (〈redo(γ) : G, σ′, N, [γ|B]〉 : F )

})

∪

{〈γ,m(v1, . . . , vk), 〈α, 〈S′ : nil, θ, [ ], [ ]〉 : nil〉 : nil〉}

Γ
〈New1,α,γ〉−−−−−−−−−−→ Γ ′

code : [{ti}, σ]→ [{t′i}, σ
′] , i = 1 . . . n

σ′ := σ;
do i = 1 . . . n

if ti = f({uj}), j = 1 . . . k
[{vj}, σ′] := code({uj}, σ);
t′i := f({vj}); σ := σ

′

elsif is variable(ti)
if is variable(tiσ) t

′
i := ti

else [t′i, σ
′] := copy(ti, σ);

σ := σ′

fi

else t′i := ti
fi

od

copy : [t, σ]→ [t′, σ′]
if tσ = f({uj}), j = 1 . . . k

σ′ := σ;
do j = 1 . . . k

if is variable(uj)
u′j := new variable();
σ′ := σ ∪

{
u′j = uj

}

else
[
u′j , σ

′
]
:= copy(uj , σ)

fi;
σ := σ′

od;
t′ := f({uj}), j = 1 . . . k

else t′ := tσ; σ′ := σ
fi

Fig. 3. Definitions of coding and copying functions.

New2 — recognition of that an actor predicate @m call cannot be performed
during the execution of actor α.

Γ.α {Subgoal = @m(t1, . . . , tk), Subst = σ}
¬∃ P ∈ D :

rename(P ) = (m(u′1, . . . , u
′
k):− S

′) ∧
([v1, . . . , vk] , σ

′) := code([t1, . . . , tk] , σ) ∧
∃ θ = mgu(m(v1, . . . , vk),m(u′1, . . . , u

′
k))

Γ ′ = Γ : α {GL := fail : nil}

Γ
〈New2,α〉−−−−−−−−→ Γ ′
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The Concept of Repeated Proving and Logical Actors 11

Redo1 — backtracking of the γ actor during backtracking of actor α.

Γ.α {FL = 〈redo(γ) : Gα, σα, Nα, Bα〉 : Fα}
Γ.γ

{
RL =

〈
α, 〈Gγ , σγ , Nγ , Bγ〉 :

(
C ′γ : F

′
γ

)〉
: Rγ

}

Γ ′ = Γ : α

{
FL := 〈wait(γ) : Gα, σα, Nα, Bα〉
: (〈redo(γ) : Gα, σα, Nα, Bα〉 : Fα)

}

,

γ
{
RL :=

〈
α, 〈fail : nil, σγ , Nγ , Bγ〉 :

(
C ′γ : F

′
γ

)〉
: Rγ

}

Γ
〈Redo1,α,γ〉−−−−−−−−−−→ Γ ′

Redo2 — recognition of that backtracking of actor γ cannot be performed
during execution of actor α.

Γ.α {Subgoal = redo(γ)}
Γ.γ {RL = 〈α,Cγ : nil〉 : Rγ}
Γ ′ = Γ : α {GL := fail : nil}

Γ
〈Redo2,α,γ〉−−−−−−−−−−→ Γ ′

3.2 Interaction of Logical Actors

The abstract machine implements the following operations on this stage:

1. The comparison of substitutions that correspond to various actors of the
program.

2. Neutralization of some actors.
3. Repeated proving of neutral actors.

Check1 — checking if the actors of the program are consistent (during ter-
mination of proving of actor α).
Let us introduce some additional notions:

– is neutral(Γ, γ)
def
= Γ.γ {Result = neutral};

– is active(Γ, γ)
def
= ¬is neutral(Γ, γ) ∧ Γ.γ {GL 6= success};

– is proven(Γ, γ)
def
= ¬is neutral(Γ, γ) ∧ Γ.γ {GL = success};

– SUBST (Γ, γ) is substitution σγ , Γ.γ {Subst = σγ}, or empty substitution
ε, if is neutral(Γ, γ);

– does exist(Γ, γ)
def
= 〈γ,Mγ , Rγ〉 ∈ Γ ;

– Σ(Γ, {α1, . . . , αn}) =
n⋃

i=1

SUBST (Γ, αi) — is a set of substitution assign-

ments corresponding to all the actors α1, . . . , αn in state Γ .

Definition 1. Set S of substitution assignments is conflicting one, if there are
two subsets σ1 and σ2 and a variable X such that:

1. σ1 and σ2 are substitutions.
2. These substitutions gives values V1 and V2 to the X variable, that have no
most general unifier.
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inconsistent(S)
def
= ∃ σ1 ⊂ S ∧ ∃ σ2 ⊂ S ∧ ∃X : ¬∃mgu(Xσ1, Xσ2).

Definition 2. consistent(S)
def
= ¬inconsistent(S)— is a consistent set of sub-

stitution assignments.

Definition 3. A set of names NA of actors to be neutralized and proved repeat-
edly may be neutralized(Γ,NA) :

1. ∀β ∈ NA : does exist(Γ, β) ∧ is proven(Γ, β);
2. ∀β ∈ NA :
∃ set of actors {αi} , i = 1, . . . , k : does exist(Γ, αi) :
inconsistent(Σ({α1, . . . , αk, β})) ∧ consistent(Σ({α1, . . . , αk}));

3. A set of substitution equations of actors of any subset of Γ that has no
common elements with the NA set should be consistent one.

The condition (2) excludes any unnecessary neutralization of actors that are
irrelevant to the contradictions that should be eliminated.

Γ.α {GL = nil}
∃NA : may be neutralized(Γ,NA)
Γ ′ = Γ : α {GL := neutralize(NA) : (restart(NA) : success)}

Γ
〈Check1,α〉−−−−−−−−−→ Γ ′

Check2 — recognition of impossibility to eliminate contradictions between
the actors with the help of neutralization of some actors (during termination of
proving of actor α).

Γ.α {GL = nil}
¬∃NA : may be neutralized(Γ,NA)
Γ ′ = Γ : α {GL := fail : nil}

Γ
〈Check2,α〉−−−−−−−−−→ Γ ′

Neut0 — termination of neutralization of actors (during termination of prov-
ing of actor α).

Γ.α {GL = neutralize(∅) : G}
〈Neut0,α〉−−−−−−−−−→ Γ.α {GL :=G}

Neut1 — neutralization of actor γ during execution of actor α:

Γ.α {Cont = 〈neutralize({γ} ∪NA′) : G, σ,N,B〉} , γ /∈ NA′

Γ.γ {RL = R}
Γ ′ = Γ : α {Cont := 〈neutralize(NA′) : G, σ, [γ|N ], B〉} ,

γ {RL := neutral : R}

Γ
〈Neut1,α,γ〉−−−−−−−−−−→ Γ ′

Succ — termination of proving of actor α with success.

Γ.α {GL = restart(∅) : G}
〈Succ,α〉
−−−−−−−→ Γ.α {GL :=G}
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Call — invocation of repeated proving of actor γ during execution of α.

Γ.α {FL = 〈restart({γ} ∪RA′) : G, σ,N,B〉 : F} , γ /∈ RA′

Γ.γ = 〈γ,m(v1, . . . , vk), R〉

Γ ′ = Γ : α

{
FL := 〈wait(γ) : (restart(RA′) : G) , σ, [γ|N ], B〉
: (〈redo(γ) : (restart(RA′) : G) , σ, [γ|N ], B〉 : F )

}

,

γ {RL := 〈α, 〈m(v1, . . . , vk) : nil, ε, [ ], [ ]〉 : nil〉 : R}

Γ
〈Call,α,γ〉

−−−−−−−−−→ Γ ′

Note that the Check1, the Neut1, and the Call schemas make abstract ma-
chine nondeterministic one.
Con— resumption of proving of actor β after termination of proving of actor

α that was invoked by actor β.

Γ.α {GL = success}
Γ.β {GL = wait(α) : G}
Γ ′ = Γ : β {GL :=G}

Γ
〈Con,β,α〉

−−−−−−−−−→ Γ ′

Note that defined abstract machine provides a possibility for modeling de-
structive assignment of variables with the help of logical actors. For instance,
the X := Y build-in predicate is implemented in the Actor Prolog language,
that invokes the interaction between the actors of the program. The operational
semantics of the ’:=’ predicate is straightforward one:

1. The predicate tries to unify the X and the Y terms.
2. If the most general unifier exists, the interaction of actors of the program is
performed in accordance with the rules described above.

3. If neutralization and repeated proving of actors provides consistency between
the actors of the program, the execution of the ’:=’ predicate terminates with
success. In another case backtracking occurs in the program.

The model-theoretic semantics of this predicate is exactly the same as the se-
mantics of the usual equality ’=’ in pure Prolog and the operational semantics
of the ’=’ predicate is a special case of the ’:=’ predicate operational semantics.

4 Operational Semantics

The operational semantics of sequential logic program enhanced with logical
actors is a map O that projects definition of procedures D and an initial state
of program Γ 0, Γ 0.τ = 〈τ,m(t1, . . . , tk), Rτ 〉, into the set of finite and infinite
chains of states obtained with the help of transition schemas defined above.

Definition 4. Operational semantics O:

O[D,Γ 0]
def
=

{
Γ 0

l1−→ Γ1
l2−→ . . .

ln−→ ΓSUCCESSn

}
∪

{
Γ 0

l1−→ Γ1
l2−→ . . .

ln−→ ΓFAILUREn

}
∪

{
Γ 0

l1−→ Γ1
l2−→ . . .

}
.
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Note that the model-theoretic semantics of defined @-language strictly cor-
responds to the model-theoretic semantics of pure Prolog without negation.

Definition 5. An initial set of actor constraints is a set of logical statements
that corresponds to all the proven actors of initial state Γ 0:

Init
def
=
∧

i

Mi for all 〈αi,Mi, Ri〉 ∈ Γ
0, such that is proven(Γ 0, αi).

Proposition 1 (on soundness of the operational semantics). The oper-
ational semantics O is sound, i.e., the success final state of the program can be
obtained only if union of procedure definitions D with the negation of conjunction
of initial set Init and goal statement m(t1, . . . , tk) is unsatisfiable:

(
Γ 0

?
−→ ΓSUCCESS

)
⇒ (D ∪ {¬ (Init ∧ m(t1, . . . , tk))} |= ⊥) .

Proposition 2 (on completeness of the operational semantics). The suc-
cess final state of the program will be obtained if a substitution θ exists, such that

D |= (Init ∧ m(t1, . . . , tk)) θ,

and no infinite computations arise: Γ 0
?
−→ ΓSUCCESS .

Thus, the program can fall into an infinite computation even if a success
branch is present in the AND-OR tree, like the standard sequential Prolog.
Nevertheless the additional operation of neutralization of actors cannot pro-

voke looping of the program, because the neutralization of active actors is pro-
hibited in schema Check1.
The practical use of the control strategy under consideration requires that

the abstract machine stops after the obtaining of the first success final state
despite the fact that the abstract machine can implement the exhaustive search
until all existed answers are computed or an infinite computation occurs. This
restriction corresponds to the perturbation model of constraint-based languages,
i.e., the problem to be solved by the abstract machine is to fit given system of
constraints to new information income from outer world only. After that, the
abstract machine will wait for a new outside influence.

Conclusion

The logical actors concept gives an alternative to the nonmonotonic approach in
logic programming. It forms a basis for solving the problem of ensuring sound-
ness and completeness of the destructive assignment operation as well as strict
classical model-theoretic semantics of logic programs operating in dynamic en-
vironment (such as graphical user interface and Internet).
The repeated proving of sub-goals allows to modify the logical reasoning

during the execution of a logic program. Following the principle of modifiable
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reasoning, we have developed concurrent object-oriented logic language Actor
Prolog that ensures soundness of logic programs operating under conditions of
permanent altering and updating of input information [11,8,12]. The ideas stated
in this paper are approved by practical experiments with visual logic program-
ming and Web agent logic programming [7].
The author is grateful to Prof. Yu.V. Obukhov, Dr. A.F. Polupanov, Dr.

A.N. Kruglov, and Dr. S.V. Remizov (IRE RAS) for help and support in imple-
menting the project, to Acad. Yu.I. Zhuravlev and Prof. V.A. Zakharov (Moscow
State University) for fruitful discussions of the problem.
This work was supported by RFBR, project no. 06-07-89302.
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Rule based lassi�ation of douments usingLogi ProgrammingGergely Lukásy and Péter SzerediBudapest University of Tehnology and EonomisDepartment of Computer Siene and Information Theory1117 Budapest, Magyar tudósok körútja 2., HungaryPhone: +36 1 463-2585 Fax: +36 1 463-3157{lukasy,szeredi}�s.bme.huKeywords: rules, doument lassi�ation, meta-data, logi programmingAbstrat. This paper presents the results of an ongoing Hungarian re-searh projet aiming at the development of the SREngine framework.This software system manages a pool of generi objets together withtheir properties and supports reasoning on these. The main idea of thesystem is to infer new properties about the objets, using their exist-ing properties and a set of user de�ned rules. These rules are given in aspeial logi programming language introdued in the paper, providingintuitive syntax and adequate expressive power.In a typial senario SREngine is used to lassify douments, i.e. toattah type information to them. For this we usually need to analyse thetextual ontent of the douments whih is done by dediated informationextrator modules.SREngine realises a bottom-up reasoner fully implemented in Prolog.The system is intended to be used in real-life appliations, providingrobust implementation and web-servie based interfaes for standardisedinformation exhange.1 Introdution and goalsThe Sense/Net Rule Engine (SREngine) is a generi rule based inferenesystem implemented in Prolog. SREngine is primarily designed to ooperatewith host systems managing douments together with their properties (so alleddoument stores). These inlude Web portals, ontent management systems andertain business appliations dealing with douments.The basi motivation of this researh and development work is to add reason-ing apabilities to the Sense/Net Portal Engine, a ommerial enterprise portalmanagement system providing ontent management, appliation integration andollaboration failities [7℄.1 Our high-level goal is to use logi based tehniquesto ahieve more intelligent behaviour of queries involving douments. This isdone by providing a knowledge representation formalism for storing bakgroundknowledge, and using it to infer new properties within the doument store, i.e.provide new piees of meta-information about douments. These an then beutilised during query exeution, a task delegated to the host system.1 We will refer to the Sense/Net Portal Engine as the host system in the sequel.

CICLOPS 2007
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As an additional bene�t, user interfaes provided by the host system an alsobeome more intelligent, for similar reasons. For example, SREngine an be used(1) to infer that some douments are related to eah other and (2) to representthis knowledge in the Doument Store. Now, whenever the user navigates to oneof these douments, the related douments an also be presented to her reatinga muh riher user experiene.The paper is strutured as follows. In Setion 2 we give a general introdutionto the SREngine system desribing the main omponents and their interations.In the next setion we disuss our rule language alled SRLang, introduing thesyntati onstruts and disussing the modelling deisions we have applied. InSetion 4 we present the implementation details of the system. Setion 5 disussesthe preliminary test results. In Setion 6 we examine related work. Finally, weonlude with a summary of our results.2 Overview of the systemIn this setion we give a general overview of the SREngine system. Firstwe introdue the notion of doument store by desribing its properties and itsontent. Next, we disuss the various usage senarios of SREngine. Finally, weintrodue the main omponents of SREngine: we disuss the general arhitetureof the system and desribe the ommuniation interfaes of SREngine.2.1 The doument storeAt an abstrat level, a doument store is onsidered to be a graph, where thenodes represent doument-like entities or values. A doument-like entity is anobjet representing a doument, the atual ontent of a doument, a diretory,a doument ategory, or any other objet related to douments. If this does notause onfusion, we will simply refer to doument-like entities as douments.The edges in a doument store, alled properties, run between douments orbetween douments and values. In the �rst ase, properties represent relationsbetween douments. For example, we an desribe that doument A is the draftversion of doument B. In the seond ase properties desribe the attributes of thedouments, suh as the title, the authors, et. We note that this model atuallyorresponds to existing knowledge representation formalisms, suh as RDF [2℄.Some properties have speial roles. The property has_binary is used to on-net a doument with its ontent. We use this terminology as very often theontent is given in a non textual, binary representation (e.g. in ase of MirosoftWord douments). Property has_hild is used to desribe the hierarhial in-lusion relation between the nodes, i.e. to express the fat that a doument isloated in a diretory or that a doument ategory is the subategory of another.If we traverse the nodes along this relation we get a tree ontaining all the nodesof the doument store, providing the basis for path expressions (see Setion 3).2.2 Usage senariosSREngine works with rules, written in a ustom designed logi language,whih desribes how to infer new properties from existing ones, using information2
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retrieved from the atual ontent of the douments. For obtaining the latter weuse Information extrator modules. These software omponents are speialisedto extrat ertain kinds of information from the douments.In the simplest senario, SREngine is used to exeute rules that are mostlybased on the Information Extrator modules. In this senario the system atually�lls in those piees of meta-information that the users of the host system have notsupplied for some reason (e.g. beause of lak of time, migration of the alreadyexisting doument struture, et.). Typially, this means that SREngine is usedto �ll in some doument properties, suh as the title, the authors, et. The mostimportant of these are the properties speifying the doument lassi�ation, e.g.whether it is a ontrat, a tehnial note, et.In another senario, rules are mostly used to infer new, omplex relationsbetween the nodes (or values of spei� properties) of the doument store usingthe available meta-information. These relations may easily represent informationthat one annot expet the users to speify. For example, one an reate a rulethat ounts how many other douments refer to the given doument. This anbe useful in ertain situations, for example, when one would like to rank thedouments based on their importane.Pratially, of ourse, SREngine is used in the mixture of the modes desribedabove. The main point is that beause the system derives new information ithelps us to ahieve our overall goals, i.e. to answer user queries more intelligentlyand to provide more user friendly interfaes towards users.2.3 ArhitetureFigure 1 shows SREngine as a blak box fousing on its I/O behaviour. Thesystem has two inputs: (1) the ontent of the doument store and (2) a set ofrules written in the SRLang language (see Setion 3). Using these, SREngineprodues instrutions on how to hange the ontent of the doument store.
PSfrag replaements SREnginesystemDoument store Modi�ation instrutions

SRLan rulesFig. 1. Inputs and outputs of SREngineThe exeution is bath-like, i.e. SREngine is supposed to be exeuted from timeto time, preferably at a time when the host system is o�ine, i.e. its doumentstore does not hange during the reasoning proess (see Setion 7).3
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Figure 2 shows the detailed arhiteture of SREngine together with an outlineof the Doument Store. The boundary of the SREngine is indiated by a dashedline. Aordingly, SREngine onsists of two main parts: the Knowledge Base andthe Reasoner.
PSfrag replaements

Rule Store Loal Doument Store
PropertygraphDoument Store

Binaries
SREngine

Knowledge Base

Rules

Reasoner Informationextrators

has_binary
(1) (2)

(3)(4)(5) (6)
Fig. 2. The detailed arhiteture of SREngineThe Knowledge Base stores the rules and the ontent of (the relevant part of)the Doument Store. This part exludes the binaries, i.e. SREngine only workswith meta-information of douments and not with doument themselves. Thetwo parts of the Knowledge base are alled (loal) Rule Store and Loal Dou-ment Store, respetively. The Reasoner works on the information available in theKnowledge Base and on the data the Information Extrators provide. The re-sults are written bak to the Knowledge Base (note arrow (4) from the Reasonerto the Knowledge Base).Finally, the role of the Information Extrator omponents is to extrat usefulinformation, suh as the name of the author, from the binaries of the doumentsin the Doument Store. This usually involves using some kind of data extration4
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tehnique. The extrated information is used by the Reasoner. Although theInformation Extrators are also developed for the SREngine system, Figure 2indiates that they belong to the host system. The reason for this is that the In-formation Extrators must ommuniate with the host system in a very e�ientway as they work with huge amounts of data orresponding to the binaries (f.arrow (6) in Figure 2). Thus, this omponent is expeted to be part of the hostsystem.One the reasoning proess is �nished, the ontent of the Loal DoumentStore is synhronised with that of the Doument Store maintained by the hostsystem, as indiated by arrow (2) between these omponents in Figure 2.2.4 InterfaesSREngine uses several kinds of interfaes to ommuniate with the host sys-tem. In Figure 2 we have three suh interfaes (1)-(3). Interfae (1) makes itpossible to populate the ontent of the Rule Store, while (2) does the same forthe Loal Doument Store. Interfae (3) de�nes the ommuniation between theReasoner and the Information Extrator omponent.2 In the following we disussthese interfaes in more detail.Rule Store interfae SREngine supports two formats for reading SRLangrules: we are apable of proessing rules given as text �les as well as readingrules in XML format (see Setion 3). Tehnially, the rules are read either froma �le or via Web Servie alls. In the latter ase, the host system is expeted toprovide the appropriate Web Servie whih SREngine an invoke.The interfae spei�es the details of suh a Web Servie, e.g. it must have aWSDL operation alled GetRules responsible for returning the rules.Doument Store interfae The Doument Store interfae serves two pur-poses. It allows us to import the ontent of the Doument Store as well as toexport the modi�ations bak to the Doument Store. This interfae is imple-mented by a Web Servie of the host system.Beause of the size of the Doument Store, the interfae spei�es that the WebServie must be apable of returning the relevant ontent of the Doument Storein parts. Namely, the Web Servie must realise two operations: (1) GetNumberOfNodes whih returns the number of nodes in the Doument Store and (2) GetNodesByID returning nodes within a given interval.Exporting the results is done by invoking the UpdateProperties operationof the Web Servie. The input of this operation is a set of modi�ations thatshould be performed on the Doument Store. This operation an be alled mul-tiple times, to support the option of performing the export operation in parts,whenever the reasoning proess has too many results.2 As the Information Extrator is part of the host system its ommuniation interfae(6) is not overed here. 5
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Information Extrator interfae The Information Extrator is a fairly au-tonomous omponent in a sense that it is expeted to be developed independentlyfrom the other parts of the system. As this omponent beomes more and moreintelligent, i.e. new data extration algorithms are built in, the users of SREngineare automatially able to use these when formulating rules.To support this behaviour, we have reated a registration mehanism whihlets the Reasoner know about the external alls, i.e. alls that are exeuted notby the Reasoner, but the Information Extrator (see Setion 3.3).The registration is ontained in the on�guration part of the rules (see Se-tion 3), where the user spei�es what Web Servie should the system invoke inorder to exeute a spei� external all. Suh a Web Servie must implement twooperations alled ex_property and ex_alulate. The �rst is used for externalalls where binaries of the douments are also involved, the latter is used in otherases. Examples for external alls are given in Setion 3.The reply of the Information Extrator always ontains the status �eld whihan have three di�erent values: suess, failure and exeption. In ase ofsuess the Information Extrator may provide some return values.3 The SRLan Rule languageIn this setion we introdue the rule language of SREngine. First we give somebasi examples, then we explain the quanti�ed operations available within thelanguage. Next, we disuss the external alls and the �rst order logi semantisof the rules. The examples in this setion desribe rules that lassify doumentsbased on some riteria: the profession of their authors, their ontent, et.Throughout this setion we use the text format of the rules as opposed to themuh more verbose XML format. The text format is atually based on the Prologsyntax. Namely, the rules are Prolog expressions using appropriate operatordelarations as onnetives.3.1 Basis of SRLanThe Loal Rule Store onsists of on�guration elements and rules. Usingon�guration elements one an speify the ative properties, i.e. new propertiesthat have to be written bak to the Doument Store. An example an be seenbelow.deduible(doument_type).deduible(has_author).This desribes that the results of the rules produing doument_type and has_author properties will be exported to the Doument Store. Other rules an beused during dedution, but their results are not exported diretly (however, theyan ontribute indiretly to some exported results).The other use of the on�guration elements is to speify whih Web Servie toinvoke in ase of external alls (see Setion 3.3). Below we an see two examples.6
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ex_alulate_loation("ontains", "http://152.66.71.114:1520/util").ex_property_loation("bulleted_list", "http://152.66.89.101/Tools").Here we desribe that in ase of alls ontains and bulleted_list the webservies at the given loations should be invoked.Now we turn our attention to the notion of SRLan rules. Similarly to Prolog,an SRLan rule onsists of a head and a body separated by the <== haratersequene. Below we show a simple example.doument_type(Doument, 'ategory:/douments/sientifi') <==has_author(Doument, Author) and (1)has_profession(Author, 'jobs:/eduation/teaher').This rule states that a doument should be lassi�ed as a sienti� doument ifit has an author who is a teaher. Conditions has_author, has_profession anddoument_type orrespond to properties in the Doument Store. The latter hasa speial importane as this is used to desribe the ategory of a doument, i.e.rules with heads like this are lassi�ation rules.Identi�ers given as Prolog atoms, e.g. 'jobs:/eduation/teaher', arealled path expressions. These expressions identify nodes within the DoumentStore by navigating along the ontainment relation. In theory, the user ouldwrite node identi�ers here as well, but pratially, path expressions are morereadable. For ompatness, if this does not ause onfusion, we will use a simpli-�ed version of path expressions in this paper: for example, we will simply writeteaher instead of 'jobs:/eduation/teaher'.In our next example we lassify a doument objet as belonging to theontrat ategory if it is a Mirosoft Word doument, its binary (i.e. the do-ument itself) is a bulleted list and it ontains the word �ontrat�:doument_type(Doument, ontrat) <==has_binary(Doument, Binary) andhas_type(Binary, "word") andex_property("ontains", ["ontrat",Binary℄, _) andex_property("bulleted_list", [Binary℄, _).This rule is a good example for illustrating that we an use information extratedfrom the ontent of the douments when reating rules. The truth values of theex_property expressions above are given by the Information Extrator ompo-nent (f. Figure 2). As we have seen above, the tehnial details on how to invokesuh an operation an be desribed in the on�guration part of the Rule Store.The ontent of the input parameters of an external all varies from all to all,so the expert should know with what parameters should she invoke the givenoperation. We will disuss external alls in more detail in Setion 3.3.SRLang also supports the use of negation as failure, i.e. the losed worldvariant of the lassial negation. In the example below we lassify a doumentas a singleton if it has a name and it does not have a known sibling havingbinaries. 7
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doument_type(Doument, singleton) <==has_name(Doument, Name) andnot (has_sibling(Doument, Sibling) andhas_binary(Sibling, _)).3.2 Quanti�ed operationsIn SRLang we an express that a ertain property holds for at least oneelement or for all the elements of a given solution set. The former orrespondsto the existential (∃), the latter to the universal (∀) quanti�er. For example, wean formulate a ondition that every author of a doument must have a spei�property:doument_type(Doument, art) <==forall Author in has_author(Doument,Author):: (2)has_profession(Author, artist).Here we say that if all the authors of a doument are artists, then we lassify itas an art doument.The forall onstrut an also be used to express more ompliated on-ditions. For example, we an formulate a rule with a nested forall onditionrequiring that all degrees of all authors of a doument are of ertain kind:doument_type(Doument, engineering) <==forall Author in has_author(Doument,Author)::forall Degree in has_degree(Author, Degree)::( has_type(Degree, "engineer") orhas_type(Degree, "mathematiian")) andhas_binary(Doument, Binary) and
. . .Generally a forall expression has the following form, where variables X1, . . .,Xj must be present in expressions F1, . . ., Fn:forall X1, . . ., Xj in F1 and . . . and Fn :: T1 and . . . and Tk (3)This requires that we ollet all solutions of F1 and . . . and Fn in variables X1,

. . ., Xj , and for eah suh solution we hek that T1 and . . . and Tk holds.We have already seen examples with impliit existential quanti�ation. Forexample, rule (1) lassi�es a doument to belong to a given type if at least oneof the authors has the spei�ed profession.8
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For the sake of symmetry we also allow expliit existential quanti�ation,listing the quanti�ed variables. Aordingly, rule (1) an also be given in thefollowing way:doument_type(Doument, sientifi) <==exist Author::has_author(Doument, Author) and (4)has_profession(Author, teaher).Using the exist onstrut also helps SREngine to warn the user in ertainsituations. Namely, if one of the variables in a ondition is existentially quanti-�ed, but at runtime it is not instantiated, SREngine gives a warning to the user(f. �oundering in Prolog [9℄).The general form of the exist onstrut is analogous to that of the forallexpression:exist X1, . . ., Xj in F1 and . . . and Fn :: T1 and . . . and Tk (5)3.3 External allsSRLang gives us the possibility to aess funtions implemented in externallibraries while evaluating the rules.The ex_property alls are used to exeute di�erent kinds of data extrationalgorithms on one or more binaries. An ex_property has three parameters. The�rst is a string desribing the operation we would like to invoke. The seondparameter is a list whih ontains referenes to binaries and possibly to otherobjets we need for the evaluation. The third parameter is also a list. This listwill ontain the results after a suessful exeution. In the following we showsome examples for the usage of ex_property:ex_property("ontains", ["(pr(5),treaty or ontrat)",Binary℄, [℄)ex_property("extrat_author", [Binary℄, [Author℄)ex_property("basi_metadata", [Binary℄, [Date, Format, Language℄)In the �rst example we ask whether the given doument ontains the phrasetreaty or ontrat in the paragraph 5. We an see that here we have twoinputs and no output (this is denoted by the empty list). Note that the inputarguments an be fairly omplex. Handling these is the task of the program oderesponsible for the exeution of the operation in question.In the seond example we extrat the author of the doument and put it inthe variable Author. In this example we have one input and one output.In the third example we extrat several piees of data from the doument(the reation date, the format and the language of the binary) and put them inthe variables of the output list.The ex_alulate alls have the same syntax as ex_property alls: the �rstargument spei�es the operation, the seond and third arguments desribe the9
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input and output parameters. The di�erene between the two kinds of exter-nal alls is that during the exeution of an ex_alulate all binaries are notinvolved. This implies that while ex_property alls must be handled by an ex-ternal omponent (as it has to e�iently aess the binaries), ex_alulate allsan also be implemented within the SREngine itself. In fat, there are severalprede�ned ex_alulate operations, inluding string manipulations, arithmeti,et. Some examples are shown below.ex_alulate("multiply", [A,B℄, [C℄)ex_alulate("append", [FirstName, LastName℄, [Name℄)ex_alulate("ontains", ["bill", Name℄, [℄)In the �rst example we multiply numbers A and B and expet the result tobe assigned to variable C. The seond example onatenates two names, while inthe third we examine whether the string Name ontains bill as a substring.3.4 SemantisThe evaluation of a set of SRLan rules with respet to a given doumentstore results in a set of new doument properties. This set is expeted to ontainexatly those properties that are entailed by the �rst order logi equivalent ofthe SRLan rules in question.We now disuss how to transform SRLan onstruts to �rst order logi for-mulas. SRLang rules whih do not ontain negation and forall onstruts or-respond to simple Horn lauses. The variables in the rules orrespond to logivariables, the literals, numbers, and path expressions (after evaluation) orre-spond to logi onstants. The <== onnetive denotes impliation, while the andonstrut orresponds to onjuntion (∧). Aordingly, the example rule (1) or-responds to the following logi formula:
(∀Document, Author)(document_type(Document, scientific) ←

has_author(Document, Author) ∧
has_profession(Author, teacher))The forall onstrut orresponds to a speial kind of universal quanti�a-tion. For example, the logi form of rule (2) is shown below.

∀Document[document_type(Document, art) ←−
∀Author(has_author(Document, Author) → has_profession(Author, artist))]The general form of the forall expression shown in (3) orresponds to thefollowing logi formula:

(∀X1 . . . Xj)(T1 ∧ . . . ∧ Tk ← F1 ∧ . . . ∧ Fn)The logial equivalent of the exist onstrut is the existential quanti�ation.For example, rule (4) orresponds to the logi formula shown below.10
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∀Document(document_type(Document, scientific) ←
∃Author(has_author(Document, Author) ∧ has_profession(Author, teacher)))The general form of the exist onstrut introdued in (5) is equivalent to thefollowing logi formula:

(∃X1 . . . Xj)(F1 ∧ . . . ∧ Fn ∧ T1 ∧ . . . ∧ Tk)4 ImplementationIn this setion we disuss implementation details of the SREngine system.First we give a high-level overview of the exeution proess. Next, we disussthe properties of the bottom-up reasoner SREngine uses: we desribe how westratify the rules to ensure a sound reasoning proess.4.1 Overview of the SREngine exeution proessThe operation of the SREngine is performed in the following 6 steps:1. proess the on�guration �les2. feth the ontent of the Doument Store3. feth the rules4. build layers5. perform bottom-up reasoning6. export the resultsFirst, the system reads the on�guration �les where the general parametersare stored. These inlude important details on how to aess the DoumentStore and from where to feth the rules. In the next two steps we load thesetwo soures, respetively. In step 4, we group the rules into layers (see morebelow). Next, we perform a bottom-up reasoning proess and �nally we exportthe results.4.2 Bottom-up reasoningIn the SREngine system we have implemented a bottom-up reasoner. Thishoie, ontrasting with the top-down exeution mehanism of Prolog or anyother resolution based logi programming system suh as XSB, is justi�ed bythe fat that our task here is to produe all doument properties that an bededued from the doument store and the rules (while in the top-down approahwe look for the solutions of a single goal).A further advantage of bottom-up reasoning is that it is muh more robustthan the top-down approah, e.g. in terms of ensuring termination. As no atten-tion needs to be paid to this aspet, rules an be formulated more freely and donot require Prolog expertise.A disadvantage is that using bottom-up reasoning in the presene of negationas failure or the forall onstrut raises some problems. For example, even11
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though at a given point it seems that a property holds for every author of aspei� doument (and thus the orresponding rule an be applied) this annotbe taken for granted. This is beause a bottom-up reasoner an infer later thatthe doument has another author who may not have the desired property.These problems are atually avoided as we only allow set of rules that anbe strati�ed [1℄ with respet to negation and forall. In this ase the rules anbe divided into layers in suh a way that if a rule alls another through negationor forall, then this other rule has to be plaed in a lower layer than the allingrule. If suh a strati�ation an be found, then bottom-up reasoning an besafely applied to the layers one-by-one, starting from the lowest.In SREngine we apply a slight generalisation of this tehnique. Namely, whenbuilding the layers, we onsider every kind of dependeny between the rules, notonly the alls via negation and forall. This strategy is disussed below.34.3 LayersIn SREngine, the layers are reated in the following way. First we build thedependeny graph Gd from the atual set of rules. Eah node in Gd orresponds toa rule. An edge from node A to node B represents the fat that the exeution of
B may depend on the exeution of A, i.e. A an possibly produe new fats whihan trigger the rule orresponding to node B. As an example, the dependenygraph of the rules shown in Figure 3 is presented in Figure 4. Here the three rulesproduing has_author properties are denoted by has_author1, has_author2and has_author3 respetively.has_author(Doument, Creator) <==has_reator(Doument, Creator).has_author(Doument, hesse) <==has_binary(Doument, Binary) andhas_title(Doument, Title) andex_alulate("ontains", ["demian", Title℄, [℄).has_author(Doument, Contributor) <==has_ontributor(Doument, Contributor).has_ontributor(Doument, Contributor) <==has_author(Doument, Contributor) oris_related(Doument, Contributor).doument_type(Doument, sientifi) <==forall Contributor in has_ontributor(Doument,Contributor)::has_profession(Contributor, teaher).Fig. 3. A sample set of rules3 We realise that exluding non-strati�ed sets of rules is a strong restrition. However,we argue that (1) in the ontext of doument management strati�ed rule sets seemto be su�ient and (2) this simpli�ation makes the reasoning more salable.12
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Having onstruted Gd, our next step is to partition this graph aording toits strongly onneted omponents. A strongly onneted omponent (SCC) issuh a subgraph of Gd in whih for every pair of verties A and B there is a pathfrom A to B and also a path from B to A. In Figure 4 the strongly onnetedomponents are marked by dash-lined boxes.Based on the SCCs we build a redued graph Gr . The verties of this graphare the strongly onneted omponents of Gd. There is an edge in Gr from Ato B if and only if there is an edge in Gd from one of the verties in the SCCorresponding to A to one of the verties in the SCC orresponding to B.As Gr is ayli by de�nition, a topologial ordering of Gr an be onstruted,i.e. a full ordering on the nodes suh that if there is an edge from A to B, then
A preedes B in the ordering.The graph Gr and a topologial ordering of the nodes of Gr is used forstratifying the initial set of rules. The set of rules orresponding to a node of Grwill form a stratum. The ordering of the strata is determined by the topologialordering of Gr, so that the lowest value forms the bottommost layer, and so on.For example, a valid topologial ordering of the graph in Figure 4 is indiatedby the numbers in the �gure: layer 1 is the bottommost, layer 4 is the topmost.

PSfrag replaements doument_type has_ontributor
has_author1has_author2
has_author3

12
3

4
Fig. 4. The dependeny graph of rules in Figure 3Given a strati�ation we exeute the rules in the bottommost layer until theystop deduing new properties. We then repeat this proess for all layers upwards.5 Performane EvaluationWe have arried out an initial performane evaluation with a relatively smallnumber of rules, but huge amounts of meta-information in the doument store.This is a typial setup as in real appliations the ontent of the doument storeis several magnitudes larger than the number of rules.13

CICLOPS 2007
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For our tests, the doument stores were randomly generated. To eah ofthese we applied a �xed set of rules. This sample rule set, ontaining 10 rules,was hosen to inlude the most important SRLang onstruts, suh as reursiverules, external funtions, forall, et.The tests were exeuted in the following hardware and software environment:Pentium-M 1.7GHz, 512MByte memory, Ubuntu Linux, SICStus Prolog 3.12.5.The left hand side of Table 1 shows the properties of the doument stores weused for testing. The olumns show the size of the doument store, the numberof properties it ontains and the average branhing fator. This fator desribeshow many outgoing edges a node in the property graph ontains on average.Size # of prop Branh New prop Load time Exe time1.7KB 33 5 8 0.01se 0.01se3.3KB 81 5 16 0.02se 0.01se19KB 541 6 80 0.06se 0.05se348KB 10194 7 1315 0.75se 1.06se697KB 20443 7 2641 1.40se 0.95se1.2MB 35837 4 6506 2.50se 2.30se2.4MB 69287 6 9889 3.60se 3.50se3.9MB 112528 8 13299 5.10se 4.60se12.6MB 359833 4 65491 13.60se 23.70se25.6MB 720177 4 130683 25.50se 50.50seTable 1. Results of the performane analysisThe right hand side of Table 1 shows the results of the test. Here, the �rstolumn indiates the number of new properties dedued by the SREngine duringthe exeution. The seond olumn ontains the time it took to read the ontentof the doument store. Finally, the last olumn ontains the exeution time, i.e.the time needed for the dedution.The results learly indiate that for a relatively small set of rules SREnginehas a fairly good performane even for big doument stores.6 Related workDoument lassi�ation in general is a huge �eld in omputer siene. Lots ofapproahes have been applied in the past few deades involving mahine learning,neural networks, pattern reognition, natural language proessing and other AI14

CICLOPS 2007
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related �elds [8,6℄. There are also numerous approahes whih rely on some formof rules [3,4℄. The ommon properties of these systems is that they aim to lustera given olletion of douments into groups that have similar ontents.In ontrast with this, in SREngine the lassi�ation rules are not neessarilyused to lassify douments beause of similar ontent. For example, a ategoryould be �Books of Hermann Hesse�, where an SRLang rule may lassify a do-ument to belong to this ategory just using the author meta-information. It isobvious that the books of Hermann Hesse do not neessarily have similar ontentfrom the traditional doument lassi�ation point of view.More losely related to our approah are the rule-based languages workingon some kind of graph struture. This is, beause we think that doument storesan easily be represented in an appropriate graph desription language, suh asthe RDF framework [2℄ used by the Semanti Web ommunity. For RDF, severalrule languages have been proposed suh as the TRIPLE [11℄, the SWRL [5℄ orthe RuleML [10℄, all of whih are based on Horn logi, similarly to SREngine.These languages are expressive enough to apture most of the rules an expertwould like to formulate in the ontext of doument lassi�ation. However, weargue that SREngine provides a viable alternative to other systems beauseof the intuitive syntax, the modelling onstruts (like forall), the bottom-upexeution mehanism and the doument extration apabilities the system has.7 Future WorkUp to now, SREngine supports only �positive� onsequenes, i.e. the resultof the reasoning proess is the list of new edges that should be added to thedoument store. As an extension, we plan to provide the user the ability toreate rules that lead to �negative� onsequenes, i.e. they an delete metadatafrom the doument store by speifying appropriate rules.So far we have onsidered all the properties multi-valued, i.e. a given do-ument objet an have several edges attahed to it with the same property.However, some properties are typially single valued, suh as the has_binary.Handling these and the related onsisteny problems is future work.Finally, we need to �nd pratial appliations where SREngine is used inreal orporate environments providing us relevant feedbak about the systemusability, performane and further extension possibilities.8 ConlusionIn this paper we presented the SREngine system, whih is a generi frame-work that an be used to infer new doument properties in a doument store,using a set of rules.We have presented the main omponents of SREngine: the Knowledge Basewhih stores the rules and the relevant parts of the doument store, the Reasoner,whih performs a bottom-up reasoning proess to infer new properties and theInformation Extrator, whih provides data extration funtionality, to be usedwhen formulating rules. Here, we have also introdued the interfaes SREngineuses for ommuniating with the host system managing the doument store.15
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Abstract. Constraint programming libraries are useful when building
applications developed mostly in mainstream programming languages:
they do not require the developers to acquire skills for a new language,
providing instead declarative programming tools for use within conven-
tional systems. Some approaches to constraint programming favour com-
pleteness, such as propagation-based systems. Others are more interested
in getting to a good solution fast, regardless of whether all solutions may
be found; this approach is used in local search systems.
Parallel architectures are becoming more commonplace, partly due to
the large-scale availability of individual systems but also because of the
trend towards generalizing the use of multicore microprocessors.
We propose an architecture for mixed constraint solvers, relying both on
propagation and local search, which is designed to function effectively in
a mixed shared and distributed-memory multiprocessor system.

1 Introduction

Constraint Programming is a useful declarative methodology which has been
applied in several ways:

1. As an extension to existing programming languages, such as Prolog, taking
advantage of the complementarity provided by the two approaches (back-
tracking vs. propagation). This is the case for most CLP implementations.

2. As a library in which constraints become data structures of the host lan-
guage, which are operated on by the library procedures. This is the case, for
instance, for ILOG Solver [9] and AJACS [5].

3. As a special-purpose language, appropriate for solving problems formulated
as constraints over variables. This is the case with, among others, Oz [11],
OPL [6] or Comet [7].

The declarative nature of constraint satisfaction problems strongly suggests that
one try to parallelize the computational methods used to perform the tasks re-
lated to solving CSPs, namely propagation. Indeed, this has been explicitly in-
corporated into most languages mentioned in point 3, which provide mechanisms
to promote distributed execution of various aspects of the process.
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In the work we present herein, we chose to follow approach number 2: to
provide a library for constraint programming for an existing language. AJACS/C
is inspired by the scheme used in AJACS [5] and extends it to include both
propagation and local search techniques. AJACS/C relies on a purely functional
approach to representing search-space state stores, and is designed to ensure
that parallelization is viable on distributed-memory multiprocessors. These re-
quirements translate to the following architectural options, which are carried
over onto the present work:

– Should there be the need for data structure sharing, it will be done for
read-only access: the values are viewed as single-assignment.

– While exploring a search space, there is no proper backtracking to speak of:
a store derived from another one is actually a partially modified copy of its
ancestor.

In terms of its memory model, AJACS relies on a distributed shared memory
(DSM) system, operating under a special JVM implementation, Hyperion [2],
which compiles to C. The target code then uses the PM2 multithreading library,
over which a DSM implementation has been constructed [1] and is used to share
memory ranges (in the form of Java objects), under an appropriate consistency
model.

For AJACS/C, the most significant departure from this model – other than
the fact that the host language is C, rather than Java – lies in the approach to
data structure sharing: in AJACS we assumed a shared address space, whereas
in AJACS/C this requirement will be relaxed. To recap, in AJACS data produced
by one thread is directly available to others, at the same address. This is made
possible by the DSM system, which creates the illusion of a common adressing
space for multiple processes running on separate, network connected, machines.
In the case of PM2-DSM, the network layer could be one of several modalities,
including TCP/IP and VIA.

The work on AJACS and its experimental assessment led to the conclusion
that Hyperion and PM2-DSM were not a good match for a distributed constraint
propagation library: the performance was too frequently disappointing. The rea-
sons for the lackluster results could be attributed to several reasons, the most
relevant one being that it is very difficult, if not impossible, to control where a
given piece of data (e.g. a CSP store) is located, both in terms of address space
and host processor.

In AJACS/C we decided to “take matters into our own hands,” as all DSM
aspects were confined and gradually removed from AJACS and the system is
now completely rewritten to respond to the following requirements:

– The implementation (in C instead of Java) relies on a much simpler runtime
organization.

– Initially we rely on a memory organization that reproduces the AJACS ap-
proach, i.e. one in which shared data structures are replicated using the DSM
system,
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– Instead of relying exclusively on DSM and trying to adapt to its best behav-
ing memory usage patters, we will gradually resort to simple message-passing
as provided by the communication layers, for instance Madeleine [3].

The remainder of this position article is organized as follows: in section 2 we
present a revised implementation of AJACS/C, which provides the basis for a
distributed constraint solver library. We then describe in section 3 an evolution
of the previously presented system, overhauled to perform well in a particular
architecture: the Cell/B.E.processor. We then outline some of the present results
and describe the lines along which work is progressing.

2 A Distributed Constraint Solver Library

AJACS-C presents an adaptation of the AJACS [5] system to the C program-
ming language as an adequacy study of this approach to constraint solving in a
distributed environment, using the PM2 distributed shared memory capabilities.

The goals underlying the development of the AJACS-C system are:

– To develop a Constraint Solving System in the C language (the native lan-
guage of the PM2 experimented Parallel library).

– To adapt and experiment this Constraint Solving System to a distributed
environment using PM2-DSM;

– To evaluate the PM2-DSM adequacy for distributed constraint programming
by testing different distributed approaches and at the same time try to obtain
run-time performance speedups.

2.1 Brief Introduction to PM2-DSM

PM2 (Parallel Multithreaded Machine) [8] is a multithreaded environment for
distributed architectures. It provides a POSIXlike interface to create, manipulate
and synchronize lightweight threads in user space, in a distributed environment.
Its basic mechanism for internode interaction is the Remote Procedure Call
(RPC).

PM2 includes two main components. For multithreading, it uses Marcel, an
efficient, userlevel, POSIXlike thread package. To ensure network portability,
PM2 uses an efficient communication library called Madeleine [3], which was
ported across a wide range of communication interfaces, including highperfor-
mance ones such as BIP, SISCI, VIA, as well as more traditional ones such as
TCP, and MPI.

PM2-DSM provides the illusion of a common address space shared by all
PM2 threads irrespective of their location and thus implements the concept of
Distributed Shared Memory, page based, on top of the distributed architecture of
PM2. But PM2-DSM is not simply a DSM layer for PM2: its goal is to provide a
portable implementation platform for multithreaded DSM consistency protocols.
Given that all DSM communication primitives have been implemented using
PM2’s RPC mechanism based on Madeleine, PM2-DSM inherits PM2’s wide
network portability.
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2.2 An Overview of AJACS- C

In its organization AJACS-C is aimed (similarly to AJACS itself) at producing
independent states as result of state expansion, independent in the sense that
each store (plus the constraint problem containing the constraints themselves)
carries all the information necessary to be considered a possible solution for a
given problem. By way of this state independence, AJACS-C does not need to
use backtracking.

The state independence is the basis for a distributed concept to take shape
since in theory it shall be possible to parallelize constraint problem solving by
spreading each produced state(s) among several processing units without too
much foreseen interaction. This way all processing nodes should be able to ’walk’
through the problem space with minimal knowledge or awareness of each other.

The minimal information each processing node requires, for its state iteration
and propagation, is to know:

– where to look at for new states to search;
– where to store the expanded new stores, i.e. the states that resulted from a

successful propagation;
– where and how to signal the eventually found solutions to the problem master

controller.

2.3 Experimenting with AJACS-C over PM2-DSM

Before we go about discussing the performance of AJACS-C implementations
and distributed execution strategies, it is important to mention that we followed
two distinct approaches, both relying on DSM, but with definitely different shar-
ing patterns: one which we called centralized and another which we designated as
local. The two sections that follow discuss these approaches and their differences.

Centralized Distributed Pattern This Pattern designates one cluster node
as the master node and the remaining as the worker nodes – different nodes
mean different machines in the configured cluster. The master and worker profiles
are triggered/enrolled at run-time execution where the first configured cluster
node will assume the master profile and the remaining the worker profile.

The idea behind the master profile is for it to maintain a central DSM data
structure (therefore the name for the pattern) that holds all the current, still
to be investigated, problem states. All nodes have write and read access to this
central structure. Every worker will be allowed to get stores (new jobs) and put
stores (the resulting state produts of the last iteration and propagation).

For a more complete and efficient approach the designed pattern will make
sure that, after the initialization phase comprehending the central data structure
creation and remote execution of all the threads on all nodes, the node that
took the master profile will spawn an additional local thread to endorse the
worker profile, this way all machines/nodes will behave as workers after the
initial initialization step has been performed.
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This way the centralized data-structure will be the communication link be-
tween all the nodes, the PM2-DSM coherence protocol will abstract the user to
the synchronization overhead management of the shared structure and assure
the correct access and behaviour from all threads in all nodes in a safe and
coherent manner.

init_states = search_initial_states(sInit);

dsm_list.put(init_states);

FOR i = 1 TO n

Worker[i] = new RemoteWorker(dsm_list);

Worker[0] = new LocalWorker(dsm_list);

WHILE <not_all_finished()> DO

wait();

printSolutions();

Fig. 1. The master thread in the Centralized Distributed Pattern

WHILE <dsm_list not empty> DO

j = dsm_list.get();

L = search_solutions(j);

FOREACH l in L DO

IF <l is solution>

THEN print_solution(l);

ELSE dsm_list.put(j);

Fig. 2. Worker threads in the Centralized Distributed Pattern

Figures 1 and 2 display simplified versions of the algorithms associated with
these processes.

Local Distributed Pattern In this distribution model all workers have a
dedicated DSM local data structure to manage the expansion of the new states,
so every worker gets and puts jobs directly from/into its local data stucture. On
execution start the initial state is spawned into its child states and those are
distributed among all the workers on a round-robin fashion. After this point all
workers start their search independently.

Figures 3 and 4 display simplified versions of the algorithms associated with
these processes in the local distributed pattern.
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init_states = search_initial_states(sInit);

FOREACH k in initial_states DO

i=0 to n

Worker[w].local_dsm_list.put();

w = (w + 1) % number_nodes

Fig. 3. The master thread in the Local Distributed Pattern

WHILE <local_dsm_list is not empty>

nextS = local_dsm_list.get();

L = search_solutions();

FOREACH k in L DO

IF < k is solution >

THEN printSolution(k);

ELSE local_dsm_list.put(k);

END

Fig. 4. The worker threads in the Local Distributed Pattern

2.4 A Simple Example - N Queens

Specification The N-queens puzzle is the problem of putting N chess queens
on an N by N chessboard such that none of them is able to capture any other
using the standard chess queen’s moves. The colour of the queens is meaningless
in this puzzle, and any queen is assumed to be able to attack any other. Thus,
a solution requires that no two queens share the same row, column, or diagonal.

Problem Description On this problem one “queen” position on the chess
board maps directly to one Variable, so the Store structure will hold as many
variables as the number of queens specified.

As for Constraints, and as for specification, the relation between the queens
(variables) will be such that on a given solution no queen can “attack” any
other queen. The constraint “noattack” is then designed as relation between
two queens. For the N-queens problem there will be N*(N-1)/2 “noattack” con-
straints.

Search, in AJACS-C PM2-DSM and for the Queens example, will be the
successive handling of available stores (spawning from sInit) using a Breadh-
first search / FIFO approach. After the split of some store, the child stores are
appended to the tail of the stores list. Note: FIFO was the chosen approach but
LIFO / Depth-First search could also be used. FIFO was prefered due to the
fact that we are doing full tree traversal, i.e. looking for all possible solutions for
a problem. LIFO could be better suited if we where insterested in just searching
for a first solution, this happens not to be the case.

In each search step the adopted Strategy is to look for the first non-ground
variable available on the current store (using a top-down look-up). That variable
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is chosen to be the next to be iterated upon and reduced, that is, all singleton
values of that variable are successively tested, triggering propagation on the rest
of the store. If propagation is deemed successful, the resulting store will be added
to the search list for further search inspection.

The search & strategy steps are repeated until there are no more stores
available to iterate on.

In the case of the Queens example, the Problem solutions will be the collec-
tion of stores that contain only ground (singleton) values. The remaining stores
are the ones that survived all the iterations and propagations without getting
to a contradiction (a variable without any allowable values: an empty domain)
and that satisfy the “noattack” constraints, no queen can attack another.

3 Hybrid Multicore Solver Library

Multi-core microprocessors have become the direction in the industry for micro-
processor design. One such microprocessors is the Cell Broadband Engine [10].

Multi-core advantages include a better ratio of performance to power usage,
less heat dissipation, and a smaller physical footprint. But such architectures
pose new challenges to the software level which must be written with multiple
cores in mind - a time-consuming and difficult task known as parallel program-
ming.

Our work tries to match today’s architectures tendency to parallelism and
AJACS’s characteristics in order to get a declarative approach to sofware devel-
opment in a parallel environment while extracting good performance from such
architectures in constrained problem solving.

3.1 The Cell Broadband Engine

The Cell Broadband Engine (Cell/B.E.) is a multiprocessor core design with
nine processor cores. The architecture is heterogeneous, consisting of two differ-
ent core types. The principal core, the 64-bit Power Processor Element (PPE),
is a PowerPC processor assuming a supervisory role and more keen to deliver
system-wide services. The eight Synergistic Processor Element (SPE) cores are
the computational workhorses. SPEs are accelerator cores implementing a novel,
pervasively data-parallel computing architecture based on SIMD RISC comput-
ing and explicit data transfer management. A SPE has two components: the
Synergistic Processing Unit and the Synergistic Memory Flow Controller (MFC),
both responsible for independent computation and data transfers, respectively.

The PPE accesses main storage (the effective-address space) with load and
store instructions that move data between main storage and a private register file,
the contents of which may be cached. The SPEs, in contrast, access main storage
with Direct Memory Access (DMA) commands that move data and instructions
between main storage and a private local memory, called a local store (LS). A
SPE’s instruction-fetches and load and store instructions access its private LS
rather than shared main storage, and the LS has no associated cache.
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The nine cores, memory and I/O controllers are connected by the Element
Interconnect Bus (EIB). This high bandwidth bus consists of four 16-byte-wide
data rings through which the processor elements can drive and receive data
simultaneously.

Although regarded as a very powerful processor, the Cell/B.E. presents great
challenges to programmers. One architectural aspect is the small high-speed local
store at each SPE. The local store has a limited size of the range of L2-cache
sizes (256 KB for the first generation Cell/B.E. processor) and must be software
managed. Another aspect is the existence of two instruction sets, one for each
processor type. Presently this means having to work with two different tool-
chains.

3.2 AJACS/C(ell)

The similarity between the Cell/B.E. architecture and the AJACS model has
some striking aspects to it. The same terms are used to name the different enti-
ties: controller and worker. In Cell/B.E., the PPE can be seen as the controller
processor while the SPEs are the workers. In AJACS, there is also a controller
agent for the problem and several workers who try to find a solution. Therefore
it is a natural choice to make the PPE responsible for the master role and the
provide the SPEs with the worker role in the AJACS model.

In our approach, the PPE (assuming the controller role) sets up the working
environment. This means carrying out the following steps:

1. Do a first expansion of the search tree. This is done according to the
AJACS model. Each worker will have a different branch of the tree to work
on.

2. Create the SPE contexts. This is the typical scenario when writing
Cell/B.E. applications. Create the SPE contexts that represent a logical
SPE.

3. Setup the information to be passed to the SPEs. The PPE (controller)
and the SPEs (workers) must share some data. This data is stored in the
main memory to be easily and quickly accessed by all processors. When
setting up all the environment, the PPE must provide the location of the
common data to the SPEs for these to be able to fetch it via a DMA transfer.
The supply is done through a control block holding all the information.

4. Create pthreads that manage the contexts. In order to have concurrent
SPE contexts, POSIX threads (pthreads) are used. Basically, each pthread
runs a SPE context or in other words, a worker. Thus there are as many
pthreads as workers and contexts.

5. Wait for all to finish. For now, the controller waits for all workers to finish,
does some cleanup and exits. This wait simply means to wait for the created
pthreads to terminate.

The SPEs assume the role of workers. The steps performed by the each worker
can be summarized as follows:

CICLOPS 2007
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1. Get the information block from main memory. The worker needs the
data in order to carry out its process. Hence, the very first step done by the
worker needs to be getting the control block with all the information, the
one which was setup by the controller/PPE on steps 2 and 3.

2. Get the Problem. Once it knows the location of what it needs, the first
thing the worker fetches is the Problem data structure itself.

3. Look for solutions. After all the setup needed has been performed, the
worker enters a loop:

while (there’s work to be done)
dma transfer another store to work on;
invoke the search on the transfered store;
decrement the amount of work to be done;

in which it performs the actual steps in solving the constraint problem.

It is noteworthy that any fetching of data by the SPEs implies doing a DMA
transfer. In Cell/B.E., the SPEs can only fetch information from main memory
via asynchronous DMA transfers. There is a lot of tuning to be done concerning
to this and some space for optimization.

One of the informations in the control block is the number of stores to be
worked on. As long as the number of (yet unsolved) stores in the work queue is
greater than zero, the worker loops.

The search step is the most important. The current Strategy takes one Store
to process and partitions it in two complementary ones in which one Store holds
a ground value in the Variable chosen by the Strategy while the complementary
Store has all the remaining possible values for that Variable, i.e. all excluding
the chosen one. One should note that this Strategy is only a simple possibility
since the AJACS model allows for the definition of new Strategies when choosing
a variable.

After choosing a variable, the propagation is executed on the Store which has
the ground variable. Here three things can happen: we have a solution, the prop-
agation has succeeded or the propagation failed. In case a solution was found or
we came up with failed propagation we simply continue with the complementary
Store; if the propagation succeeded, we continue to work on the same Store and
put the complementary one in the work queue.

This “always forward and down in the tree” approach saves a lot of space
which is a scarce resource in the SPE’s Local Store.

So far, our search is exhaustive which guarantees us completeness. But some-
times this is not so important and local search methods provide a very fast way
to get a solution. Adaptive search is a heuristic method in which the key idea
of the approach is to take into account the structure of the problem given by
the description, and to use in particular variable-based information to design
general meta-heuristics.

We extended our propagation-based search with a local search component.
At a certain state in the complete search – up to which we can guarantee com-
pleteness – we switch to adaptive search and its heuristic method, by taking the

CICLOPS 2007

Lúıs Almas, Rui Machado and Salvador Abreu 40



the so far grounded variables as constants and a random value from the domain
of the non-ground variables as starting points for the search procedure.

4 Initial Assessment and Progress Report

The PM2-DSM based implementation of AJACS-C has been in use and is fairly
well tested. It provides a reasonable performance increase over AJACS, partic-
ularly in the local distributed pattern variant. The code was used as a basis for
the Cell/B.E. implementation, to which we added support for hybrid constraint
satisfaction solution by integrating a local search component.

We are presently scaling up the test cases for AJACS-C on the cluster system.
The recent availability of a larger test system (a 12-node dual Opteron cluster)
will improve our ability to evaluate how the DSM-based approaches behave.

The Cell/B.E. implementation is still at an early stage and we cannot re-
ally comment on performance or usability yet, although the initial results seem
promising. The issues which differentiate the Cell/B.E. library design from AJACS-
C and which we expect to bring about more interesting results have to do both
with its expected performance increase due to switching to local search from a
certain point onwards but also the avoidance of DSM, which has turned out to
be complex to efficiently master.

Issues to be dealt with, in particular for the Cell/B.E. version, include:

1. Single-source: the Cell/B.E. requires two toolchains to be used, one for the
PPE and another for the SPEs. This is particularly relevant for programming
propagators and other constraint procedures, which must be usable in both
kinds of context.

2. Differentiated use for the SPEs: at present, they simply perform all the
tasks an AJACS worker has to carry out. It is in our plans to experiment
with different roles for each SPE, possibly creating pipelines among these
to exploit the Cell/B.E.’s inner bus, which has a very high bandwidth. A
possible approach is to split SPE functionality into selector and propagators,
for instance.

3. Another concern which we are looking forward to have an effective answer to
is the class of problems which can be modelled using the Cell/B.E.’s limited
SPE memory, i.e. whether the problems which we can fit into SPEs have a
sufficiently complex processing associated with them to result in a significant
performance gain for the overall constraint solving goal.

4. Mixing the single-Cell/B.E. solver with other instances thereof is another
line which we are following: there are dual-Cell/B.E. blade systems which
provide shared memory (albeit NUMA). These provide one first level of dis-
tribution outside a single Cell/B.E. processor and represent a shared memory
layer similar to the original AJACS organization: stores (or problems, as per
AJACS terminology) may be shared among different processors. A further
distribution layer can be obtained when we consider a network of such blades,
falling back onto the AJACS-C model introduced earlier in this article.
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In short, the initial port of AJACS to C, based on PM2-DSM and its message-
passing counterpart, be it the one based on the Cell/B.E. processor or otherwise,
is undergoing active development and we expect to be able to have more signif-
icant experimental results soon.
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Abstract. Global constraints represent invaluable modeling tools for Constraint
Programming (CP). Efficiently solving recurrent subproblems is a key point for
CP successes. However, global constraints mainly remain strongly attached to a
given constraint solver. Indeed, they heavily rely on internal mechanisms in order
to be as efficient as possible. In this paper, we emphasize theinterest of decou-
pling global constraint implementations from the underlying solver. We show, on
atree constraint, that even more decoupling it by providing fullydynamic algo-
rithms enhances efficiency and, which is much more important, allow an efficient
portability of the constraint. We illustrate this for theChocoandGecodesolvers.

1 Introduction

Constraint Programming (CP) is an ever evolving field whose aim it is to solve combi-
natorial problems in a declarative and flexible paradigm. Atthe heart of a constraint
program is a constraint satisfaction problem (CSP) which isdefined by a setV =
{v1, . . . , vn} of variables (in the mathematical sense), a setD = {dom(v1), . . . , dom(vn)}
of domains which represent the set of possible values that each variable can take, and a
setC of constraints (relations) upon subsets of variables. A solution for a CSP is a vari-
able assignment (a value for each variable) that simultaneously satisfies the constraints
of the problem. A constraint solver is meant to look for such asolution. End-users of
constraint programming only need to enunciate the variables and the constraints of their
problem.

In this context,global constraintsrepresent invaluable modeling tools for the CP
field. Indeed, global constraints represent compact solutions and solving algorithms for
recurrent subproblems in CSP. They are used as classical constraints and usually en-
compass a set of constraints defined upon a large set of variables. For example, the
well-knownalldifferent constraint [11] is used to replace a clique of difference
constraints. Global constraints offer a more precise and more efficient view of the sub-
problem they are defined upon. They actively use the underlying structure to provide
efficient filtering algorithms. Indeed, the explicit knowledge of this structure leads to an
improved propagation-search technique by avoiding repeatedly discovering the same
inconsistencies (this phenomenon is calledthrashing). As expected, global constraints
usually imply a higher worst-case time complexity for the filtering algorithm w.r.t. the
original set of constraints. However, this overhead is mostoften largely compensated by
the filtering power achieved by the global constraint. Actually, there exists a trade-off
between efficiency (i.e. running time) and effectiveness (i.e.filtering power).
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Powerful global constraints are generally attached to one solver:cycle, diffn,
cumulative with chip [1], tree [2] with choco, standard deviation [12]
with Ilog. This is probably due to the fact that implementing a global constraint can
be highly solver-dependent. Indeed, global constraint implementations usually involve
both internal data structure and solver-related structures. The latter are most often back-
trackable structures offered by the solver to be used by the constraint to ease the imple-
mentation. Not all solvers provide the same backtrackable structure leading to solver-
dependent constraint implementations. This can lead to less efficient constraints from
one solver to another. This is for example the case with thealldifferent con-
straint (one of the rare ones that made it through several solvers). The efficiency of the
constraints is not the same w.r.t. the services provided by the host solver.

In this paper, we would like to investigate these aspects of global constraint imple-
mentations. More precisely, we are interested in pointing out that once a global con-
straint has been defined it needs quite a fine tuning to take advantage of the underlying
constraint solver. Hence, we would like to address the pointof being able to provide
both flexible (in the sense of easing addition or removal of filtering algorithms) and
portable (in the sense of being able to adapt the constraint to another solver) implemen-
tations of global constraints.

Our test case throughout the paper will be a graph partitioning constraint introduced
in [2], the tree constraint. We will show that implementing fully dynamic filtering
algorithms (i.e. not relying upon backtracking and managing their own data structure)
transforms the constraint as a plugin for the solver (see Figure 1).

SolverI
n
t
e
r
f
a
c
e

Constraint

V = {v1, . . . , vn}
D = Dv1

× . . .×Dvn

E = {I,R,U}

view of V

interpretation of

view of D

events E

Fig. 1: A pluggable constraintdefined according to three kinds of data: a view of the variables
V that define the problem, a view of the domain of each variableD and, an interpretation of the
events that can occur on the variables. These events could bethe instantiation(I) of a variable to
a value, theremovals(R) of a value in the domain of a variable and, theupdate(U) of the lower
bound or the upper bound of a variable’s domain.

The paper is organized as follows: we first provide a quick description of thetree
constraint and the current implementation provided withinthechoco constraint solver
(http://choco-solver.net). Next, we show how the filtering rules used in
this constraint can be implemented with fully dynamic algorithms, leading to a plug-
gabletree constraint. We show that this constraint is pluggable by integrating it
into gecode (http://gecode.org/). Moreover, we show that the pluggable ver-
sion is more efficient withchoco than the fully integrated version and show that the
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gecode version can be made quite as efficient despite the event management system
of gecode’s java interface.

2 Description of thetree constraint

Thetree constraint partitions a given directed graph (digraph for short) into a forest
of node-disjoint trees. More precisely, the digraph is partitioned into a set of node-
disjoint anti-arborescences1. tree is a useful constraint that can be used for modeling
various graph-related problems like, for example, surpertree phylogenetic problems [3,
6], ordered disjoint path problems [3, 10], or mission planning problems [7].

The constraint has the formtree(NTREE, VER), whereNTREE is a domain variable2

specifying the number of trees in the forest (MINTREE andMAXTREE respectively denote
the minimum and maximum values ofdom(NTREE)) and,VER is the collection ofn
nodesVER[1], . . . , VER[n] of the given digraph. Each nodevi = VER[i] has the following
attributes, which complete the description of the digraph:

– L is a unique integer in[1, n]. It can be interpreted as thelabelof vi.
– F is a domain variable whose domain consists of elements (nodelabels) of[1, n]. It

can be interpreted as theunique successor(or father) of vi.

When speaking of global constraints, it is often convenientto reason about a digraph
that models the constraint rather than directly about the constraint. We model the ex-
tendedtree constraint by the digraphG in which the nodes represent the elements of
VER and the arcs represent the successor relation between them.Formally,G is defined
as follows:

Definition 1 (Associated digraph to atree constraint). Theassociated digraphG =
(V , E) of a tree(NTREE, VER) constraint is defined byV = {vi | i ∈ [1, n]} and
E = {(vi, vj) | j ∈ dom(VER[i].F)}.

A tree(NTREE, VER) constraint specifies that its associated digraphG should be a
forest ofNTREE trees, formally:

Definition 2 (Solution of atree constraint). A ground instance of atree(NTREE, VER)
constraint is said to be asolutionif and only if:

– ∀i ∈ [1, n] : VER[i].L = i.
– The associated digraphG consists ofNTREE connected components.
– Each connected component ofG has no circuit involving more than one node (no-

tice that each component contains exactly one node that has aself-loop and that
corresponds to the root of the tree).

We recall some definitions and notations regarding the digraphG = (V , E) associ-
ated with atree constraint, as well as a lower and upper bound on the number oftrees
needed for partitioningG. These notions are introduced in the original version of [2]:

1 A digraphA is ananti-arborescencewith anti-root r iff for each nodev in A there is a path
from v to r and the underlying undirected graph ofA is a tree.

2 A domain variableV is a variable ranging over a finite set of integers denoted bydom(V );
min(V ) andmax(V ), respectively, denote the minimum and maximum values ofdom(V ).
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Definition 3 (Reduced graph).To each instance of atree(NTREE, VER) constraint
we associate thereduced digraphGr derived fromG in the following way: to each
strongly connected component ofG we associate a vertex ofGr; to each arc ofG that
connects different strongly connected components corresponds an arc inGr.

Notations 1 (Sink component)A strongly connected component ofG that corresponds
to a sink ofGr is called asink component.

Notations 2 (Potential root & loop) A nodev of G = (V , E) such that(v, v) ∈ E is
called apotential root. The arc(v, v) is called aloop.

Notations 3 (Door) A nodeu of G = (V , E) is a doorof the strongly connected com-
ponent associated withu iff there exists(u, v) ∈ E such thatu andv do not belong to
the same strongly connected component ofG.

Definition 4 (Dominator [9]). Given a digraphG and two distinct nodesi, j ofG such
that there is at least one path fromi to j, a noded is a dominatorof j with respect toi
iff there is no path fromi to j in G \ {d}. The set of dominators ofj with respect toi is
denoted byDOM 〈G,i〉(j).

We are now in position to detail how the initial version [2] ofthetree constraint
is effectively implemented in Choco. Next, we propose a fully dynamic version of this
constraint allowing a new design of its implementation thatexploits the incrementality
in order to avoid using backtrackable data structures dedicated to the solver. A nice
property of such an implementation is that thetree constraint becomes a plugin for
any solver.

3 Implementation of tree constraint

3.1 An ad-hoc version for choco

Several constraint solvers are available but not two of themprovide the exact same
set of global constraints. When facing a constraint satisfaction problem, the choice of
the constraint solver therefore highly depends on the desired constraints and their effi-
ciency. Moreover, quite often only some part of the problem is efficiently handled and
one need to either develop or simulate a global constraint inorder to solve the prob-
lem. Thus, when implementing a global constraint two situations arise: in the first one,
the constraint solver has already been chosen and thereforethe provided data structures
must be used; in the second one, one can choose the most promising solver for the
constraint, i.e. a solver which proposes the most adapted data structures to the filter-
ing algorithms to be implemented. In thetree constraint case, thechococonstraint
solver was selected. Indeed, it allows a fine-grained management of events3 occurring
on variables. Each variable associated to a problem knows the constraints that involve

3 Chocodistinguishes three main kinds of events: instantiation ofa variable, removal of a value
in the domain of a variable, update of the lower bound of the domain of a variable and, update
of the upper bound of the domain of a variable.
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it, and symmetrically, each constraint knows the subset of variables that it is posted
upon. Then, for a given constraint, distinct treatments canbe done for each kind of
event occurring on variables involved in the constraint. This leads to the fact that a fix
point can easily be reached because the constraint may specify if it has to be awoken
by an event produced by itself. The main benefit of such a property is that for a given
n-ary constraint, the implementation of its filtering algorithm can be triggered for each
kind of event that occurs on the variable domains involved inthe constraint.

We now provide the skeleton of thetree constraint such as it is implemented in
the chocosolver. The details of each kind of propagation can be seen in[2]. Notice
that, w.l.o.g., the notion ofstrong articulation pointsis generalized to the notion of
dominators[9]. Obviously, this generalization does not change any filtering algorithm
of the initial paper except the computation of dominators inthe digraphG associated
with thetree constraint.

Initial awake of thetree constraint:

– ComputeMINTREE andMAXTREE.
– If there is at least one solution satisfying the constraint then, do propagation

related to the constraint:
1. UpdateNTREE according toMINTREE andMAXTREE.
2. Propagate according to the dominator nodes ofG.
3. Propagate according to the doors and the potential roots of G.
4. Propagate according to the values ofmax(NTREE) andmin(NTREE).

Each time an event occurs on a domain variable involved in thetree constraint
do:

– If this event occurs on a domain variable modelingNTREE then:
1. UpdateNTREE according toMINTREE andMAXTREE.
2. Propagate according tomax(NTREE) andmin(NTREE).

– If this event occurs on a domain variable modeling a node ofG do:
1. UpdateNTREE according toMINTREE andMAXTREE.
2. Propagate according to new dominators ofG.
3. Propagate according to the doors and the potential roots of G.

Thechococonstraint solver is based on atrailing4 [13] approach to record a decision
(e.g., instantiation of variables, removals of values in the domains, etc) and its effects
on the data structures involved in the constraint. In our purpose, these effects consist
in modifications of the graph structure, for example, if an arc (i, j) is removed fromG
(i.e.,j /∈ dom(VER[i].F)) then, this removal may:

1. decrease the number of potential roots (see Notation 2), if i = j. This leads to an
update ofMAXTREE.

2. increase the number of sink components (see Definition 1).This leads to an update
of MINTREE.

4 A trailing approach records for each events modifying a data structure, the necessary informa-
tion to undo its effect.
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3. increase the number of strongly connected components (scc) in G. This leads first
to increase the number of doors (see Notation 3) contained inG, and second, to
change the reduced digraphGr associated withG (see Definition 3).

4. create new dominator nodes inG (see Definition 4).

Thus, in order to record the necessary information, the Choco solver proposes some
backtrackabledata structures using storable integers, storable booleans and storable bit-
sets. The originaltree constraint uses these backtrackable data structures in order to
dynamically record and restore some graph properties like strongly connected compo-
nents and dominator nodes of the digraphG.

However, state-of-the-art graph algorithms propose several fully dynamic algorithms [5]
maintaining the graph properties involved in thetree constraint like strongly con-
nected components and transitive closure. Then, two straightforward issues are: is it
really necessary to use backtrackable data structures whenfully dynamic algorithms
exist? If no backtrackable data structures are finally used (i.e. it is not necessary to
trail the variation of the data structures involved in the constraint) what are the exact
relations between the constraint and the solver?

One interesting point here is that when being able to providesolver-independent
global constraints, other perspectives are open: such a constraint could be plugged
in other problem solvers. For example, a good candidate could be COMET, a local
search development environment [8], another interesting one would be PaLM [4], the
explanation-based extension of the Choco solver.

3.2 A pluggabletree constraint

On the one hand, one can summarize the bottleneck of the complexity of atree con-
straint to repeatedly maintaining several graph properties (strongly connected compo-
nents (scc), transitive closure, dominator nodes) relatedto the digraphG associated with
G between two search steps. For each property, several filtering algorithms are proposed
in order to remove inconsistent arcs during the propagationstep. On the other hand, the
propagation-search techniques only consist in selecting and removing values in variable
domains, or restoring values in variables domains. In the context of atree constraint,
this technique modifies theNTREE variable as well as the set of arcs involved in the
digraphG associated with the constraint.

Basically, a new approach implementing such a constraint can be decomposed in
the following way (Figure 2):

1. TheGraph module is based on a generic fully incremental data structure modeling
a digraphG and its associated properties (i.e., scc’s and transitive closure). This
module contains primitives updating the data structure according to arc removals
and restorations. These primitives basically compute eachproperty on a necessary
partial graph5 of the original digraphG.

2. TheConstraint module proposes the filtering algorithms (based on the properties
maintained by the graph module) that remove arcs ofG inconsistent with thetree
constraint.

5 Given a digraphG = (V, E), a partial graphG′ of G is defined by(V ′ ⊆ V, {(i, j) ∈ E |
i, j ∈ V ′}).
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Fig. 2: General implementation schema of a pluggabletree constraint.

3. TheInterface module performs a bijective relation between events occurring on
domain variables (i.e., removals/restorations of values in the domains) and events
occurring on the digraphG (i.e., removals/additions of arcs).

Practically, in the current implementation on the pluggabletree constraint, each
time an event occurs on a domain variable, first this event is interpreted by the interface
module, next the graph module updates its data structures, next the filtering algorithms
dedicated to thetree constraint are applied, and finally the resulting events provided
by the constraint module are interpreted in term of domain variable updates.

We are now in position to discuss the interface module. From the domain variables
involved in a CSP, basically four kinds of events are distinguished: removal of values
in the domains, instantiation of variables, update of lowerbounds and update of upper
bounds. However, instantiation and bound updates can be easily reduced to a set of
removals. Thus, for each kind of event received by the interface from the solver, an
event translation to the corresponding set of removals in the graph module is performed.
However, all removals are not handled in the same way by the interface.

Indeed, the event at the origin of the considered set of removals is considered to
improve the efficiency of the graph module updates. For example, a set of removals re-
lated to an instantiation event occurring on a variable leads to a local modification in the
neighborhood of the corresponding node in the digraphG associated with the constraint.
This information can be taken into account in order to perform these modifications quite
efficiently.

In other words, this new approach for implementing global constraints leads to a
reorganization of the code of the constraints. Concerns areclearly separated: data struc-
ture management upon domain modifications (events), propagation-related algorithms
at the heart of the constraint, and solver/constraint communications. It can be seen as a
kind of rationale for global constraints. We think that sucha clear separation of concerns
is an important point in terms of software engineering.

4 Evaluation

We now report on several experiments we have conducted to evaluate the pluggable
tree constraint. First, in Section 4.1, we discuss our experiments on the comparison

CICLOPS 2007

Guillaume Richaud, Xavier Lorca and Narendra Jussien 50



between the currentad-hocversion of the constraint with the new version proposed in
this paper. Then, in Section 4.2, we report on the performance of the pluggabletree
constraint on two distinct constraint solvers: Gecode and Choco.

All experiments were performed with the Choco constraint solver (version1.2.04)
and Gecode constraint solver (version1.3.1) on an Intel Xeon CPU with2.4GHz and a
1GB RAM, but only128MB were allocated to the Java Virtual Machine.

4.1 Original constraint versus pluggable constraint

Graph Order Density
Average time (ms)
Ad-hoc Pluggable

25
≤ 0.5 55 45
> 0.5 90 38

50
≤ 0.5 610 310
> 0.5 1532 307

75
≤ 0.5 3856 1174
> 0.5 8896 1064

100
≤ 0.5 13040 3156
> 0.5 32568 2682

150
≤ 0.5 69220 11543
> 0.5 219174 9645

200
≤ 0.5 204497 33763
> 0.5 > 300000 26315

Table 1: Evaluation of the pluggabletree constraint with the existingad-hocimplementation.

The aim of these experiments is to show that the pluggabletree constraint outper-
forms the original version implemented within the Choco constraint solver. Moreover,
we point out that the dynamic approach proposed throughout this new constraint is, on
average, much less sensitive to the variation of the input digraph density which was
originally the bottleneck of the previous constraint version [3].

This set of experiments points out two main features of the pluggabletree con-
straint. For each order of graph in{25, 50, 75, 100, 150, 200},and the densities in[0.05; 1]
with steps of0.05, we generate30 instances (i.e. globally,3600 digraphs). Notice that
we add a timeout fixed to300000ms, and the solver search uses a random variable-value
selector.

First, Table 1 highlights a global improvement of the original (ad-hoc) version of
thetree constraint; indeed, the pluggable version is3.8 times more efficient in the
case of a density less or equal to0.5, and10 times more efficient in the case of a
density greater than0.5. Second, Figures 3 and 4 show that the pluggable constraint is
significantly more efficient in the case of dense digraphs. Indeed, Figure 3 depicts the
behaviors of the pluggable and ad-hoc constraints for a given graph order fixed to100
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constraint.
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Fig. 4: The dotted curve depicts the ratio between thead-hocconstraint and the pluggable con-
straint running times, in the case of a density greater than0.5. The plain curve depicts the same
ratio in the case of a density less or equal to0.5.

nodes. Figure 4 points out the ratio between the pluggable constraint and the ad-hoc
constraint running times. In both cases, we directly noticethat the pluggable version
outperforms the original one in the case of dense graphs.

We are now in position to discuss why the originaltree constraint is outperformed
by the new one. First, we detail the feasibility implementation of the constraint. Next,
we show how the filtering part was improved. In the following,we denote byn the
order ofG and bym the number of arcs inG.

In [2], a necessary and sufficient condition for thetree constraint was introduced:
atree constraint has at least one solution iff all sink componentsof G contain at least
one potential root anddom(NTREE)∩ [MINTREE, MAXTREE] 6= ∅ where,MINTREE is the
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number of sink components inG andMAXTREE is the number of potential roots inG. At
each waking up of the contraint, the ad-hoc version of thetree constraint computes
the strongly connected components (scc) associated with the digraphG, by a suitable
depth first search procedure, introduced by Tarjan [14], running in O(n + m) time.
However, computing scc at each waking up of the constraint isuseless. Indeed, during
the propagation/search steps, removing or adding arcs inG is a local modification of the
digraph then, we can reduce this cost by recomputing scc on a necessary partial graph of
G induced by the scc previously computed. In practice, duringsearch the size of the scc
decreases (and the number of scc increases) to reach1. Thus, dynamically maintaining
the scc is part of the improvements provided by the pluggabletree constraint.

In the original filtering algorithm proposed in [2], the constraint detectedthe strong
articulation points. But in practice, we use a generalization of strong articulation points
called dominator nodes [9]. For each dominator nodes, the filtering algorithm detects
and removes the outgoing arcs that do not allow to reach at least one potential root.
Thus, for each dominator, we have to compute a depth first search tree to detect if a
potential root can be reached. Thus, for a given digraphG, this can be done inO(nm)
time. In the pluggabletree constraint a new approach is proposed. We associate to
the digraphG, its transitive closure6. Explicitly computing the transitive closure ofG
is only done during the initial waking up of the constraint inO(nm). Next, a dynamic
handling of the transitive closure is performed by updatingthe current transitive closure
according to a necessary partial graph ofG induced by the events modifyingG. In
practice, this dynamic maintain of the transitive closure is very efficient. Finally, the
knowledge of the transitive closure provides the reachability conditions that allow us to
dynamically filter the dominator nodes when they are identified by the algorithm.

4.2 Towards portability of global constraints

The aim of these experiments is to illustrate that the pluggable tree constraint can
easily be plugged into several constraint solvers. The choice of the Gecode and Choco
constraint solvers leads to show that there is a slight degradation in the case of the
Gecode solver due to the interface module.

Gecode is a “propagator-centered” constraint solver. Thus, it cannot dynamically
record events occurring on the variables during search. Then, in order to translate the
modifications of variable domains in term of arc additions/removals in the graph mod-
ule, the interface module has to compute events occurring onthe domains from the
previous awake of the constraint.

The interface module is a global constraint watching domains modifications. At set
up, the constraint stores a copy of the domain of each variables. Then, upon each awake,
the constraint compares the current variables’ domain withtheir copy. If a domain has
been modified since the last awake, the constraint updates the domain’s copy and sends
an arc modification event to the graph module.

6 The transitive closureof directed graphG = (V, E) is the directed graph(V, E ′) such that for
all v, w in V there is an arc(v, w) in E ′ iff there is a non-empty path fromv to w in G.
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This computation leads to an overhead of the interface with the Gecode constraint
solver. Notice that this is not the case with the Choco interface because Choco is a
“variable-centered” constraint solver.

So, the interface module knows what kind of modifications happen on variables do-
main without having to scan them. Consequently, when the interface module constraint
is awaken, it only translates variable events to graph events and send them to the graph
module.

For each order of graph in{25, 50, 75, 100, 150, 200}, and densities in{0.05, 0.2,
0.4, 0.5, 0.6, 0.8, 0.95}, we generate50 instances (i.e. globally,2100 digraphs). Table 2
provides the running time details of each part composing thepluggabletree constraint
(Figure 2), both for the Choco and Gecode constraint solvers. Notice that both solver
searches use the same random variable-value selector.

The column “Interface Module” of Table 2 perfectly points out the overhead due
to the interface in Gecode. Moreover, we notice that the running times related to the
constraint itself are equivalent in both solvers: the columns “Constraint Module” and
“Graph Module” illustrate this result.

Graph Order
Running timeChoco(ms) Running timeGecode(ms)

Interface Constraint Graph Interface Constraint Graph
module module module module module module

25 5 10 27 6 10 27
50 5 57 229 24 56 228
75 11 190 863 58 186 879
100 18 440 2287 120 439 2310
150 50 1466 9524 368 1329 9596
200 82 3214 27551 812 3009 27097

Table 2: Running time comparison of the pluggabletree for two distinct constraint solvers
(Choco and Gecode) according to the input digraph order. Foreach one running time of each part
Interface, Constraint and Graph is detailed.

4.3 Implementation requirements

A final interesting point about designing pluggable global constraints is related to devel-
opment times. The originaltree constraint [2] took something like three months (in-
cluding the theoretical study of the constraint) to be fullyimplemented and debugged.
The fully dynamic pluggable version took three weeks to be developed (we obviously
used our expertise obtained during the first implementation). But, what is more inter-
esting is the time required to port thischocospecific constraint to theGecodeconstraint
solver: three days!
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5 Conclusion and future works

In this paper, we emphasized the interest in decoupling global constraint implemen-
tations from the underlying solver. We showed, on atree constraint, that decoupling
leads to efficient (compared to the original version of the constraint) and portable global
constraint implementations.

As soon as fully incremental algorithms are available for a given global constraint,
one should seriously consider developing a solver-independent constraint so as to im-
prove efficiency but also to give the opportunity to the constraint to be widely used. This
can be either with other combinatorial problem solving techniques or other constraint
solver. Notice that there exist many fully incremental algorithms with low complexity
for maintaining individual graph properties. However, combining several of them usu-
ally leads to a compromise in choosing the most interesting data structure. In this paper,
we made a quite basic choice that certainly would need to be improved.

One key lesson learnt from our paper is that investing in suchalgorithms is well
worth it: efficiency is improved and portability is a reality(it took us three days to port
thetree constraint toGecodewithout loss of efficiency).

We are currently working on a generic way to interface globalconstraints for con-
straint solvers in order to be able to define a kind of domain specific language for global
constraint implementations.
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11. J.-C. Régin. A filtering algorithm for constraints of difference in CSP. InAAAI’94, pages
362–367, 1994.

12. P. Schaus, Y. Deville, P. Dupont, and J.-C. Régin. The Deviation Constraint. InInterna-
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Abstract. This paper provides unreported implementation details of a
programming system which implements a seamless integration of con-
straint, functional, and logic paradigms, and that recently has incorpo-
rated a mechanism for solver cooperation on several domains: Herbrand
(with equality and disequality constraints), finite domains (for constraint
programming constraints over integers), and real numbers (for linear
and non-lineal constraints). In particular, the cooperation of constraint
solvers over numerical domains is specially interesting because of their
practical use for developing many heterogeneous applications relating
variables in both domains. This paper gives information about the com-
pilation scheme of the system, its specific libraries, and focuses particu-
larly on how solver cooperation has been integrated into the system. Re-
garding this last issue, the paper also provides preliminary performance
results that supports the suitability of this cooperation mechanism.

1 Introduction

The addition of constraint solving technology to declarative programming sys-
tems has caused that these systems are now being considered suitable options
(i.e., alternatives to traditional programming systems such as the imperative
programming-based systems) for programming complex and real problems. Ex-
isting declarative constraint languages are high level programming tools that
ease the task of programming (wrt. the formulation of the problem and/or pro-
gram analysis) and provide a reasonable balance between program formulation
and solving efficiency. Moreover, declarative constraint systems combine a high
level of abstraction and a declarative nature with an extreme flexibility in the
design of their implementations (e.g., wrt. their execution model). This means
that they can be used not only as development tools for implementing non-trivial
applications but also as platforms where research on key concepts of the imple-
mentation of programming languages (including concurrent/parallel models and
memory management) can be done.

In this context, the design, implementation, and optimization of declara-
tive constraint programming systems can be considered one of the major issues
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treated in recent years in the constraint programming and logic programming
areas. In this paper, we consider specifically the constraint functional logic pro-
gramming (CFLP) language T OY [1, 2]. This language combines functional and
relational notation, curried expressions, higher-order functions, patterns, par-
tial applications, non-determinism, lazy evaluation, logical variables, types, do-
main variables, and constraint composition. It also provides technology for finite
domain (FD) constraint solving (including a wide set of FD constraints com-
parable to existing CLP(FD) systems and which is competitive with them as
shown by performance results [3]), support for managing arithmetic linear and
non-linear constraints defined on the real domain R [4], and provision of strict
equality and disequality constraints [5] defined in the Herbrand domain H. Each
domain-specific constraint is solved in the associated domain-specific solver (i.e.,
solveFD, solveR, solveH, respectively) that are connected to the system via an
adequate interface.

The set of constraint solvers of T OY provides support for solving a wide
set of practical problems that require constraint solving over each single do-
main. However, there exist many practical problems that are better expressed
using heterogeneous constraints (i.e., involving more than one domain) and, as
a consequence, the formulation of these practical problems has to be artificially
adapted to one of the domains supported by the connected solvers. With the aim
of extending the applicability of the system, T OY has incorporated recently new
features such as solver cooperation. The implementation of this feature in T OY
is based on the theoretical framework described in [6].

This paper focuses specifically on implementation issues, not reported so far,
of the T OY system. Among these issues, the paper briefly describes the com-
pilation procedure and, more particularly, how solver cooperation, as described
in [6], has been implemented. Thus, this paper can help other implementors of
declarative constraint systems to understand the implementation fundamentals
of T OY, and can provide them further ideas to incorporate in their systems.
In addition, some performance results are given to show the effectiveness of the
solver cooperation mechanism implemented in T OY.

2 Compiling Programs

T OY programs consist of datatypes, type alias, infix operator definitions, and
rules for defining functions. The syntax is mostly borrowed from Haskell with
the remarkable exception that variables and type variables begin with upper-
case letters, whereas constructor symbols and type symbols begin with lower-
case (see Example in Section 4.3). In particular, functions are curried and the
usual conventions about associativity of application hold. As usual in functional
programming, types are inferred, checked and, optionally, can be declared in the
program.

Instead of using an abstract machine for running byte-code or intermedi-
ate code from compiled programs, the T OY system relies on an efficient Prolog
system (i.e., SICStus Prolog [7]) for running T OY programs compiled to Pro-
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log, as in other related systems [8]. The compilation follows a demand driven
computation strategy for lazy narrowing [9], and its data-flow is described next.

A T OY program program.toy is compiled as follows (see Figure 1): First,
functions, types and constructors defined in this user program are joined with
predefined ones (coded in the file basic.toy). Next, lexical, syntactical, and se-
mantical analysis are done, and the result contains type declarations, functional
dependencies, and definitional trees [10]. Finally, from the last intermediate file,
non-declared types are inferred and user-declared types are checked, generat-
ing the compiled Prolog code in program.pl. In addition, this result contains,
among others, code for dynamic cut [11], totality constraints [12], type declara-
tions for predefined functions and constructors, head normal form (hnf) compu-
tations, definitions for partial applications and declarations of precedence and
associativity for infix operators. This Prolog code is compiled (from Prolog to
the underlying SICStus abstract machine) and loaded into the SICStus system,
in order to be able to evaluate expressions (i.e., solve goals) typed at the system
prompt.

 

program.toy basic.toy 

program.pl 

program.tmp.toy 

program.tmp.tmp 

program.tmp.out 

Type inference 
and checking 

 

lexical, 
syntactical,  
and semantical  

analysis 
 

Fig. 1. Compilation Data-Flow

3 Libraries

T OY provides a number of independent libraries that contain specific definitions
for types, data constructors and functions that enable an adequate handling of
files, graphics, constraints over real numbers, and constraints over finite domains
for integers (Herbrand constraints are always available). When these libraries
are loaded, via the appropriate commands typed at the system prompt, these
definitions are added to the basic ones. More specifically:

– Files: This library provides functions to handle text files, and includes op-
erations to read from and write to files.

– Graphics: This library contains functions for building GUIs (Graphical User
Interfaces) based on the Tcl/Tk library.
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– Constraints over Reals: This library enables the constraint domain R
with arithmetical constraints over real numbers, both linear and non-linear.
However, these last ones are suspended until they become linear via instanti-
ations. Note that loading this library implies that arithmetical (in)equations
require no groundness on their variables.

– Constraints over Finite Domains: This library enables the constraint
domain FD with finite domain constraints over integer numbers. For a de-
tailed explanation of this kind of constrains see [1].

4 Implementing Solver Cooperation

This section describes the implementation fundamentals of the cooperation mech-
anism. Initially, an outline about the architectural components involved in the
implementation of the cooperation mechanism is given, and a global overview
of the two main pillars of this mechanism (i.e., bridges and projections) is pro-
vided. Further, an example of cooperation using both bridges and projections
is shown. Later, the implementation of bridges and projections is described in
detail. The section ends by giving some relevant comments about how constraint
information is exchanged among solvers supported in T OY , and by discussing
related work.

4.1 Architectural Components of the Cooperation Schema

Figure 2 shows the Herbrand domain H for equality and disequality constraints
dealing with constructed terms, R for (linear and non-linear) arithmetical con-
straints over real numbers, FD for finite domain constraints over integers, and
the mediatorial constraint domain M for communication constraints among
solvers, allowing their cooperation by means of bridges and projections. This
last domain is a hybrid domain that supplies bridge constraints (X #== Y) for
the communication among H, FD and R domains (cf. Section 4.2).

Each constraint domain (H,R, FD, andM) has an attached constraint store
(H, R, FD, and M, resp.) and solver (solveH, solveR, solveFD, and solveM,
resp.). We take advantage of the SICStus Prolog constraint stores for storing R
and FD primitive constraints.
T OY provides lazy narrowing dealing with constraints and takes care of de-

composing constraints by introducing new local (produced) variables [13]. Even-
tually, primitive constraints for R and FD arise, which must be submitted to
their respective solvers i.e., solveR and solveFD, resp., and stored in their cor-
responding stores. T OY uses the FD and R solvers provided by SICStus along
with Prolog glue code for interfacing them with solveFD and solveR, respec-
tively, code for implementing solveH, and code for implementing lazy narrowing
dealing with constraints. solveM follows [6, 14] and the implementation of its
bridge constraint is described next in Section 4.4.

Equality and disequality constraints for H are implemented as already re-
ported in [5]. Also, disequality constraints may affect a variable whose type is
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T OY
FD R H M

H Store M Store

solveFD solveR solveH solveM

FD Store R Store
CLP(FD) CLP(R)

SICStus Prolog

Fig. 2. Architectural Components of the Cooperation Schema in TOY

unknown [15]. These constraints are assumed to involve constructed terms and,
therefore handled by solveH. But, along computation, these variables may be
instantiated to a number, so that the corresponding disequality constraint is
moved to solveR, or solveFD, depending on whether this number is a real or an
integer, resp.

4.2 Bridges and Projections: Cooperation Fundamentals

Basically, the cooperation mechanism implemented in the system allows the
communication among H, FD, and R, using special communication constraints
called bridges. Bridges implement binding, equivalence between numbers in those
constraint domains, as well as disequalities (antibridges) between variables in
those constraint stores. A bridge X #== Y constrains X ∈ Z and Y ∈ R to take
the same integer value. Bridges are kept in a special store and they are used for
two purposes, namely binding and projection. Binding simply instantiates a vari-
able occurring at one end of a bridge whenever the other end becomes a numeric
value. Projection is a more complex operation which takes place whenever a
pure constraint is submitted to solveFD or solveR. At that moment, projection
rules relying on the available bridges are used for building a mate constraint
[14, 6] which is submitted to the mate solver (think of solveFD as the mate
of solveR, and vice versa). Thus, projection enables each of the two solvers to
take advantage of the constraints sent to the mate solver. In order to maximize
the opportunities for projection, the goal solving procedure has been enhanced
with operations to create bridges whenever possible, according to certain rules.
Obviously, independent computing of solvers remains possible.

The goal solving rules in [14] describe the process of solver cooperation by
means of the creation of new bridge constraints stored in M with the aim of
enabling projections of mate constraints via bridges. Solver cooperation can be
enabled only for bridges and also for both bridges and projections, which allows
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to analyze the trade-off between communication flow and performance gain, so
that the user can decide the best option for a given program.

4.3 Example

We show a problem (taken from [16]) which requires the cooperation of an FD
solver and a continuous domain solver. In this example there exists an electric
circuit with some connected resistors (modelled with real variables) and there is
a set of capacitors (modelled with FD variables). The goal consists of knowing
which capacitor has to be used so that its voltage reaches the 99% of the final
voltage given a time range. The T OY program formulating the problem is shown
below.

include "cflpfd.toy"

ecircuit :: real -> int
ecircuit C = KI <==

R1 == 10000,
10000 <= R2, R2 <= 40000,
R == R1*R2/(R1+R2),
50000.0 <= R, R <= 80000.0,
T == -(ln 0.01)*R*K/10000000.0 + ET,
0.5 <= T, T <= 1.0, -C <= ET, ET <= C,
belongs KI [10,25,50,100,200,500],
KI #== K,
labeling [] [KI]

In this program, some relational constraint operators have been used (==
for strict equality, and <= for “less or equal than”). Further, a finite domain
constraint belongs is used, which prunes the domain of KI to take values in
the given list of capacitor values. An FD enumeration procedure is applied with
labeling, which selects the predefined enumeration strategy over the single
variable KI. Finally, a bridge is used to connect the FD variable KI and the real
variable K (that represents the continuous value of the capacitor). Note that,
due to the imprecision of the real solver, a coupled variable ET is added. Real
variables C and T represent, respectively, an input tolerance parameter and the
time.

The following goal computes which capacitor has to be used if we consider
the time interval [0.5,1] (measured in seconds).

Toy(R+FD)> ecircuit 0.001 == K
{ K -> 25 }
Elapsed time: 16 ms.

sol.1, more solutions (y/n/d/a) [y]?
no
Elapsed time: 0 ms.
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4.4 Bridges

Our Prolog implementation of bridges codes the application of the transforma-
tion rules for solveM in Tables 3 and 4 of [6]. Each defined function in T OY is
implemented as a Prolog predicate with the following arguments: its function
arguments (as many as its arity), the function result, and two arguments rep-
resenting the input constraint store and the output (i.e., modified) constraint
store. The code excerpt below shows the basic implementation of the constraint
bridge (i.e., #==):

(1) #==(L, R, Out, Cin, Cout):-

(2) hnf(L, HL, Cin, Cout1),

(3) hnf(R, HR, Cout1, Cout2),

(4) tolerance(Epsilon),

(5) ( (Out=true,

(6) Cout3 = [’#==’(HL,HR)|Cout2],

(7) freeze(HL, {HL - Epsilon =< HR, HR =< HL + Epsilon} ),

(8) freeze(HR, (HL is integer(round(HR)))));

(9) (Out=false,

(10) Cout3 = [’#/==’(HL,HR)|Cout2],

(11) freeze(HL, (F is float(HL), {HR =\= F})),

(12) freeze(HR, (0.0 is float_fractional_part(HR) ->

(13) (I is integer(HR), HL #\= I); true)))),

(14) cleanBridgeStore(Cout3,Cout).

As the T OY constraint bridge has arity 2, its Prolog implementation has
two first arguments: L and R for the left (integer) and right (real) arguments of
#==, respectively. Out is the argument for the result of its evaluation. Cin and
Cout are the arguments for the incoming and outcoming constraint store. This
store implements the stores H and M, including constraints from both domains
H and M, i.e., disequality constraints for constructed terms, and bridges and
antibridges, resp. Notice that there is no need of explicit accounting for equality
constraints on H since they are handled by Prolog unification.

Lines (2) and (3) flattens both L and R by calculating their head normal
forms (hnfs), which always delivers either a variable or a number, therefore
ensuring that no suspensions will occur from line (4) on. So, this implements the
demandness of these arguments: They are required to be a variable or a number
for a bridge constraint relating them to be posted. In addition, note that a hnf
computation may develop new H disequality constraints during narrowing that
have to be added to its constraint store.

Note that a bridge constraint X #== Y accepts reification. This means that
if the value for Out is true, then the constraint X #== Y is posted to the store
M (line (6)), whereas if the value is false, then the complementary constraint
(the antibridge X #/== Y) is otherwise posted (line (10)). Also, note that this
constraint can be used to impose an integral constraint over its right argument.

Implementing both X #== Y and X #/== Y is accomplished by using the con-
current predicate freeze available in SICStus Prolog. This predicate suspends
the evaluation of its second argument until the first one becomes ground.
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For the first case (#==), we need to reflect in this constraint the equality of
its two arguments (variables or constants), which are of different type, i.e., real
and integer, so that type casting is needed. HR is assigned to the float version
of HL (line (7)) and HL is is assigned to the integer version of HR (line (8)).
But, due to the imprecision nature of real solvers, occasionally, HR must take an
approximation to an integer value. So, in order to avoid failures due to requiring
exact integer values, it is necessary to introduce a tolerance value via the user-
defined parameter Epsilon (line (4)), which is zero by default. Casting from
floats to integers is performed by the Prolog operators round and integer (line
(8)).

For the second case (#/==), we have to state in solveM that both arguments
are not equal, which cannot be directly handled, as before. So, whenever an
argument becomes (or is) ground in a domain FD or R, then a disequality
constraint between the casted ground variable and its mate variable can be
posted to the underlying solver (lines 11-13).

Finally, the store is cleaned of ground bridges (i.e., variable-free) in line (14).
As well, variables occurring at the same end of two bridges are unified whenever
the variables occurring at the other end become unified.

4.5 Projection: FD to R
Projecting a constraint in FD to R is possible if the user has enabled projection
and the constraint is allowed to be projected (see Table 1 in [14] or Table 3 in [6]).
The projection amounts to, first, create bridges for the rest of variables in the FD
constraint that are not involved in bridges, therefore creating new R variables
with integral values which may be further related in other R constraints, and,
second, send a mate constraint from FD to R. The code excerpt below shows
its basic implementation for the concrete constraint #> (i.e., greater than):

(1) #>(L, R, Out, Cin, Cout):-

(2) hnf(L, HL, Cin, Cout1),

(3) hnf(R, HR, Cout1, Cout2),

(4) ((Out=true, HL #> HR);

(5) (Out=false, HL #=< HR)),

(6) toSolverFD(HL,Cout2,Cout3),

(7) toSolverFD(HR,Cout3,Cout4),

(8) (proj_active -> (

(9) searchVarsR(HL,Cout4,Cout5,HLR),

(10) searchVarsR(HR,Cout5,Cout,HRR),

(11) ((Out==true, { HLR > HRR });

(12) (Out==false, { HLR =< HRR })));

(13) Cout=Cout4).

This code implements the application of the rules for the cooperation (see
Table 4 of [6]) among solvers. It follows the same prototype (line (1)) as #==,
since it is a binary function. Its two input arguments (L and R) are demanded to
be in hnf (lines (2-3)), and a primitive constraint is posted to the underlying
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FD solver, depending on the Boolean result of the function (lines (4)-(5)).
Moreover, these variables can be involved in (Herbrand) disequality constraints
because they were not identified as FD variables already. If so, FD disequal-
ity constraints are also posted to solveFD (lines (6-7)). This scenario appears
because the type of a variable is not always known since types are checked and
inferred at compile-time, but this information is not present at run-time.

If projection is active (indicated by the dynamic predicate proj active in
line (8)), then bridges relating the arguments of #> are looked for in the me-
diatorial store in order to find mate variables in R (lines (9-10)). This search,
if unsuccessful, will otherwise create bridges relating new mate variables in R.
Finally, a mate constraint is sent to the underlying R solver (lines (11-12)).

4.6 Projection: R to FD
Projecting a constraint from R to FD is possible in the same conditions stated
in the previous section. The projection amounts to send mate constraints as
before, but bridges for the rest of variables in an R constraint are not created
since their integral nature is not for sure. The code excerpt below shows its
basic implementation (without considering obvious optimizations) for a concrete
constraint > (i.e., greater than):

(1) >(L, R, Out, Cin, Cout):-

(2) hnf(L, HL, Cin, Cout1),

(3) hnf(R,HR, Cout1, Cout2),

(4) (Out = true, {HR > HL} ;

(5) Out = false, {HL =< HR}),

(6) toSolver(HL, Cout2, Cout3),

(7) toSolver(HR, Cout3, Cout4),

(8) toSolver(Out, Cout4, Cout),

(9) (proj_active ->

(10) (searchVarsFD(HL, Cout, BL, FDHL),

(11) searchVarsFD(HR, Cout, BR, FDHR),

(12) ((BL == true, BR == true, Out == true, FDHL #> FDHR);

(13) (BL == true, BR == true, Out == false, FDHL #=< FDHR);

(14) (BL == true, BR == false, Out == true, FDHL #> FDHR);

(15) (BL == true, BR == false, Out == false, FDHL #=< FDHR);

(16) (BL == false, BR == true, Out == true, FDHL #>= FDHR);

(17) (BL == false, BR == true, Out == false, FDHL #< FDHR);

(18) true);

(19) true).

After analogous steps to the previous subsection, lines (6)-(8) deal with
the explicit interaction between solveH and solveR [17], checking whether the
disequality affects a real variable; if so, the constraint is sent to the underlying
solver for reals and removed from the Herbrand store.

Next, if projection is active, a similar procedure to the one performed for
the projection in the other direction follows. However, notice that there are
more possibilities for sending a mate constraint to solveFD (see Table 4 in [6]),
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depending on values of BL, BR, and Out. For BL and BR, a true value means
that a bridge relating this variable has been found; a false value means that
HL (resp. HR) is a real value with non-zero fractional part. Following the lines
(10)-(11), FDHL (resp. FDHR) is the greatest integral value less or equal to HL
(resp. HR).

Lines (12)-(13) correspond to true values for BL and BR therefore the
mate constraint #> is sent to solveFD, or its counterpart #=<, depending on
the Boolean result of the function.

Lines (14)-(17) determine the correct mate constraint which is sent to
solveFD, which is selected in terms of the values for BL, BR, and Out, as specified
in [6]. For example, line (14) is selected for solving the right argument of the
conjunctive goal X #== RX, RX > 4.3. Here, BL is true as the real variable RX
has a mate finite variable X, (FDHL is X), BR is false because 4.3 has a non-zero
fractional part (so, FDHR is 4). Finally, the mate constraint X #> 4 is posted to
solveFD.

4.7 Handling of Numerical Types

T OY is a typed programming language, based essentially on the Hindley-Milner-
Damas polymorphic type system [18]. Programs are tested for well-typedness at
compile time. In particular, each occurrence of an expression in a T OY program
has a type that can be determined at compile time. Syntactically, types are built
from type variables tvar(τ) and type constructors TC. Any identifier starting
with an uppercase letter can be used as a type variable, while identifiers for type
constructors must start with a lowercase letter. Type constructors are introduced
in datatype declarations, along with data constructors. Primitive types (such as
bool, int, and real) can be viewed as type constructors of arity 0.

Function symbols are required to come along with a so-called principal type
declaration, which indicates its most general type. For example, the types of the
function “greater than” are >::real -> real -> bool and #>::int -> int
-> bool, distinguishing the FD version from the real number one by the prefix
symbol #; the exception is the equality and disequality constraints (== and /==
respectively) that are overload in order to work in both domains.

Type of variables is not always known at run-time because type inference
information is not kept. Thus, a disequality constraint between variables is as-
sumed to range over H, so that it is sent to the Herbrand store. During the
constraint solving process, FD and real constraints are continuously involved
in a projection process that gives rise to the update of different FD and real
variables; as a consequence, the disequality constraints stored may be affected by
the updates on any finite domain or real variable; if so, each of these disequality
constraints is sent to the underlying solver for FD or real domain in order to
look for inconsistences.

Equality constraints are treated differently since these are handled by uni-
fication. Narrowing process reduces both arguments to hnf, but T OY uses a
sophisticated process that analyzes the structure of both arguments in order to
cut the search space.
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In our system, some problems arose with types in different scenarios. For
example, we can solve the goals X+2>4 and X+2/=4, but the goal X+2==4 throws
an exception because it tries to unify a real value (i.e., the result of the narrowing
of the expression X+2) with the integer value 4. This can be avoided in T OY
by identifying correctly the nature of the result; in the example, the exception
is not thrown if we type X+2==4.0 (note that the left argument of the equality
provides always a real value as function + is defined as +::real -> real ->
real and thus the value 2 is interpreted as a real value).

4.8 Related Work

In general, solver cooperation has been widely analyzed in the literature and
there are a number of declarative constraint systems that provide support for
the interaction among solvers. For example: CLP(BNR) [19], Prolog III [20] and
Prolog IV [21] allow solver cooperation, mainly limited to Booleans, reals and
naturals. Also, the language NCL [22] provides an integrated constraint frame-
work that strongly combines Boolean logic, integer constraints, and set reason-
ing. The integration of new constraint domains such as the reals is described
as future work in [22]. In general, all those systems provide a limited form of
cooperation that is very specific to the predefined computation domains existing
in the system. Solver cooperation as integrated in T OY is quite different from
all those systems as its implementation follows the theoretical principles recently
described in [6]. Particularly, solver cooperation in T OY follows an interopera-
tive approach, which means that the system has the ability to communicate and
use independently-written software components, thus allowing independent sys-
tems to cooperate. In the literature, one can find different proposals catalogued
in this approach. For instance, [23] proposes a C++ constraint solving library
called aLiX for communicating different solvers, possibly written in different
languages. One of the main shortcomings of the current aLiX version is that a
component for solving continuous constraints is not integrated into the system
yet (this is claimed to be one of their main priorities for future development
work).

Also, [24] describes a client/server architecture to enable communication
among the component solvers. This consists of both managers of the system
and the solvers that must be defined on the same computational domain (e.g.,
real numbers) but with different classes of admissible constraints (e.g., linear
and non-linear constraints). The CLP system CoSAc is an implementation of
their system. This system is very different from our proposal as the exchange of
information is managed by means of pipes and the exchanged data is a character
string. Also, in his thesis [25], Monfroy constructed the system BALI (Binding
Architecture for Solver Integration) that facilitates the integration of heteroge-
neous solvers, as well as the specification of solver cooperation via a number
of cooperations primitives. There are may differences with our implementation
but one of the most significant is that Monfroy’s approach assumes that all the
solvers work over a common store, while our present proposal requires commu-
nication among different stores.
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Perhaps, regarding solver cooperation, the most similar system to T OY is
the system Meta-S [26], a meta-solver framework that implements the ideas pro-
posed in [27] for the dynamic integration of external stand-alone solvers to enable
the collaborative processing of constraints. The similarities between T OY and
Meta-S are because solver cooperation in Meta-S also relies on two main con-
structs, namely constraint propagation (that enables to submit a constraint be-
longing to some domain D to its constraint store, say SD) and projection of
constraint stores (that consults the contents of a given store SD and deduces
constraints for another domain). Our projection differs from Meta-S projection
in the creation and use of bridges; Meta-S propagation corresponds to our goal
solving rules for placing constraints in stores and invoking constraint solvers. An
important difference is the lack of bridges in Meta-S approach that corresponds
to the lack of mediatorial domains within the combined domains that can be
constructed in this system. From the implementation point of view, there are
additional structural differences between T OY and Meta-S. So, Meta-S does not
provide facilities for constraint optimization (as T OY). Also, Meta-S is imple-
mented in Common Lisp whereas T OY is implemented in Prolog.

5 Performance

In this section, we briefly show empirically that the projection mechanism of
T OY helps to accelerate the cooperative constraint solving. To do so, we have
considered a number of benchmarks4: a non-linear crypto-arithmetic (nl-csp)
problem (9 FD variables with non-linear equations), two problems for solving
systems of 10 (eq10) and 20 (eq20) linear equations with 7 FD variables, an
electrical circuit problem, a knapsack optimization problem, and a set of cryp-
toarithmethic problems i.e., send+more=money (smm) problem (8 FD vari-
ables, 1 linear equation, 2 disequations, and 1 all different constraint), the
Wrong+Wrong=Wright (wwr) problem (8 FD variables, 1 linear equation, 1
all different constraint), the alpha problem (26 FD variables, 20 linear equa-
tions, and 1 all different constraint), and the donald problem (10 FD variables,
1 linear equations, and 1 all different constraint). All the benchmarks were coded
to require FD constraint solving as well as solving of (non-)linear equations in
solveR.

All the benchmarks were executed on the same Linux machine, operating
system Suse Linux 9.3, with an Intel(R) Pentium(R) M processor running at
1.70GHz and with a RAM memory of 1 GB. For the sake of brevity, in Ta-
ble 1 we only provide the results for first solution search. The first column
displays the configuration employed: (1) T OY(FD +R), which corresponds to
T OY with both numerical solvers activated, and (2) T OY(FD +R)-proj which
corresponds to T OY(FD +R) with the mechanism for constraint projections
activated. In addition, two labeling strategies were considered: näıve, in which
variables are labelled in a prefix order, and first fail (ff), in which the variable
with the smallest domain is chosen first for enumerating. The label (FD ∼ R)
4 All the benchmarks are available in http://www.lcc.uma.es/∼afdez/cflpfdr.

CICLOPS 2007

Sonia Estvez, Antonio J. Fernández and Fernando Sáenz-Pérez 68



means that labelling of FD variables and global constraints are executed in
solveFD whereas (non-)linear-equations are sent to solveR. The numbers for
the different versions of T OY represent the average of ten runs. Note that, in
general, activating the projection mechanism provides a significant performance
improvement. Further experiments with more benchmarks have also been exe-
cuted leading to the same conclusion.

Configuration knapsack donald smm nl-csp wwr eq10 eq20 alpha circuit

T OY(FD +R)

näıve FD ∼ R 16 304970 22528 411 411 266 402 314 14
ff FD ∼ R 15 288700 22627 383 420 271 408 272 13

T OY(FD +R)-proj

näıve FD ∼ R 11 8305 41 44 54 290 433 291 14
ff FD ∼ R 16 601 40 87 58 269 397 283 20

Speed-Up

näıve FD ∼ R 1.45 36.72 549.43 9.34 7.61 0.91 0.92 1.07 1
ff FD ∼ R 0.93 480.36 565.67 4.4 7.24 1 1.02 0.96 0.65

Table 1. Running time (milliseconds) for first solution search

6 Conclusions and Future Work

In this paper, we have dealt with implementation issues of the constraint func-
tional logic programming system T OY unreported up to now. Among these im-
plementation issues, we have described the data-flow program compilation pro-
cess, available libraries, and the integration of constraint solving technology in
the system. With special emphasis, we have explained how solver cooperation
has been recently incorporated in T OY. This is a very important issue as the
interaction among solvers makes it easier to express compound problems, and
good communication can help the efficiency of the systems [28].

More specifically, we have described the internal communication among H,
R and FD via bridges and projections. We have sketched their implementa-
tion, and shown that bridges manage the communication between two variables
that belong to different computation domains, whereas propagation generates,
from a primitive constraint defined on one source computation domain, new
(semantically-equivalent) constraints that are propagated to another computa-
tion domain which demands cooperation with the source domain. This solver
cooperation can lead to drastic reductions in the search space of the problem,
and can be translated into a reduction of the solving time as it was shown in
[6].
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4. Hortalá-González, T., López-Fraguas, F., Sánchez-Hernández, J., Ullán-
Hernández, E.: Declarative Programming with Real Constraints (1997) Technical
Report SIP 5997, Univ. Complutense Madrid, 1997.
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Abstract. We connect the GNU Prolog compiler with the programming
environment PM2, obtaining a system that allows the development of dis-
tributed multi-threaded Prolog applications. This is especially useful for
computationally intensive problems, where performance is an important
factor. The system API offers thread management primitives, as well
as explicit communication between threads via message-passing. In the
initial evaluation the system shows an almost linear speedup for three
benchmark programs and also a good performance for a real-world ap-
plication, when compared to a sequential version.

Keywords: Distributed, Multi-Threading, Prolog, Logic Programming,
Parallel Computing

1 Introduction

In this paper we focus the attention upon a system that allows for distributed
multi-threading in GNU Prolog [8].

Parallelism in Prolog programs has been fairly researched by implementing
parallel Prolog systems and by combining existing Prolog systems with parallel
programming environments, as can be witnessed by Aurora [12], Muse [2], &-
Prolog [11], DDAS [19], Andorra-I [7], Parlog [5], YapOr [18] and PVM-Prolog
[13], to name a few.

PM2 [15], a programming environment similar to PVM, allows distributed
multi-threading C applications to be developed and adheres to the Single Pro-
gram Multiple Data (SPMD) programming model. The user writes a program
and copies of it are launched, by a specific load command, on each machine. It
is based primarily on two distinct libraries: one for thread management (Marcel
[16]) and another for communication (Madeleine [3]). By making use of these
libraries, the program is able to determine its identity and run different actions
accordingly. Since PM2 programs are to be executed on remote machines, they
must not depend on third party applications or libraries that may not exist.

GNU Prolog, which is based on the WAM (Warren Abstract Machine), uses
in the compilation process a mini-assembly language as an intermediate level
between the WAM code and the assembly language of the target machine, and
for this reason, is capable of producing stand alone executables that can be
loaded with PM2. Further more, the size of these executables is relatively small
since GNU Prolog avoids linking the code of most unused built-in predicates.
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Most Prolog implementations, such as SWI-Prolog, SICSTUS Prolog and the
Yap Prolog system, which provide machine-independent saved-states aren’t as
straighforward to use with PM2.

This makes GNU Prolog ideal to combine with PM2. We developed a system
that explores such combination, which we call PM2-Prolog, and that we think
is specially suitable when dealing with:

– Applications that potentially have some degree of parallelization whose per-
formance needs to be improved;

– Applications comprised of intelligent agents, hosting one or more agents per
machine;

– Scientific and business problems, such as simulation applications, that pro-
duce large amounts of data that need to be processed for visualization, data
mining or machine learning. For many cases, faster results can be poten-
tially achieved, subdividing the problem and processing each sub-task in a
different processor;

– Applications where some loss of accuracy in result can be traded for faster
execution times.

Supporting distributed multi-threading in GNU Prolog by connecting it to
PM2 also favors portability and permits to take advantage of functionalities
already provided with PM2, such as fault-tolerance.

Our system is based on distributed memory and message-passing. What is
to be executed on the memory of other nodes is sent over the network.

Since PM2 can sustain more than one entity of the application on each node,
PM2-Prolog offers the possibility of choosing how many entities run locally on
each machine besides how many run distributed. This is especially attractive to
exploit mutiprocessor systems, namely multicore microprocessors.

In summary, our contribution introduces a system that allows the exploita-
tion of explicit parallelism and multi-threading in logic programming, based on
a well known ISO-compliant Prolog, GNU Prolog and on PM2, a distributed
multi-threading programming environment widely used in academia.

The implemented architecture allows new abstraction layers to be easily de-
fined on top of it, providing a framework to develop parallel and distributed
Prolog applications, or as a layer for the support of the execution of other appli-
cations that require heavy computational resources or to which applying some
degree of parallellization may be beneficial.

The remainder of this paper is organized as follows: Section 2 provides
insight into parallel and multi-threaded prolog systems.

Section 3 covers the execution model, architecture and implementation of
PM2-Prolog. The API it provides is listed and an explanation of how to use it
is also provided.

In Section 4 the system is experimentally evaluated and the obtained per-
formance results discussed.

Finally, Section 5 draws conclusions and outlines possible proposals for
future work.
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2 Parallel and Multi-Threaded Prolog

Prolog systems, such as YapOr [18], automatically exploit the (potential) paral-
lelism in programs without any input from the programmer. Others, like Delta
Prolog [17] and CS-Prolog [10] offer parallel primitives that allow the defini-
tion of how the parallel execution is to be carried out and to control related
aspects like process synchronization, communication or task partitioning. The
terms implicit and explicit parallelism describe these approaches.

Although implicit parallelism is appealing because the sequential program-
ming model is retained, providing the ability to parallelize legacy code, there is a
limit on how much parallelism can be exploited automatically, and current tech-
niques only achieve maximum parallel potential on certain kinds of programs.

Explicit parallelism gives more work to the programmer because it requires
specific instructions to be called in order to execute a program but it also allows
for very efficient code to be written.

2.1 Message Passing Prolog Systems

One of the basic methods of explicit parallelism is the use of message passing
libraries. These libraries manage transfer of data between instances of a parallel
program running (usually) on multiple processors in a parallel computing archi-
tecture. The Message Passing Interface (MPI) is the de facto standard1 for this
type of communication.

Both Delta Prolog [17] and CS-Prolog [10] present a system where multiple
Prolog engines are mapped to processes that are running in parallel and commu-
nicate with each other via explicit message passing. These implementations were
the first systems that exploited explicit parallelism based on message passing for
Prolog, but meanwhile have ceased to exist or aren’t being actively developed
anymore.

PVM-Prolog [13] introduced a programming interface to the PVM system
where multiple distributed Prolog processes cooperate using a message passing
model. One of its limitations is that PVM itself isn’t multi-threaded.

2.2 Multi-threading

With respect to multi-threading, Prolog systems commonly offer implementa-
tions based on the POSIX threads (pthread) API. This is exemplified by Qu-
Prolog [6], SICStus MT [9], IC-Prolog II [4], PMS-Prolog [21] and more recently
by SWI-Prolog [20].

In these implementations each Prolog thread is normally a POSIX thread
running a Prolog engine and threads communicate among each other either by
using FIFO message queues or a blackboard system (an area of shared memory).
1 The MPI standard is comprised of 2 documents: MPI-1 (published in 1994) and MPI-

2 (published in 1996). MPI-2 is, for the most part, additions and extensions to the
original MPI-1 specification. The MPI-1 and MPI-2 documents can be downloaded
from the official MPI Forum web site: http://www.mpi-forum.org/.
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Although when dealing with computationally intensive problems, multi-threading
can be used to improve performance and responsiveness, there is always a limit
because such programs can only run on a single-machine.

3 PM2-Prolog

Our approach to introduce distributed multi-threading in GNU Prolog is based
on explicit parallelism with calls to message-passing primitives.

Since PM2 programs are developed in C and compiled with gcc and GNU
Prolog compiles Prolog code, it was necessary to estabilish a model for connecting
the two programming environments.

The approach used doesn’t involve modifications to GNU Prolog neither
modifications to PM2. Instead, it relies on:

– a new program (Tabard2), written in C with the PM2 libraries, that manages
distributed instances of gprolog engines, and that is transparent for the end-
user.

– a new Prolog library (pm2prolog-lib), implemented partly in C and partly in
Prolog, which allows the development of distributed multithreaded Prolog
applications.

When using a PM2-Prolog program we first generate the binary by compiling
our Prolog program and link Tabard, the libraries of PM2 and the libraries of
GNU Prolog (Figure 1).

Prolog 
file

Stand-Alone 
binary

PM2

GNU 
Prolog

link

...

loaded with pm2load

Node 1 Node 2 Node N

Fig. 1. PM2-Prolog architecture as seen by the end-user.

Before compiling there is a configuration that specifies the list of machines
on which the application is going to run. That configurations maps each machine
2 Literally, a tabard is a short coat, that in the late middle ages was worn by knights

over their armour. This fits nicely as a name because Tabard will allow “wearing” a
Prolog program over PM2 (the armour).

CICLOPS 2007

Nuno Morgadinho and Salvador Abreu 75



5

to one or more processing nodes or virtual processors (VPs). While it may seem
common sense practice to use one virtual processor per physical node, nothing
in PM2-Prolog requires such association, as illustrated by figure 2.

When a PM2-Prolog program is launched it starts the following execution
model:

1. The binary is copied to all the machines. The main() function of Tabard is
called on every VP.

2. In VP 0 (master) a gprolog engine is created calling Start Prolog(), that
will start executing the linked Prolog code.

3. In the other VPs (workers) a pthread in C is created and stands awaiting
messages. This is done via a call to a blocking read function.

4. In the master, now in the Prolog thread, a predicate is called to send a
message to every worker, ordering the starting of a Prolog thread by calling
Start Prolog().

5. The workers receive that message, initiate a gprolog engine and the new
Prolog thread stands awaiting more messages to come by calling a blocking
read pm2prolog-lib predicate. At this time, there are two threads awaiting
messages, one in C and another in Prolog, for each worker.

6. In the master, work is distributed throughout the workers through message-
passing.

7. The workers receive tasks which they execute locally. As soon as they finish,
they send their results back to the master and return to their prior state,
awaiting for messages.

8. The master assembles the work results by reading as many messages as the
number of previously sent messages.

9. The master redistributes work again (5.) or orders the workers to finish their
execution.

10. The workers terminate.
11. The master reiniciates the workers (4.) or terminates itself.

In PM2-Prolog each machine in the configuration will have a C thread (lis-
tener) and a Prolog thread, for each VP. The purpose of the C thread is to
control the associated GNU Prolog engine that runs in the Prolog thread, in
terms of creation, termination, monitoring, etc.

Since GNU Prolog doesn’t support multi-threading, PM2-Prolog novelty is
that it allows to control more than one GNU Prolog thread in the same machine
without introducing changes in GNU Prolog itself.

Also, with this approach, it supports all predicates of the GNU Prolog li-
braries without the need of modifications.

In summary, it achieves a multi-threading that is very appellative from a
technical point of view because of its simplicity but that for each Prolog thread
has an attached C thread (Figure 2). However, once GNU Prolog introduces
support for multi-threading it is trivial to change to an architecture where there
is only one C thread by machine that controls N GNU Prolog threads.

Branching is crucial in PM2-Prolog since it allows to differentiate between
the different threads and execute different things in each one to our benefit. The
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Prolog 
Proc

Node 1

VP 0

Prolog 
Proc

VP 1

...

Prolog 
Proc

VP 2

...

Node 2

Prolog 
Proc

VP 2

Node 3

Fig. 2. Architecture where a node has more than one VP.

case described earlier, in which we have a master thread, that distributes tasks
to be done by the workers is known as task farming and is a commonly used
way of parallelizing applications.

This rank is an unsigned int between 0 and pm2 max rank/1, the configu-
ration size. A VP can learn about its own rank by calling pm2 self/1.

Processing nodes are able to execute code and simultaneously check if any
messages arrives. The listener thread receives commands or orders in form of
messages that can result in different actions being carried out on a specific VP,
such as creating another thread or execute specific code.

Two important messages were specified and implemented: 1) create a Prolog
thread and 2) terminate the listener thread. All other messages that arrive at a
VP will be interpreted not as commands, but as common messages that must be
delivered to the running Prolog thread inside that VP. A mechanism of quoting
to enable passing messages equivalent to these command is not yet implemented,
but is being thought of.

As can be observed on figure 3, the listener thread and the Prolog thread
communicate using a shared data structure. The listener delivers messages by
writing them to a message queue and the Prolog thread accesses them by reading
in First In First Out (FIFO) order from that structure. The message queues
provide a means for threads to wait for data without using the CPU. Other
means to do this, like checking via a polling loop, would cause busy-waiting, that
generally should be avoided.

The listener thread receives messages from a socket and the Prolog thread
sends messages via its listener “support” thread.

The Prolog thread can also write to its message queue in the special case
where the destination VP is the same as the sender.

In terms of communication, the Madeleine layer provides an API that is
similar to POSIX socket. Around this API we’ve implemented primitives for
sending and receiving Prolog terms over the network. As with Madeleine, it is
also not possible in PM2-Prolog to know the source address when a message
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...

READ 
   WRITE

WRITE

Prolog Thread
C Thread Listener

RECEIVE SEND

Message Queue

write_message_queue()

Start_Prolog()

Stop_Prolog()

... ...

thread_send_message/2

thread_get_message/2

pm2_self/1

UNLOCK

LOCK

SOCKET

Fig. 3. Inside a processing node or virtual processor.

is received. Complementary, we observe that most applications don’t have this
requirement. That doesn’t mean we will only communicate between master and
workers, because we can configure any host which is network accessible.

To implement the routines we needed to be able to convert a Prolog term into
a C string and also be capable of doing the opposite process. This is required
since the Madeleine routines receive a (char *) buffer as an argument.

The approach used consists in transforming the term to a character code list
by using the built-in GNU Prolog predicate writeq to codes/2. This is similar
to write/2 except that characters are not written into a text-stream but are
collected as a character code list which is then unified with the first argument.

By using the foreign type term a C string will be ready to be sent. On the
reception side, once the string is read we use Mk Codes() to convert it again to
a character code list and read term from codes/3 to transform it back into the
original Prolog term.

Threads living on distinct nodes may not directly interact together unless
by message-passing. When this happens the listener thread receives the message
and is responsible for delivering it to the correct local thread.

Prolog threads are created by calling marcel create(), that is part of the
Marcel library . Once Marcel threads are created they basically behave by default
as native pthreads. The reason to use it rather than pthreads is that Marcel is
designed to work together with Madeleine.

The thread starts by executing the function given as argument to marcel create().
In this case, this is Start Prolog(), which initializes and starts the Prolog en-
gine.

The mutexes provided by the Marcel API are used to make the operations
on the message queue thread-safe. Their behaviour is also similar to the ones
offered by the pthread API.
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One thing that also needs to be guaranteed in the message queues is that
no initial read is made before write. For that purpose another mutex has been
used, as follows:

1. The mutex is initialized and a lock is made.
2. Some VP send a message. The listener thread receives it, writes it to the

message queue and an unlock is made.
3. Since an unlock has been made, the Prolog thread will now acquire the lock

and retrieve the message from the queue. Finally, a lock is made and we go
back to step 1, starting over again when a new message arrives.

A computation in Prolog is always a process of production of bindings, known
as unification. This process consists in binding a variable to a value, the scope of
which is local to the Prolog process and not visible or accessible to the outside. In
PM2-Prolog, this principle remains the same, meaning that a variable that had
a certain value on the sender side will not have the same value on the receiver
side, except if the user deliberatly via message-passing produces such binding.

3.1 API

The PM2-Prolog interface is designed to be simple and as close as possible of
the draft technical recommendation (DTR) for Prolog multi-threading support
[14].

Extending PM2-Prolog is trivial since new Prolog predicates or new C func-
tions can be added using the foreign interface. The current PM2-Prolog API is
the following:

PM2 Facilities

pm2_self(-Rank)

Unifies with the rank number of the processing node, a unique integer number
assigned to each machine.

pm2_is_master/0

Will succeed when the rank where it is being called is zero, usually the thread
that distributed work.

pm2_max_rank(-Rank)

Unifies with the highest rank number of the configuration.

finish_listeners/0

Terminates the listeners threads in each VP. Called upon termination.
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Creating and destroying Prolog threads

start_prolog_workers(+HighestRank)

Start the Prolog thread in each VP.

stop_prolog_workers(+HighestRank)

Stop the Prolog thread in each VP.

Thread Communication

thread_send_message(+ThreadId, +Term)

Place Term in the queue of the indicated thread (which can even be the
message queue of itself). Any term can be placed in a message queue, but note
that the term is copied to the receiving thread and variable-bindings are thus
lost. This call returns immediately.

Since each thread has by default its own message queue the other threads
will be unaffected by this call.

ThreadId - ThreadId is a compound term of the form vid(Rank, ThreadId).
Rank is given by pm2 self/1 and ThreadId is an integer number assigned se-
quentially to each thread inside a specific machine.

thread_get_message(-Term)

Examines the thread message queue and blocks execution until a term arrives
in the queue. After a term from the queue has been unified to Term, the term
is deleted from the queue and this predicate returns.

read_results(-Number)

Calls thread get message/1 a Number of times.

4 Experimental Evaluation

To assess the suitability of PM2-Prolog for a particular purpose, many users will
consider it’s performance as the most important and indeed critical feature.

The environment on which PM2-Prolog can be used can widely vary. It can
be a cluster of networked workstations or a set of workstations wide-spread
throughout the Internet. As a matter of fact, these workstations need only to be
running Linux and have ssh/rsh access.

Our study focuses on a cluster of SMP systems and the speedup that can be
obtained from problems that consist of a large task and that can be split into
subtasks distributed over a pool of threads.

What interests us here is the elapsed real (wall-clock) time used by the pro-
cess. It represents the total time needed to complete a task, including disk ac-
cesses, I/O activity, operating system overhead - everything. We obtain the wall-
clock time with the Unix time(1) command (not the shell built-in time but the
one normally found in /usr/bin/time) and with the format set to elapsed time
only, specified with the parameter -f %E, e.g.:
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/usr/bin/time -f%E ls

This time will be composed by the initialization time of the program (T0)
plus the time the program will spend actually doing some processing (T).

The initialization time is not constant. It grows along with the number of
workers, while the processing time will decrease until it reaches a point where it
is less than the initialization time and by then it no longer compensates to have
more workers on the problem.

In order to compare the real processing time between configurations with
different number of workers, the initialization time must be calculated and then
subtracted from the obtained elapsed time.

The initialization time (T0) is given by the elapsed time obtained for what
is called the empty problem, which consists of no more than a program that
initializes the system and exits.

Having these measurements we calculate the speedup (S) using the formula:

S =
T1 − T1(0)
T − T (0)

where T1 is the elapsed time obtained with M + 1 worker, T1(0) the elapsed
time obtained with M + 1 worker for the “empty” problem, T the elapsed time
obtained with M + N workers and T (0) the elapsed time obtained with M + N
workers for the “empty” problem.

The hardware environment used consisted of 7 units of the machine shown
below:

Table 1. Hardware Environment (x7)

CPU Intel(R) Pentium(R) 4 CPU 2.80GHz each

Hyper-Threading Enabled

Cache size per CPU 512 Kb

FPU Yes, integrated

Memory 512 Mg

Filesystem IDE disk shared via NFS

Filesystem type Ext2

Network TCP/IP over Ethernet

Network interfaces RealTek RTL8139 Fast Ethernet

Background load average Minimum or none

We use a suite of three classic literature problems plus a real-world applica-
tion to measure the speedup that can be obtained in each one by using PM2-
Prolog.

The first one is a matrix multiply program, where the system obtained a
speedup of 2.92 times with 6 CPUs and of 4.71 times with 12 CPUs, comparing
to the same program running in a single processor.
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Table 2. Obtained times for 64x64 matrix (integer) multiplication executed fifty times

Workers CPUs Elapsed Time Speedup

1 2 01:09.7s 1.00

3 6 00:23.9s 2.92

6 12 00:14.8s 4.71

The second one is the N-Queens program. In this program, a job consists
in a valid placement of queens up until a certain column. A result consists in
the number of solutions found for that particular job. A worker must find all
the solutions for that board prefix, then send the number back to the master. A
speedup of 2.98 times with 6 CPUs and 4.78 times with 12 CPUs was obtained.

Table 3. Obtained elapsed time for the parallel nqueens problem

Workers CPUs Elapsed Time Speedup

1 2 03:23.2s 1.00

3 6 01:08.1s 2.98

6 12 00:42.5s 4.78

The third one is a parallel array search program. The program will find all
occurrences of a certain integer by dividing an input list for processing by the
available workers and doing a local search. Then, on the master, the number of
occurrences found is assembled.

The conducted tests refer to a parallel search on a list of 10000 elements
executed one hundred times in each worker, and a speedup of 3 times with 6
CPUs and 5.20 with 12 CPUs was obtained.

Table 4. Obtained elapsed time for the parallel number of occurrences problem

Workers CPUs Elapsed Time Speedup

1 2 03:23.2s 1.00

3 6 01:08.1s 3.00

6 12 00:42.5s 5.20

So far, we have only considered synthetic benchmarks. That means we have
only considered artificial programs that try to match the characteristics of large
programs. Although they are fine for testing, real benchmarks can only be ob-
tained from testing real-world applications. We also tested PM2-Prolog with
OpenArp [1], and obtained a speedup of 2.24 times with 6 CPUs and 2.50 times
with 12 CPUs.
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Table 5. Obtained elapsed time for parallel anaphora resolution

Workers CPUs Elapsed Time Speedup

1 2 00:05.0s 1.00

3 6 00:02.2s 2.24

6 12 00:02.0s 2.50

Quantifying the obtained speedup is important but very dependent on the
problem we are dealing with and on its degree of parallelization. Also of note,
the elapsed time shown already excludes the time for the empty problem.

0 . 0 0
1 . 0 0

2 . 0 0
3 . 0 0

4 . 0 0
5 . 0 0
6 . 0 0

0 1 2 3 4 5 6 7W o r k e r s

SpeedUp m a t r i xp a r n o c c u rp a r a n a f o r ap a r n q u e e n s

Fig. 4. Speedup with an increasing number of workers defined as elapsed time using
one worker divided by elapsed time using N workers.

Looking at figure 4 we observe that the speedup is almost linear for the first
three examples. That shows that the system scales without problems, at least
until the considered number of workers.

Since the cluster used in our benchmarking exercise is relatively small (7
nodes) we can’t always observe the point of speedup convergence for all the tested
programs, but in the case of the anaphora resolution system we can observe that
the speedup is unlikely to reach more than 3 times, independent of the number
of workers used.

Another issue that should be taken into account is the correctness of the re-
sults. What happened while distributing OpenArp, in which we chose to modify
the search-space of the algorithm in order to distribute the problem, affect-
ing herewith the correctness of the results, will probably happen with other
real-world applications. If this separation affects somehow the algorithm of the
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application, by e.g. modifying the search-space, the accuracy of the system will
also be affected. Being so, the accuracy of the results must be assessed in order
to verify if the obtained speedup compensates the loss.

In summary, the results show the model is valid and can obtain good perfor-
mance gains, even when the number of distributed machines is low.

5 Conclusions and Future Work

A system that allows the development of distributed multi-threaded applications
in GNU Prolog on top of the PM2 programming environment was developed.

It is at a prototype state and will need further development and testing.
The conducted tests to evaluate the preliminary performance of our system used
three classic literature problems plus a real-world application and measured the
obtained speedup in each one using one worker (sequential version), three workers
and six workers.

In summary, the results show the model is valid and can obtain good perfor-
mance gains, even when the number of distributed machines is low.

The conducted tests obtained an almost linear speedup on the first three
problems. On a more real-world application, OpenArp, we obtained speedup
but relatively less comparing with the other tested programs. Our results also
showed how the accuracy of an application might be affected by distributing
it’s algorithm. In OpenArp this happened because we modified the search-space
of the algorithm instead of using a parallel algorithm for anaphora resolution,
if such algorithm is even possible. The case has been made to show that if a
parallel algorithm isn’t possible, then accuracy might be sacrified in favor of a
speedup in execution time.

We noticed that concurrent Prolog programs perform very good and we feel
encouraged to test bigger configurations. Performance, however, degrades quickly
when using predicates that require synchronization or that make intensive use of
the network. A solution for this issue might reside in the duplication of what is
going to be passed over the network and send only a reference over the network.
This might not be possible to execute in several scenarios, such as problems
where the messages are created at runtime.

Other issues that are associated with the current implementation include:

– Many situations, if not handled carefully, can lead to deadlock, e.g. a thread
not receiving the terminate message, due to an error, will cause the main
thread to deadlock;

– Theads have to be terminated explicitly. It would increase performance if
the threads terminated as soon as no more jobs are available. This would
release CPU for other threads.

While working towards improving our proposal, solving these issues, we also
want to pursuit several traits. These are:

– Extend the API with introspection and monitoring predicates. That will
permit programmers to control better the running distributed program;
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– Test the system with bigger configurations, namely with GRID, and more
powerful applications;

– Use distributed multi-threading to build and control intelligent agents.

In a non-distributed multi-threaded environment, powerful applications are
limited by the number of threads that can effectively run concurrently.

In a distributed multi-threaded environment resources are pooled and a
scheduler sets the rules for routing the jobs to help optimize resources auto-
matically, for accelerated results and help reducing processing time.

Prolog can play a fundamental part in the next generation of applications
that will exploit multi-core architectures and bring concurrency to the masses.
It will permit on many cases programs to have a declarative, logic interpretation
and will allow for the programmer to omit most control, helping the expression
of complex applications and algorithms. The developed system is a tool to help
in this process.
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Abstract. Logtalk, an object oriented logic programming language, pro-
vides experimental support for multi-threading programming with se-
lected back-end Prolog compilers. By making use of core, low-level Prolog
predicates that interface with operating-system native threads, Logtalk
provides a high-level set of directives and predicates that allows program-
mers to easily take advantage of modern multi-processor and multi-core
computers without worrying about the details of creating, synchroniz-
ing, or communicating with threads. Logtalk multi-threading program-
ming features include support for concurrent calls akin to and-parallelism
and or-parallelism, non-deterministic thread goals, asynchronous calls,
and predicate synchronization. The integration with the Logtalk object-
oriented features allows objects to send and receive both synchronous and
asynchronous messages and to call local predicates concurrently. Logtalk
multi-threading features are orthogonal to object-oriented concepts and
can be useful even in the context of plain Prolog.

Introduction

In recent years, computers supporting multiple processors and multi-core pro-
cessors have become mainstream. Major players in the hardware business such
as Intel, AMD, or IBM provide complete lines of multi-core processors for desk-
top and portable computers. In fact, nowadays, we have to look hard to buy
a single-core personal computer. Coupled with the support for multi-threading
applications found on current operating systems, there is a strong incentive to
migrate from pure sequential programs to programs that take performance and
responsiveness advantages from using multiple threads.

Writing multi-threading applications implies using programming languages
that provide the necessary support for thread creation, synchronization, and
communication. One of the most commonly used multi-threading Application
Programming Interface (API) is defined by the POSIX standard. The POSIX
threads API or, as commonly know, pthreads, is a set of C functions dealing with
thread management, mutual exclusion, and condition variables3 [1, 2]. Given that
most Prolog compilers are implemented in C or C++, pthreads is a common
3 Condition variables allow the implementation of notification mechanisms where a

thread suspends execution until some condition becomes true.
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choice for providing core, low-level multi-threading built-in predicate support.
However, despite threads being a powerful programming mechanism, it is easy
to get into trouble when failing to properly synchronize threads accessing shared
resources such as input/output streams and dynamic state. Although there are
always tasks where a low-level multi-threading API is necessary, programming
scenarios where a simpler, high-level interface is preferred are common. Recently,
high level multi-threading programming constructs for imperative languages
have become popular. For example, the OpenMP API [3, 4] implements high
level programming constructs for shared-memory parallel applications, working
as a pre-processor for C, C++ and Fortran. Another example is Intel’s Threading
Building Blocks [5], which provides high-level, task-based parallelism to C++.
In the case of Prolog, earlier attempts to automate code parallelization proved
difficult due to language semantic issues, e.g. order-dependency between goals.
Nevertheless, extensive research [6] has resulted in a number of successful exper-
imental systems, such as e.g. Andorra-I [7] and Muse [8]. These systems suffer
from maintenance and portability problems, however, stemming from the com-
plexity of their inner workings. Therefore, we cannot always rely on them for
industrial applications. Logtalk [9, 10] takes a more pragmatic approach, striv-
ing for a simple and minimal set of directives and built-in predicates that allows
programmers to easily take advantage of modern multi-processor and multi-core
computers without worrying about low-level details of creating, synchronizing,
or communicating with threads. Our work is motivated by past experiences with
multi-agents systems (mostly using Logtalk with Peter Robinson’s Qu-Prolog)
and by a current project on the validation of large CAD/CAM data model files
[11] where most steps are natural candidates for parallelization due to their in-
dependence and being side-effects free. Logtalk multi-threading development is
guided by four main goals: (1) simple support for making concurrent calls, mostly
for parallelizing independent computations; (2) support for asynchronous calls,
where we can start a computing thread, perform some other tasks, and later
retrieve the thread goal solutions; (3) simple directives for predicates that need
to be synchronized due to side-effects; (4) a portable and robust implementation,
capable of running with several back-end Prolog compilers in most operating-
systems. Interestingly, these goals are orthogonal to Logtalk object-oriented fea-
tures. Although objects provides an execution context for our multi-threading
predicates and directives, where we take advantage of objects encapsulation and
of objects local database, our results can also be applied in the context of plain
Prolog (complementing, not replacing, core low-level multi-threading support).

This paper begins by describing the core support found on current Prolog
compilers for multi-threading programming, used as a foundation for our work.
Second, the Logtalk multi-threading programming features are presented and
discussed. A brief comparison with related work follows. We conclude by dis-
cussing the current status of our work. Full documentation, complete code of
the examples, and the implementation of the multi-threading features described
in this paper are available with the current Logtalk distribution. The reader is
invited to try out and give feedback on the actual system.
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1 Starting point: Prolog multi-threading core support

Prolog compilers such as SWI-Prolog [12], YAP [13], Qu-Prolog [14, 15], BinPro-
log [16, 17], XSB [18, 19], or Ciao [20] provide a low-level, comprehensive set of
built-in predicates supporting multi-threading programming. Most of these Pro-
log compilers make use of pthreads or, for some operating systems, of a suitable
emulation. A recent ISO standardization proposal [21], started in April 2006,
aims to specify a common core of low-level multi-threading programming sup-
port based on the semantics of POSIX threads4. We have decided to base the
Logtalk high-level support for multi-threading programming on this common
interface. The current Logtalk version supports multi-threading programming
using both SWI-Prolog and YAP as back-end Prolog compilers; we expect soon
to be able to support XSB and later Qu-Prolog, pending on-going work on the
implementation of the current standardization proposal.

The current ISO standardization proposal specifies a comprehensive set of
predicates for thread, mutex, and message queue management. It also includes a
set of predicates for querying and setting thread creation default options. Most
of these options deal with the different per-thread memory areas such as the
stacks used by the Prolog implementation. The size of these memory areas is
specially relevant for 32-bit architectures. Setting the default size values so that
they cover most cases without the need of hand-tuning may result in a severe
limitation on the maximum number of threads we can create before exhaust-
ing the memory address space5. Prolog implementations differ on their memory
handling mechanisms. For heavily multi-threaded applications, implementations
using stack-shifters for keeping default memory sizes small, dynamically expand-
ing memory only when necessary, have an advantage over implementations that
allocate large chunks of virtual memory space to simplify memory handling, re-
lying on the operating system virtual memory mechanisms. This is important
for a high-level multi-threading API such as the one provided by Logtalk, where
it is not desirable to force the programmer to worry about such low-level details
as the default thread stack size.

2 Logtalk multi-threading support: overview

Logtalk multi-threading programming is supported by a small set of built-in
predicates and directives, which can be regarded as a high-level API complement-
ing, not replacing, the core, lower-level API provided by selected Prolog compil-
ers. This high-level API can be split in three groups of predicates and a set of
directives. The first group contains a single predicate, threaded/1, which supports
concurrent calls akin to and-parallelism and or-parallelism. The second group of
4 The standardization group includes so far SWI-Prolog, YAP, Qu-Prolog, XSB, and

Ciao developers. The proposal is currently being edited by the first author of this
paper. Collaboration from other interested parties is most welcome.

5 Note that we are talking about virtual memory space; actually used memory is often
much less.
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predicates provide support for asynchronous calls, here interpreted as separating
proving a goal from the retrieval of the goal solutions. Two basic predicates are
provided, threaded call/1 and threaded exit/1, supporting non-deterministic
thread goals. From these two predicates, we derive three specialized predicates:
threaded once/1, threaded ignore/1, and threaded peek/1. The third group of
predicates allows thread synchronization using notifications, which are arbitrary,
programmer-defined non-variable terms. Notifications are used as a peer-to-peer
mechanism supported by the predicates threaded wait/1 and threaded notify/1.
The Logtalk multi-threading directives include two object directives, threaded/0
and synchronized/0, and a predicate directive, synchronized/1, enabling an ob-
ject to make multi-threading calls and supporting object and predicate-level
synchronization. Logtalk multi-threading predicate calls always take place within
the context of an object6. Thus, objects are able to send and receive both syn-
chronous and asynchronous messages and to call local predicates concurrently. In
the following sections, we provide a detailed account of Logtalk multi-threading
support, illustrated with several examples, with an emphasis on the technical
aspects of the current implementation.

3 Object message queues

Logtalk object message queues are used whenever an object defines predicates
that make concurrent calls or asynchronous calls. In order to automatically create
and set up an object message queue the threaded/0 object directive is used:

:- threaded.

The object message queue is created when the object is compiled and loaded into
memory or when created at runtime (the message queue for the pseudo-object
user is automatically created at Logtalk startup). These message queues are used
internally for storing replies to the threaded calls made from within the objects
themselves and for exchanging thread notifications, as we will discuss later. The
implicit use of object message queues for storing and exchanging thread results
provides a cleaner and simpler alternative to the explicit use of blackboards or
the dynamic database, as found on some other systems.

It is tempting to make this directive optional or simply forgo it, thus simplify-
ing Logtalk multi-threading programming. In most cases, the Logtalk compiler
could simply set up the creation of the object message queue when finding a
call to a multi-threading built-in predicate in the body of an object predicate.
However, it is always possible to construct new goals at runtime that call the
multi-threading built-in predicates. In addition, an object may import a cate-
gory7 whose predicates make multi-threading calls (see section 6.3 for an ex-
ample). Creating the object message queue on the fly is certainly possible but
6 When at the Logtalk top-level interpreter, the execution context is the pseudo-object

user.
7 Logtalk categories are object building blocks (components), which can be virtually

imported (without code duplication) by any object, irrespective of inheritance rela-
tions.
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would lead to runtime errors if the back-end Prolog compiler does not support
all the core multi-threading features Logtalk relies on. Therefore, we choose to
make the threaded/0 object directive mandatory. This allows us to both check
at compile time for proper back-end Prolog compiler support and to cope with
threaded goals generated at runtime in ways that cannot be anticipated by the
Logtalk compiler.

4 Making concurrent calls

Logtalk provides a basic multi-threading built-in predicate, threaded/1, which
supports concurrent calls akin to both and-parallelism and or-parallelism. In
this context, and-parallelism and or-parallelism refers to using, respectively, a
conjunction of goals and a disjunction of goals as a predicate argument. This
built-in predicate is deterministic and opaque to cuts. Each goal in its argument
is proved in its own thread (except when the argument is neither a conjunction
not a disjunction of goals, in which case no threads are created for proving it
and the predicate is equivalent to the standard Prolog built-in predicate once/1).
Goals can be calls to local object predicates, messages to self, or messages to
other objects. Thus, both local predicates and other object methods can be called
concurrently.

4.1 And-parallelism

When the argument is a conjunction of goals, the threaded/1 predicate call blocks
the caller thread until either one of thread goals fails, rises an exception, or all
the implicit thread goals succeed. A failure or an exception leads to the imme-
diate termination of the other threads. The and-parallelism functionality of the
threaded/1 predicate covers a common programming pattern on multi-threading
applications: parallelizing a set of independent computations. Here, independent
computations translate to a conjunction of goals with no shared variables. Thus,
each goal can be proved in parallel without worrying about synchronizing vari-
able instantiations or suspending a thread goal until a variable is instantiated.
Nevertheless, it turns out that forbidding the use of shared variables is over-
restrictive and, with care, the programmer can sometimes use shared variables
to further improve performance. For example, assume that we want to find all
prime numbers in a given interval using two threads. We could write:

prime_numbers(N, M, Primes) :-

M > N,

N1 is N + (M - N) // 2,

N2 is N1 + 1,

threaded((

prime_numbers(N2, M, [], Acc),

prime_numbers(N, N1, Acc, Primes)

)).
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In this simple example, the two prime numbers/4 goals in the threaded/1 predicate
call share a variable (Acc) that acts as an accumulator, allowing us to avoid
a call to an append/3 predicate at the end (which would cancel part of the
performance gains of using multi-threading). At a user level, sharing variables
meets the expectations of a programmer used to single-threading programming
and suggests easy parallelization of single-threaded code by simply wrapping-
around goals in threaded/1 predicate calls. At the implementation level, sharing
variables between thread goals is problematic as the core Prolog thread creation
predicates make a copy of the thread goal, thus loosing variable bindings. When
a thread goal terminates, the variable bindings are reconstructed by Logtalk
in the process of retrieving the goal solutions. I.e. shared variables are only
synchronized after thread termination. A failure to synchronize shared variables
results in the failure of the threaded/1 call. Depending on how each goal uses the
shared variables, their use may lead to other problems. For example, a predicate
call may depend on a shared variable being instantiated in order to behave
properly. This will not work as the thread goals are independently proved. Safe
use of shared variables implies that the individual thread goals do not depend
on their instantiation, as in the example above where the shared variable is
used only as an accumulator. Research on these cases, which are examples of
non-strict independent and-parallelism, is described on [22].

4.2 Competing threads: reinterpreting goal disjunction

The threaded/1 predicate allows a disjunction of goals to be interpreted as a set
of competing goals, each one running in its own thread. The first thread to ter-
minate successfully leads to the termination of the other threads. Thus, the goals
in a disjunction compete for a solution instead of being interpreted as possibly
providing alternative solutions. This is useful when we have several methods to
compute something, together with several processors or cores available, without
knowing a priori which method will be faster or able to converge into a solution.
For example, assume that we have implemented several methods for calculating
the roots of real functions. We may then write:

find_root(Function, A, B, Error, Zero, Method) :-

threaded((

bisection::find_root(Function, A, B, Error, Zero),

Method = bisection

; newton::find_root(Function, A, B, Error, Zero),

Method = newton

; muller::find_root(Function, A, B, Error, Zero),

Method = muller

)).

The threaded/1 call returns both the identifier of the fastest method and its
result. Depending on the function and on the initial interval, one method may
converge quickly into the function root while other method may simply diverge,
never finding it. This is a pattern typical of other classes of algorithms (e.g.
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graph path-finding methods or matrix eigenvalues calculation methods), making
the threaded/1 predicate useful for a wide range of problems.

It is important to stress that only the first successful goal on a disjunction
can lead to the instantiation of variables on the original argument. Thus, we
do not need to worry about the representation of multiple bindings of the same
variable across different disjunction goals.

The effectiveness of this predicate relies on two factors: the ability to cancel
the slower threads once a wining thread completes and the number of cores
available. Canceling a thread is not always possible or as fast as desirable as a
thread can be in a state where no interrupts are accepted. Aborting a thread
is tricky in most multi-threading APIs, including pthreads. In the worst case
scenario, some slower threads may run up to completion. Most current laptop
and desktop computers contain two, four, or eight cores, making the possible
waste of processing power by slower, non cancelable threads questionable. The
number of cores per-processor is expected to rise steadily over the next few
years with each new generation of processors. However, past experience have
shown that performance does not grow linearly with the number of cores, due to
increasing contention problems (e.g. memory access). Therefore, the real world
usefulness of the threaded/1 predicate or-parallelism functionality is an open
question whose answer is most likely application-domain dependent.

5 Making asynchronous calls

Logtalk provides two basic multi-threading built-in predicates, threaded call/1

and threaded exit/1, which allows us to make asynchronous calls and to later
retrieve the corresponding results. Paired threaded call/1 and threaded exit/1

calls must be made from within the same object. An asynchronous call can
be either a call to a local object predicate or a message sending call. Being
asynchronous, a call to the threaded call/1 predicate is always true and results
in the creation of a new thread for proving its argument. In addition, no variable
binding occurs as a consequence of the call. The thread results (goal success,
failure, or exception) are posted to the message queue of the execution context
object. A simple example:

| ?- threaded_call(sort([3,1,7,4,2,9,8], Sorted)).

Sorted = _G189

yes

| ?- threaded_exit(sort([3,1,7,4,2,9,8], Sorted)).

Sorted = [1,2,3,4,7,8,9]

yes

This example shows how a threaded exit/1 call picks up the solutions from a
threaded call/1 with a matching goal argument. When multiple threads run
a matching goal, the threaded exit/1 call picks up the first thread to add a
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goal solution to the message queue of the execution context object. Calls to
the threaded exit/1 predicate block the caller until the object message queue
receives the reply to the asynchronous call. Logtalk provides a complementary
predicate, threaded peek/1, which may be used to check if a reply is already avail-
able without removing it from the object message queue. The threaded peek/1

predicate call succeeds or fails immediately without blocking the caller. However,
repeated use of this predicate is equivalent to polling a thread queue, which may
severely hurt performance.

5.1 Non-deterministic goals

Asynchronous calls are often deterministic. Typically, they are used for perform-
ing some lengthy computation without blocking other aspects of an applica-
tion. A common example is decoupling an interface from background computing
threads. Nevertheless, Logtalk also allows non-deterministic asynchronous calls.
The basic idea is that a computing thread suspends itself after providing a so-
lution, waiting for a request for an alternative solution. For example, assuming
a lists object implementing a member/2 predicate, we could write:

| ?- threaded_call(lists::member(X, [1,2,3])).

X = _G189

yes

| ?- threaded_exit(lists::member(X, [1,2,3])).

X = 1 ;

X = 2 ;

X = 3 ;

no

In this case, the threaded call/1 and the threaded exit/1 calls are made within
the pseudo-object user, whose message queue is used internally to store computed
goal solutions. The implicit thread running the lists::member/2 goal suspends
itself after providing a solution, waiting for the request of an alternative solution;
the thread is automatically terminated when the runtime engine detects that
further backtracking to the threaded exit/1 call is no longer possible.

Supporting non-deterministic thread goals can be tricky as the thread is
suspended between requests for alternative solutions: if a new request never
occurs, the result could be a zombie thread. The current Logtalk implementation
solves this problem by taking advantage of the call cleanup/2 built-in predicate
found on some Prolog compilers such as SICStus Prolog, SWI-Prolog, YAP, B-
Prolog and development versions of Qu-Prolog. This predicate allows us to call
a clean-up goal as soon as the Prolog runtime detects that a goal is finished
because it succeeded or failed deterministically or because its choice-points have
been cut8.
8 This functionality cannot be implemented at the Prolog level, making the availabil-

ity of this built-in predicate an additional requirement for running Logtalk multi-
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There is one caveat when using the threaded exit/1 predicate that a program-
mer must be aware of, especially when using this predicate within failure-driven
loops. When all the solutions have been found (and the thread generating them
is therefore terminated), further calls to the predicate will generate an exception
as the answering thread no longer exists. Note that failing instead of throwing
an exception is not an acceptable solution as it could be misinterpreted as a
failure of the thread goal.

For deterministic asynchronous calls, Logtalk provides a threaded once/1

built-in predicate that is more efficient when there is only one solution or when
you want to commit to the first solution of the thread goal. In this case, the
thread created for proving a goal stores the first solution on the message queue
of the object making the threaded once/1 call and terminates. The solution thus
becomes available for later retrieval by a call to the threaded exit/1 predicate.

5.2 One-way asynchronous calls

Sometimes we want to prove a goal in a new thread without caring about the re-
sults. This may be accomplished by using the built-in predicate threaded ignore/1.
For example, assume that we are developing a multi-agent application where an
agent may send an happy birthday message to another agent. We could simply
write:

..., threaded_ignore(agent::happy_birthday), ...

This call succeeds with no reply of the goal success, failure, or even exception
ever being sent back to the message queue object making the call (note that this
predicate implicitly implies a deterministic call of its argument).

6 Dealing with side effects: synchronizing predicate calls

Proving goals in a multi-threading environment may lead to problems when
the goals imply side-effects such as input/output operations or modifications
to an object database. For example, if a new thread is started with the same
goal before the first one finished its job, we may end up with mixed output, a
corrupted database, or unexpected goal failures.

The usual solution for synchronizing calls is to use semaphores, mutexes, or
some other similar mechanism. In the case of the multi-threading ISO standard-
ization proposal, a set of built-in predicate for working with mutexes is already
specified. We could certainly use them to synchronize predicate calls. However,
working at this level, implies naming, locking, and unlocking mutexes. This is
a task best performed by the compiler and the language runtime rather than
the programmer who should only need to worry about declaring which predicate
calls should be synchronized.

threading applications with a specific back-end Prolog compiler. Standardization of
this predicate is currently being discussed.
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In Logtalk, predicates (and grammar rule non-terminals) with side-effects can
be simply declared as synchronized by using either the synchronized/0 object
directive or the synchronized/1 predicate directive. Together, these two direc-
tives allows from object-level synchronization to predicate-level synchronization.
Proving a query to a synchronized predicate (or synchronized non-terminal) is
protected internally by a mutex, thus allowing for easy thread synchronization.

6.1 Object-level synchronization

The synchronized/0 object directive allows us to synchronize all object predicates
using the same mutex:

:- synchronized.

This directive provides the simplest possible synchronization solution; it is useful
for small objects where all or most predicates access the same shared resources.

6.2 Predicate-level synchronization

When fine-grained synchronization is preferred, the synchronized/1 predicate
directive allows us to synchronize subsets of an object predicates or a single
object predicate. For example, the following two directives:

:- synchronized([write_buffer/1, read_buffer/1]).

:- synchronized(random/1).

will make calls to the write buffer/1 and read buffer/1 predicates synchronized
using the same mutex while the predicate random/1 will use a different mutex.

6.3 Synchronizing predicate calls through notifications

Declaring a set of predicates as synchronized can only ensure that they are not
executed at the same time by different threads. Sometimes we need to suspend
a thread not on a synchronization lock but on some condition that must hold
true for a thread goal to proceed. I.e. we want a thread goal to be suspended
until a condition becomes true instead of simply failing. The built-in predi-
cate threaded wait/1 allows us to suspend a predicate execution (running in its
own thread) until a notification is received. Notifications are posted using the
built-in predicate threaded notify/1. A notification is a Prolog term that a pro-
grammer chooses to represent some condition becoming true. Any Prolog term
can be used as a notification argument for these predicates. Related calls to the
threaded wait/1 and threaded notify/1 must be made within the same object as
its message queue is used internally for posting and retrieving notifications. Each
notification posted by a call to the threaded notify/1 predicate is consumed by a
single threaded wait/1 predicate call, i.e. these predicates implement a peer-to-
peer mechanism. Care should be taken to avoid deadlocks when two (or more)
threads both wait and post notifications to each other.
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To see the usefulness of this notification mechanism consider the dining
philosophers problem [23]: five philosophers sitting at a round table, thinking
and eating, each sharing two chopsticks with its neighbors. Chopstick actions
(picking up and putting down) can be easily synchronized using a notification
such that a chopstick can only be handled by a single philosopher at a time:

:- category(chopstick).

:- public([pick_up/0, put_down/0]).

pick_up :-

threaded_wait(available).

put_down :-

threaded_notify(available).

:- end_category.

There are five chopsticks, therefore we need to define the corresponding five
objects. The code of all of them is similar. E.g.:

:- object(cs1,

imports(chopstick)).

:- threaded.

:- initialization(threaded_notify(available)).

:- end_object.

This and other examples of the use of notifications to synchronize threads are
provided with the current Logtalk distribution for the interested reader. Com-
mon usage patterns are generate-and-test scenarios where size-limited buffers
are used for intermediate storage of candidate solutions. In these scenarios, a
producer thread needs to suspend when the buffer is full, waiting for the con-
sumer thread to notify it of available spots. Likewise, a consumer thread needs
to suspends when the buffer is empty, waiting for the producer thread to notify
it that new items are available for consumption.

7 Performance

Preliminary tests show that the performance of Logtalk multi-threading applica-
tions scales as expected with the number of threads used, bounded by the number
of processing cores. The following table shows the speedup as we increase the
number of threads in three simple benchmark tests: calculating primes numbers
and sorting lists using the merge sort and the quicksort algorithms.

Benchmark · Number of threads 1 2 4
Prime numbers (in the interval [1, 500000]) 1.00 1.65 3.12
Merge sort (20000 float random numbers) 1.00 1.87 2.87
Quicksort (20000 float random numbers) 1.00 1.43 1.82
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The corresponding multi-threading examples can be found on the current Logtalk
distribution. The tests are performed on an Apple MacPro Dual 3.0GHz Dual-
Core Intel Xeon 5100 with 2GB of RAM, running MacOS X 10.4.10. The back-
end Prolog compiler used was SWI-Prolog 5.6.37.

Use of multi-threading features is interesting for problems where the compu-
tation costs surpasses the overhead of thread creation and management. Part of
this overhead is operating-system dependent. E.g. we found that, on the hard-
ware described above, Linux provide the fastest thread creation and thread join
results, followed by Windows XP SP2, and than MacOS X 10.4. For practical
applications, experimentation is necessary in order to fine-tune a multi-threading
solution given the problem complexity, the number of processing cores, the back-
end Prolog compiler, and the operating-system.

8 Related work

Besides the Prolog compilers currently implementing the ISO standardization
proposal, a number of other Prolog compilers provide alternative implementa-
tions of multi-threading concepts. Two of these compiler are BinProlog and Ciao
Prolog, which we briefly discuss below. A prototype multi-threading version of
SICStus Prolog is described in [24]. Outside the scope of Prolog compilers, Erlang
[25, 26] is one of the best known examples of declarative programming languages
supporting concurrent (and distributed) systems.

8.1 BinProlog

BinProlog provides a set of multi-threading built-in predicates, ranging from
simple, high-level predicates to lower-level predicates that give increasing control
to the programmer. As this paper deals essentially with high-level predicates, two
BinProlog predicates stand out. The predicate bg/1 allows a goal to be proved in
its own thread. The predicate synchronize/1 uses an implicit mutex to prevent
two threads of executing its argument concurrently.

Most BinProlog multi-threading examples use a blackboard for storing and
retrieving thread goal results. The programmer must use the blackboard explic-
itly. In contrast, the use of object message queues by Logtalk for exchanging
thread goal results is transparent to the programmer.

BinProlog supports thread synchronizing using thread guards. Thread guards,
which work as mutexes, can be generated by calling the new thread guard/1

predicate and used with the predicates thread wait/1, thread notify/1, and
thread notify all/1. Despite the name similarity, these predicates are quite dif-
ferent from the Logtalk threaded wait/1 and threaded notify/1 predicates where
notifications are arbitrary non-variable Prolog terms chosen by the programmer.

8.2 Ciao Prolog

Ciao Prolog supports a concept of engines, which are used for proving a goal us-
ing a separate set of memory areas. These engines can use an operating-system
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thread for proving a goal, therefore providing support for concurrency. Similar
to other Prolog compilers, goals are copied into engine, thus loosing variable
bindings. Ciao provides a set of predicates for managing engines that rely on the
use of goal identifiers to reference a specific engine. Goal identifiers play a role
similar to the thread identifiers found on other Prolog compilers. The Prolog
database is shared between threads and is used as the primary means of thread
communication and synchronization. Ciao makes use of concurrent predicates,
which are dynamic predicates that allow thread execution to be suspended until
a new clause is asserted. Ciao supports non-deterministic thread goals, providing
a eng backtrack/2 predicate to backtrack over thread goals. When a thread goal
fails, the engine is not automatically terminated; the programmer must explic-
itly call a eng release/1 predicate. This contrasts with Logtalk where a thread
is automatically terminated when the thread goal fails. It is possible that the
implementation in Ciao of a functionality similar to the one provided by the
call cleanup/2-3 predicate would also allow transparent engine release.

8.3 SWI-Prolog high-level multi-threading library

As we finish writing this paper, a new high-level multi-threading library was just
committed to the SWI-Prolog CVS server. This library provides two predicates,
concurrent/3 and first solution/3, which provide functionality similar to the
Logtalk predicate threaded/1. The concurrent/3 predicate allows easy concur-
rent execution of a set of goals. The caveats listed in the SWI-Prolog library
documentation are basically the same that apply to Logtalk and to every other
Prolog compiler making a copy of a goal when using a thread: users of this pred-
icate are advised against using shared goal variables. This seems to be more of
a cautious advise for safe use the concurrent/3 predicate than an implementa-
tion limitation (note that both this SWI-Prolog library and Logtalk rely on the
same core multi-threading built-in predicates). The predicate first solution/3

runs a set of goals concurrently and picks the first one to complete, killing the
other threads. This predicate shares with the Logtalk threaded/1 predicate the
same potential thread cancelation problem: a thread may be in a state where no
signals are being processed, delaying or preventing thread cancelation. The SWI-
Prolog library predicates allows the user to specify a list of options that will be
used by the underlying calls to the core thread create/3 predicate. Thus, simpler
predicates using the default thread creation options are trivial to implement.

9 Conclusions and future work

Logtalk currently uses a Prolog system as a back-end compiler, including for
core multi-threading services. The features described in this paper could be
implemented at a lower level, arguably with some performance gains (e.g. by
minimizing the overhead of thread creation). The downside would be loosing the
broad compatibility of Logtalk with Prolog compilers. Although currently only
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a small number of Prolog compilers provide the necessary interface to POSIX
threads (or a suitable emulation), we expect its number to grow in the future.

Logtalk shares with some Prolog implementations the goal of finding useful
high-level multi-threading primitives. Most high-level multi-threading predicates
are supported by the same or similar core, low-level features. Therefore, a con-
vergence and cross-fertilization of research results is expected and desirable. For
example, Logtalk predicates such as threaded/1 and the synchronized/0-1 direc-
tives would be useful even in plain Prolog. Further experimentation and real-
world usage will eventually show which high-level multi-threading predicates are
worthwhile to implement across systems.

Our current work focus on documenting functionality, developing program-
ming examples, and testing our implementation for robustness and compati-
bility across Prolog compilers and operating systems. The specification of the
multi-threading predicates and directives is considered stable. The Logtalk multi-
threading features will soon drop their experimental status to become available
for using in production systems.

Work on the ISO draft standard proposal for Prolog multi-threading support
[27] is progressing steadily. The current Logtalk implementation uses only a
small subset of the proposed thread predicates. An improved implementation
may be possible using a more complete Prolog interface to POSIX threads. In
fact, the major reason for the Logtalk multi-threading features to be classified as
experimental is due to the lack of a final standard specification that can be relied
on for all the compliance testing necessary for writing robust portable code.
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Abstract. Most implementations of parallel logic programming rely on com-
plex low-level machinery which is arguably difficult to implement and modify.
We explore an alternative approach aimed at taming that complexity by raising
core parts of the implementation to the source language level for the particular
case of and-parallelism. Therefore, we handle a significant portion of the parallel
implementation mechanism at the Prolog level with the help of a comparatively
small number of concurrency-related primitives which take care of lower-level
tasks such as locking, thread management, stack set management, etc. The ap-
proach does not eliminate altogether modifications to the abstract machine, but
it does greatly simplify them and it also facilitates experimenting with different
alternatives. We show how this approach allows implementing both restricted and
unrestricted (i.e., non fork-join) parallelism. Preliminary experiments show that
the amount of performance sacrificed is reasonable, although granularity control
is required in some cases. Also, we observe that the availability of unrestricted
parallelism contributes to better observed speedups.

Keywords: Parallelism, Virtual Machines, High-level Implementation.

1 Introduction

Parallel computers have finally become mainstream with the advent of multicore pro-
cessors. As a result, there is a renewed interest in languages and tools to simplify the
task of writing parallel programs. The use of declarative languages and, among them,
logic programming ones is considered an interesting approach for obtaining increased
performance through parallel execution on multicore architectures, including multicore
embedded systems. The high-level nature of these languages allows coding in a style
that is closer to the application and thus preserves more of the original parallelism
for automatic parallelizers to uncover. Their amenability to semantics-preserving au-
tomatic parallelization [20] is also due, in addition to this high level of abstraction, to
their relatively simple semantics, and the separation between the control component
from the declarative specification. This makes it possible for the evaluator to execute
some operations in any order (which in some cases subsumes parallel execution), with-
out affecting the meaning of the program. In addition, logic variables can be assigned
at most one value, and thus it is not necessary to check for some types of flow depen-
dencies or to perform SSA transformations when compared to imperative languages.
At the same time, in most other respects the presence of dynamic data structures with
“declarative pointers” (logical variables), irregular computations, or complex control
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makes the parallelization of logic programs a particularly interesting case that allows
tackling the more complex parallelization-related challenges in a formally simple and
well-understood context [11].

A wealth of research on parallel execution of logic programs has been done so far
(see, e.g., [10] and its references). Two main forms of goal-level parallelism (i.e., par-
allelism which happens between different goals of a search tree, as opposed to, e.g.,
unification parallelism) have been exploited in the execution of logic programs. Or-
parallelism parallelizes the execution of different clauses of a predicate (and their con-
tinuations) and is naturally applicable to programs featuring implicit search. Some no-
table systems that exploit or-parallelism are Aurora [18] and MUSE [2]. And-parallelism
refers to the parallel execution of different goals in the resolvent. It arises naturally in
different kinds of applications (independently of whether there is implicit search or
not), of which divide-and-conquer algorithms are notable cases. Examples of systems
that have exploited and-parallelism are &-Prolog [12], DDAS [24], and others. Also,
some systems such as &ACE [21], AKL [16], and Andorra [23] have exploited certain
combinations of both and- and or-parallelism.

The basic ideas of the &-Prolog model have been adopted by many other systems
(e.g., &ACE and DDAS). It consists of two components: a parallelizing compiler which
detects the possible runtime dependencies between goals in clause bodies and annotates
the clauses with expressions to decide whether parallel execution can be allowed at
runtime, and a run-time system that exploits that parallelism. The run-time system is
based on an extension of the original WAM architecture and set of instructions, and was
originally implemented, as most of the other systems mentioned, on shared-memory
multiprocessors, although distributed implementations were also taken into account.
We will follow the same overall architecture and assumptions herein, and concentrate
as well on (modern) shared-memory, multicore processors.

While these models and their implementations have been shown very effective at
exploiting parallelism efficiently and obtaining significant speedups, most of them are
based on quite complex, low-level machinery which makes implementation and mainte-
nance of these systems inherently hard. In this paper we explore an alternative approach
to the implementation of parallelism in logic programs that is based on raising compo-
nents of the implementation to the source language level and keeping at low level only
selected operations related to, e.g., thread handling and locking. We expect of course a
performance hit, but hope that this division of concerns will make it possible to more
easily explore variations on the execution schemes. While doing this, another objec-
tive of our proposal is to be able to easily exploit non-restricted and-parallelism, i.e.,
parallelism that is not restricted to fork-join operations.

2 Classical Approaches to And-Parallelism

In goal-level and-parallelism, a key issue is which goals to select for parallel execution
in order to avoid situations which lead to incorrect execution or slowdown [15, 11]. Not
only errors but also significant inefficiency can arise from the simultaneous execution
of computations which depend on each other since, for example, this may trigger more
backtracking than in the sequential case. Thus, goals are said to be independent if their
parallel execution will not perform additional search and will not produce incorrect
results. Very general notions of independence have been developed, based on constraint
theory [9]. However for simplicity we discuss only those based on variable sharing.
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In Dependent and-parallelism (DAP) goals are executed in parallel even if they
share variables, and the competition to bind them has to be dynamically dealt with
using notions such as sequencing bindings from producers to consumers. Unfortu-
nately this usually implies substantial execution overhead. In Strict Independent and-
parallelism (SIAP) goals are allowed to execute in parallel only when they do not share
variables, which guarantees the correctness and no-slowdown. Non-strict independent
and-parallelism (NSIAP) is a significant extension, also guaranteeing the no-slowdown
property, in which goals are parallelized even if they share variables, provided that at
most one goal binds a shared variable or the goals agree in the possible bindings for
shared variables. Compile-time tools have been devised and implemented to statically
detect cases where this holds, thus making the runtime machinery lighter and faster.
Undetermined cases can, if deemed advantageous, be checked at runtime.

Another issue is whether any restrictions are posed on the patterns of parallelization.
For example, Restricted and-parallelism (RAP) constrains parallelism to (nested) fork-
join operations. In the &-Prolog implementation of this model conjunctions which are
to be executed in parallel are often marked by replacing the sequential comma (,/2)
with a parallelism operator (&/2).

In this paper we will focus on the implementation of IAP and NSIAP parallelism, as
both have practically identical implementation requirements. Our objective is to exploit
both restricted and unrestricted, goal-level and-parallelism.

Once a method has been devised for selecting goals for parallel execution, an ob-
viously relevant issue is how to actually implement such parallel execution. One usual
implementation approach used in many and-parallel systems (both for IAP [12, 21] and
for DAP [24]) is the multi-sequential, marker model introduced by &-Prolog. In this
model parallel goals are executed in different abstract machines which run in parallel.
In order to preserve sequential speed, these abstract machines are extensions of the se-
quential model, usually the Warren Abstract Machine (WAM) [26, 1], which is the basis
of most efficient sequential implementations. Herein we assume for simplicity that each
(P)WAM has a parallel thread (an “agent”) attached and that we have as many threads as
processors. Thus, we can refer interchangeably to WAMs, agents, or processors. Within
each WAM, sequential fragments appear in contiguous stack sections exactly as in the
sequential execution.3 The new data areas are [12]:

Goal Stack: A shared area onto which goals that are ready to execute in parallel are
pushed. WAMs can pick up goals from other WAMs’ (or their own) goal stacks.
Goal stack entries include a pointer to the environment where the goal was gen-
erated and to the code starting the goal execution, plus some additional control
information.

Parcall Frames: They are created for each parallel conjunction and hold the necessary
data for coordinating and synchronizing the parallel execution of the goals in the
parallel conjunction.

Markers: They separate stack sections corresponding to different parallel goals. When
a goal is picked up by an agent, an input marker is pushed onto the choicepoint
stack. Likewise, an end marker is pushed when a goal execution ends. These are

3 In some proposals this need not be so: continuation markers [25] allow sequential execution
to spread over non-contiguous sections. We will not deal with that issue here.
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p(X, Y, Z) :− q(X), r(X, Y) & s(X, Z).

s(X,Z)

s(X,Z)

p(X,Y,Z)

r(X,Y)

q(X)

p(X,Y,Z)

r(X,Y)

q(X)

p(X,Y,Z)

s(X,Z)

End marker
Parcall frame Parcall frame

Input marker

End marker

Parcall frame

Input marker

q(X)

Fig. 1. Sketch of data structures layout using the marker model.

linked to ensure that backtracking will happen following a logical (i.e., not physi-
cal) order.

Figure 1 sketches a possible stack layout for a program such as:

p(X, Y, Z) :- q(X), r(X, Y) & s(X, Z).

with query p(X, Y, Z). We assume that X will be ground after calling q/1. Differ-
ent snapshots of the stack configurations are shown from left to right. Note that in the
figure we are intermixing parcall frames and markers in the same stack. Actual imple-
mentations have chosen to place them in different parts of the available data areas.4

When the first WAM executes the parallel conjunction r(X, Y) & s(X, Z), it
pushes a parcall frame onto its stack and a goal descriptor onto its goal stack for the goal
s(X, Z) (i.e., a pointer to the WAM code that will construct this call in the argument
registers and another pointer to the appropriate environment), and it immediately starts
executing r(X, Y). A second WAM, which is looking for jobs, picks s(X, Z) up,
pushes an input marker into its stack (which references the parcall frame, where data
common to all the goals is stored, to be used in case of internal failure) and constructs
and starts executing the goal. An end marker is pushed upon completion. When the last
WAM finishes, it will link the markers (so as to proceed adequately on backtracking
and unwinding), and execution will proceed with the continuation of p/3.

Classical implementations using the marker model handle the &/2 operator at the
abstract machine level: the compiler recognizes &/2 and compiles it by issuing specific
WAM instructions, which are executed by a modified WAM implementation. These
modifications are far from trivial, although relatively isolated (e.g., unification instruc-
tions are usually not changed, or changed in a generic, uniform way).

As mentioned in the introduction, one of our objectives is to explore an alternative
implementation approach based on raising components to the source language level
and keeping at low level only selected operations. Also, we would like to avoid mod-
ifications to the low-level compiler. At the same time, we want to be able to easily
exploit non-restricted and-parallelism, i.e., parallelism that is not restricted to fork-join
operations. These two objectives are actually related in our approach because, as we

4 For example, in &ACE parcall frames are not pushed onto the environment stack but on a
different stack, and their slots are allocated in the heap, to simplify the memory management.
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will see in the following section, we will start by decomposing the parallelism opera-
tors into lower-level components which will also allow supporting non-restricted and-
parallelism.

3 Decomposing And-Parallelism

It has already been reported [5, 4] that it is possible to construct the and-parallel op-
erator &/2 using more basic yet meaningful components. In particular, it is possible
to implement the semantics of &/2 using two end-user operators, &>/2 and <&/1,
defined as follows:5

– G &> H schedules goal G for parallel execution and continues with the code
after G &> H. H is a handler which contains (or points to) the state of goal G.

– H <& waits for the goal associated with H (G, in the previous item) to finish.
At that point all bindings G could possibly generate are ready, since G has reached
a solution. Assuming goal independence between G and the calls performed while
G was being executed, no binding conflicts should arise.

G &> H ideally takes a negligible amount of time to execute, although the precise
moment in which G actually starts depends on the availability of resources (primarily,
free agents/processors). On the other hand, H <& suspends until the associated goal
finitely fails or returns an answer. It is interesting to note that the approach shares some
similarities with the concept of futures in parallel functional languages. A future is
meant to hold the return value of a function so that a consumer can wait for its complete
evaluation. However, the notions of “return value” and “complete evaluation” do not
make sense when logic variables are present. Instead, H <& waits for the moment when
the producer goal has completed execution, and the “received values” (a tuple, really)
will be whatever (possibly partial) instantiations have been produced by such goal.

Note that with the previous definitions, the &/2 operator can be expressed as:
A & B :- A &> H, call(B), H <&.

Concrete implementations will of course expand A & B at compile time using the
above definition in order not to pay the price of an additional call and the meta-call.
The same can be applied to &> and <&.

However, these two new operators can additionally be used to exploit more and-
parallelism than is possible with &/2 alone [8]. We will just provide some intuition by
means of a simple example (a performance evaluation is included in Section 5.) 6

Consider predicate p/3 defined as follows:

p(X,Y,Z) :- a(X,Z), b(X), c(Y), d(Y,Z).

whose (strict) dependencies (assuming that X,Y,Z are free and do not share on en-
try) are shown in Figure 2. A classical fork-join parallelization is shown in Figure 3,

5 We concentrate on forward execution. For backtracking behavior see [5, 4] and Section 4.5.
Also, although exception handling is beyond our current scope, in general exceptions uncaught
by a parallel goal surface at the corresponding <&/1, where they can be captured by the parent.

6 Note that the &>/2 and <&/1 operators do not replace the fork-join operator &/2 at the
language level due to its conciseness in cases in which no extra parallelism can be exploited
with &>/2 and <&/1.
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while an alternative (non fork-join) parallelization using the new operators is shown in
Figure 4. We assume here that solution order is not relevant.

b(X)

c(Y) d(Y,Z)

a(X,Z)

Fig. 2. Dependency graph for p/3.

It is obvious that it is always possible to par-
allelize programs using &>/2 and <&/1 and ob-
tain the same parallelism as with &/2 (since &/2
can be defined in terms of &>/2 and <&/1). The
converse is not true. Furthermore, there are cases
(as in Figure 4) where the parallelizations allowed
by &>/2 and <&/1 can be expected to result in
shorter execution times, for certain goal execution
times [8]. In our example, the annotation in Fig-
ure 3 misses the possible parallelism between the

subgoals c/1 and b/1, which the code in Figure 4 allows: c/1 is scheduled at the
beginning of the execution, and it is waited for in Hc <&, just after b/1 has been
scheduled for parallel execution.

In addition to &>/2 and <&/1, we propose specialized versions in order to ob-
tain additional functionality or more efficiency. In particular, &!>/2 and <&!/1 are
intended to perform the same actions as &>/2 and <&/1 respectively, but only for
single-solution, non-failing goals, where there is no need to anticipate backtracking
during forward execution. These primitives allow the parallelizer to flag directly in
the parallelization goals that analysis has detected to be deterministic and non-failing
(see [14]), and this can result in important simplifications in the implementation.

4 Sketch of a Shared Memory Implementation

Our proposed implementation divides responsibilities among several layers. User-level
parallelism and concurrency primitives intended for the programmer and parallelizers
are at the top and written in Prolog. Below, goal publishing, searching for available
goals, and goal scheduling are written at the Prolog level, relying on some low-level
support primitives for, e.g., locking or low-level goal management. with a Prolog inter-
face but written in C.

In our current implementation for shared-memory multiprocessors, and similarly
to [12], agents wait for work to be available, and execute it if so. Every agent is created
as a thread attached to an (extended) WAM stack set. Sequential execution proceeds as
usual, and coordination with the rest of the agents is performed by means of shared data
structures. Agents make new work available to other agents through a goal list which is
associated with every stack set and which can be consulted by all the agents.

In the following subsections we will introduce the library with the (deterministic)
low-level parallelism primitives and we will present the design (and a sketch of the
actual code, simplified for space reasons) of the main source-level algorithms used to

p(X, Y, Z):-
a(X, Z) & c(Y),
b(X) & d(Y, Z).

Fig. 3. Nested fork-join annotation.

p(X, Y, Z) :-
c(Y) &> Hc,
a(X, Z),
b(X) &> Hb,
Hc <&,
d(Y, Z),
Hb <&.

Fig. 4. Using the new operators.
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run deterministic, non-failing goals in parallel. We will conclude with some comments
on the execution of nondeterministic goals in parallel.

4.1 Low-Level Parallelism Primitives

The low-level layer has been implemented as a Ciao library (“apll”) written in C which
provides basic mechanisms to start threads, wait for their completion, push goals, search
for goals, access to O.S. locks, etc. Most of these primitives need to refer to an explicit
goal and need to use some information related to its state (whether it has been taken,
finished, etc.). Hence the need to pass them a Handler data structure which abstracts
information related to the goal at hand.

The current (simplified) list of primitives follows. Note that this is not intended to be
a general-purpose concurrency library (such as those available in Ciao and other Prolog
systems —–in fact, very little of what should appear in such a generic library is here),
but simply a list of primitives suitable for efficiently implementing at a higher-level
different approaches to exploiting independent and-parallelism.

apll:push handler(+Goal,+Det,-Handler) atomically creates a unique handler
(an opaque structure) associated to Goal and publishes Goal in the goal list for
any agent to pick it up. Handler will henceforth be used in any operation related
to Goal. Det describes whether Goal is deterministic or not.

apll:find handler(-Handler) searches for a goal published in some goal list. If
one exists, Handler is unified with a handler for it; the call fails otherwise, and it
will succeed at most once per call. Goal lists are accessed atomically so as to avoid
races when updating them.7

apll:at goal list(+Handler) succeeds if Handler has not been picked up yet,
and fails otherwise.

apll:retrieve goal(+Handler,-Goal) unifies Goal and the goal initially asso-
ciated to Handler.

apll:goal finished(+Handler) succeeds if the execution state of the goal asso-
ciated to Handler is finished, and fails otherwise.

apll:set finished(+Handler) sets to finished the execution state of the goal as-
sociated to Handler.

apll:waiting(+Handler) succeeds when the execution state of the publishing agent
of the goal associated to Handler is suspended and fails otherwise.

Additionally, a set of locking primitives is provided to synchronize thread execu-
tions and to obtain mutual exclusion at the Prolog level. Every agent uses two different
locks: one which is used to ensure mutual exclusion when dealing with shared data
structures (i.e., when adding new goals to the list), and another one which is used to
synchronize the agent waking up when <& / 1 is waiting for either more work to be
available, or the execution of a goal picked up by some other agent to finish. Both can
be accessed with specific (* self) predicates to specify the ones belonging to the call-
ing agent. Otherwise, they are accessed through a goal Handler to refer to the locks
belonging to the agent which created the goal Handler refers to (i.e., its creator).

7 Different versions exist of this primitive which can be used while implementing different goal
scheduling strategies.
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apll:suspend suspends the execution of the calling thread.
apll:release(+Handler) releases the execution of the agent which created Handler

(which could have suspended itself with the above described predicate).
apll:release some suspended thread selects one out of any suspended threads

and resumes its execution.
apll:enter mutex(+Handler) attempts to enter into a mutual exclusion to access

shared variables of the agent associated to Handler.
apll:enter mutex self same as above, with the agent’s own mutex.
apll:exit mutex(+Handler) signals the locks in the realm of the creator of Handler

to exit mutual exclusion.
apll:exit mutex self same as above with the calling thread.

4.2 High-level Goal Publishing

Based on the previous primitives, we develop the user-level ones. We will implement
a particular strategy in which rather than, e.g., having idle agents busily looking for
work, such agents are suspended and resumed in a more organized way depending on
availability of work (this strategy is also the one used in our experiments).

Goal &!> Handler :-
apll:push_handler(Goal,det,Handler),
apll:release_some_suspended_thread.

Fig. 5. Publishing a (deterministic) parallel goal.

A call to &!>/2 (or &>/2 if
the goal is nondeterministic) im-
plies publishing the goal in the
goal list managed by the agent,
i.e., making it available for other
agents to pick up for execution.

Figure 5 shows the (simplified) Prolog code implementing this functionality (again, the
code shown can be expanded in line but is shown as a meta-call for clarity). First, a
pointer to the goal generated is inserted in the goal list. Second, the current thread will
signal any suspended agents that there is new work available. As we will see later, the
agent receiving the signal will resume its execution, pick up the new parallel goal, and
start its execution.

After executing Goal &!> H, the handler H will hold the state of Goal, which
can be inspected both by the thread which publishes Goal and by any thread which
picks up Goal to execute it. Therefore, in some sense, H takes the role of the parcall
frame in [12], but it is not placed in the environment — it goes to the heap instead.
Threads can communicate and synchronize through the handler in order to consult and
update the state of Goal. This is especially important when executing H <&!.

4.3 Performing Goal Joins

Figure 6 provides code implementing <&!/1 (the deterministic version of <&/1). First,
the thread needs to check whether the goal has been picked up by some other thread,
using apll:at goal list/1. If the goal has not been picked up yet by another
agent then the publishing agent will execute it locally and <&!/1 will succeed trivially.

If the goal has been picked up by another agent and its execution has finished then
<&!/1 will automatically succeed. The bindings made during goal execution are, nat-
urally, available (we are dealing with a shared-memory implementation). If the goal
execution has not finished yet then the thread will not suspend right away. Instead, it
will search for more work in order to keep itself busy, and it will only suspend if there is
definitely no work to perform at the moment. This ensures that overall efficiency is kept
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Handler <&! :-
apll:enter_mutex_self,
(

apll:at_goal_list(Handler) ->
apll:retrieve_goal(Handler,Goal),
apll:exit_mutex_self,
call(Goal)

;
apll:exit_mutex_self,
perform_other_work(Handler)

).

perform_other_work(Handler) :-
apll:enter_mutex_self,
(

apll:goal_finished(Handler) ->
apll:exit_mutex_self

; (
find_goal_and_execute ->
true

;
apll:exit_mutex_self,
apll:suspend

),
perform_other_work(Handler)

).

Fig. 6. Goal join with continuation.

at a reasonable level, as we will see in Section 5. Races when accessing shared variables
are avoided using locks for mutual exclusion and conditional synchronization.

Figure 7 presents the source code which searches for a goal available and executes
it. find goal and execute/0 will fail if there is no goal available. If one is found
then the thread will pick it up, execute it, mark it as finished and resume the execution
of the publishing agent, if suspended. In that case, the publishing agent (suspended in
eng suspend/0) will check which situation applies after resumption and act accord-
ingly after recursively invoking the predicate perform some work/1.

4.4 Agent Creation

Agents are generated using the create agents/1 predicate which launches a num-
ber of O.S. threads using the start thread/0 predicate imported from a generic
concurrency library. Every of these threads execute continuously the agent/0 code
which takes care of searching for more work or suspending, if that is the case (Fig-
ure 8). Thus, during normal execution agents are either sleeping because there is noth-
ing to execute or working on some goal. We assume for simplicity that agent creation
is in general performed at system startup or just before starting a parallel execution.
Higher-level predicates are however provided in order to manage threads in a more
flexible way. For instance, ensure agents/1 makes sure that a given number of
executing agents is available. In fact, agents can be created lazily, and added or deleted
dynamically as needed, depending on machine load. However, this interesting issue of
thread throttling is beyond the scope of this paper.

find_goal_and_execute :-
apll:find_handler(Handler),
apll:exit_mutex_self,
apll:retrieve_goal(Handler,Goal),
call(Goal),
apll:enter_mutex(Handler),
apll:set_finished(Handler),
(

apll:waiting(Handler) ->
apll:release(Handler)

;
true

),
apll:exit_mutex(Handler).

Fig. 7. Finding a parallel goal and executing it.

create_agents(0) :- !.
create_agents(N) :-

N > 0,
conc:start_thread(agent),
N1 is N - 1,
create_agents(N1).

agent :-
apll:enter_mutex_self,
(

find_goal_and_execute ->
true

;
apll:exit_mutex_self,
apll:suspend

),
agent.

Fig. 8. Creating parallel agents.
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4.5 Towards Non-determinism

For simplicity we have left out of the discussion and also of the code the support for
backtracking, which clearly complicates things. We have made significant progress in
our implementation towards supporting backtracking following the marker model, so
that for example the failure-driven top level is used unchanged and memory is recovered
orderly at the end of parallel executions. However, completing the implementation of
backtracking is still the matter of current work.

There are interesting issues both at the design level and also at the implementation
level. An interesting point at the design level is for example deciding whether back-
tracking happens when going over &>/2 or <&/1 during backward execution. Previ-
ous work [5, 4] leaned towards the latter, which is also probably easier to implement;
however, there are also reasons to believe that the former may in the end be more ap-
propriate. For example, in parallelized loops such as:

p([X|Xs]):- b(X) &> Hb, p(Xs), Hb <&.

spawning b(X) and keeping the recursion local and not the other way around is impor-
tant because task creation is the real bottleneck. However, if backtracking occurs at <&
solution order would not be preserved, whereas it would if backtracking occurs at &>.
Note that in such loops the loss of LCO is only of relative importance, since if there are
several solutions to either b/1 or p/1, LCO could not be applied anyway.

At the implementation level, there is for example the issue of avoiding the “trapped
goal” and “garbage slots” problems [13]. One approach we are considering to this end is
to move trapped stack segments (sequential sections of execution) to the top of the stack
set in case backtracking is needed from a trapped section. We can also later compact
sections which become empty to avoid garbage slots. In order to express this at the
Prolog level, we foresee the need of additional primitives, still the subject of further
work, to manage stack segments as first-class citizens.

Another fundamental idea in the approach that we are exploring is not to create
markers explicitly, but use instead, for the same purpose, standard choice points built by
creating alternatives (using alternative clauses) directly in the control code (in Prolog)
that implements backtracking.

5 Experimental Results

We now present performance results obtained after executing a selection of well-known
benchmarks with independent and-parallelism. As mentioned before, we have imple-
mented the proposed approach in Ciao [3], an efficient system designed with extension
capabilities in mind. All results were obtained by averaging ten runs on a state-of-the-art
multiprocessor, a Sun Fire T2000 with 8 cores, and 8 Gb of memory. While each core is
capable in theory of running 4 threads in parallel, and in theory up to 32 threads could
run simultaneously on this machine we only show speedups up to 8 agents. Our ex-
periments (see the later comments related to Figure 11), show that speedups with more
than 8 threads stop being linear even for completely independent computations (i.e., 32
totally independent threads do not really speed up as if 32 independent processors were
available), as threads in the same core compete for shared resources such as integer
pipelines, etc. Thus, beyond 8 agents, it is hard to know whether reduced speedups are
due to our parallelization and implementation or to limitations of the machine.
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AIAKL Simplified AKL abstract inter-
preter.

Ann Annotator for and-parallelism.
Boyer Simplified version of the Boyer-

Moore theorem prover.
Deriv Symbolic derivation.
FFT Fast Fourier transform.
Fibonacci Doubly recursive Fibonacci.
FibFun Functional Fibonacci.

Hamming Calculates Hamming numbers.
Hanoi Solves Hanoi puzzle.
MergeSort Sorts a 10000 element list.
MMatrix Multiplies two 50×50 matrices.
Palindrome Generates a palindrome of 214

elements.
QuickSort Sorts a 10000 element list.
Takeuchi Computes Takeuchi.
WMS2 A work scheduling program.

Table 1. Benchmarks for restricted and unrestricted IAP.

Although most of the benchmarks we use are quite well-known, Table 1 provides
a brief description. Speedups appear in Tables 2 (which contains only programs par-
allelized using restricted [N]SIAP, as in Figure 3) and 3 (which additionally contains
unrestricted IAP programs, as in Figure 4). The speedups are with respect to the se-
quential speed on one processor of the original, unparallelized benchmark. Therefore,
the columns tagged 1 correspond to the slowdown coming from executing a parallel
program in a single processor. Benchmarks with a GC suffix were executed with gran-
ularity control with a suitably chosen threshold and benchmarks with a DL suffix use
difference lists and require NSIAP for parallelization. All the benchmarks in the tables
were automatically parallelized using CiaoPP [14] and the annotation algorithms de-
scribed in [8] (TakeuchiGC needed however some unfolding in order to uncover and
allow exploiting more parallelism using the new operators, as discussed later).

It can be deduced from the results that in several benchmarks the natural paral-
lelizations produce small granularity. This, understandably, impacts our implementa-
tion since a sizable part of it is written in Prolog, which implies additional overhead in
the preparation and execution of parallel goals. Thus, it is not possible to perform a fair
comparison of the speedups obtained with respect to previous (lower-level) and-parallel
systems. The overhead implied by the proposed approach produces comparatively low
performance on a single processor and in some cases with very fine granularity, such as
Boyer and Takeuchi, speedups are shallow (below 2×) even over 8 processors. In these
examples execution is dominated by the sequential code of the scheduler and agent
management in Prolog. However, even in these cases, setting a granularity threshold
based on a measure of the input argument size [17] much better results can be obtained.
Figure 9 depicts graphically the impact of granularity control in some benchmarks. An-
notating the parallelized program to take into account granularity measures based on
size of the input arguments, and automatically finding out the optimal threshold for a
given platform, can be done automatically in many cases [17, 19].

Table 3 shows a different comparison: some programs have traditionally been ex-
ecuted under IAP using the restricted (nested fork-join) annotations, and can be anno-
tated for parallelism using the more flexible &>/2 and <&/1 operators, as in Figures 3
and 4. In some cases those programs obtain little additional speedup, but interestingly
in other cases the gains are very relevant. An interesting example is the Takeuchi func-
tion which underwent a manual (but mechanical) transformation involving an unfolding
step, which produced a clause where non-nested fork-join can be taken advantage of,
producing a much better speedup. This can be clearly seen in Figure 10. Note that the
speedup curve did not seem to stabilize even when the 8 processor mark was reached.
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Benchmark Number of processors
Seq. 1 2 3 4 5 6 7 8

AIAKL 1.00 0.97 1.77 1.66 1.67 1.67 1.67 1.67 1.67
Ann 1.00 0.98 1.86 2.65 3.37 4.07 4.65 5.22 5.90

Boyer 1.00 0.32 0.64 0.95 1.21 1.32 1.47 1.57 1.64
BoyerGC 1.00 0.90 1.74 2.57 3.15 3.85 4.39 4.78 5.20

Deriv 1.00 0.32 0.61 0.86 1.09 1.15 1.30 1.55 1.75
DerivGC 1.00 0.91 1.63 2.37 3.05 3.69 4.21 4.79 5.39

FFT 1.00 0.61 1.08 1.30 1.63 1.65 1.67 1.68 1.70
FFTGC 1.00 0.98 1.76 2.14 2.71 2.82 2.99 3.08 3.37

Fibonacci 1.00 0.30 0.60 0.94 1.25 1.58 1.86 2.22 2.50
FibonacciGC 1.00 0.99 1.95 2.89 3.84 4.78 5.71 6.63 7.57

Hamming 1.00 0.93 1.13 1.52 1.52 1.52 1.52 1.52 1.52
Hanoi 1.00 0.67 1.31 1.82 2.32 2.75 3.20 3.70 4.07

HanoiDL 1.00 0.47 0.98 1.51 2.19 2.62 3.06 3.54 3.95
HanoiGC 1.00 0.89 1.72 2.43 3.32 3.77 4.17 4.41 4.67
MergeSort 1.00 0.79 1.47 2.12 2.71 3.01 3.30 3.56 3.71

MergeSortGC 1.00 0.83 1.52 2.23 2.79 3.10 3.43 3.67 3.95
MMatrix 1.00 0.91 1.74 2.55 3.32 4.18 4.83 5.55 6.28

Palindrome 1.00 0.44 0.77 1.09 1.40 1.61 1.82 2.10 2.23
PalindromeGC 1.00 0.94 1.75 2.37 2.97 3.30 3.62 4.13 4.46

QuickSort 1.00 0.75 1.42 1.98 2.44 2.84 3.07 3.37 3.55
QuickSortDL 1.00 0.71 1.36 1.95 2.26 2.76 2.96 3.18 3.32
QuickSortGC 1.00 0.94 1.78 2.31 2.87 3.19 3.46 3.67 3.75

Takeuchi 1.00 0.23 0.46 0.68 0.91 1.12 1.32 1.49 1.72
TakeuchiGC 1.00 0.88 1.61 2.16 2.62 2.63 2.63 2.63 2.63

Table 2. Speedups for restricted IAP.

Benchmark Parallelism Number of processors
Seq. 1 2 3 4 5 6 7 8

FFTGC Restricted 1.00 0.98 1.76 2.14 2.71 2.82 2.99 3.08 3.37
Unrestricted 1.00 0.98 1.82 2.31 3.01 3.12 3.26 3.39 3.63

FibFunGC Restricted 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Unrestricted 1.00 0.99 1.95 2.89 3.84 4.78 5.71 6.63 7.57

Hamming Restricted 1.00 0.93 1.13 1.52 1.52 1.52 1.52 1.52 1.52
Unrestricted 1.00 0.93 1.15 1.64 1.64 1.64 1.64 1.64 1.64

TakeuchiGC Restricted 1.00 0.88 1.61 2.16 2.62 2.63 2.63 2.63 2.63
Unrestricted 1.00 0.88 1.62 2.39 3.33 4.04 4.47 5.19 5.72

WMS2 Restricted 1.00 0.99 1.01 1.01 1.01 1.01 1.01 1.01 1.01
Unrestricted 1.00 0.99 1.10 1.10 1.10 1.10 1.10 1.10 1.10

Table 3. Speedups for unrestricted IAP.

The FibFun benchmark is also an interesting case. A definition of Fibonacci was
written in Ciao using the functional package [7] which implements a rich functional
syntactic layer via compilation to the logic programming kernel. The automatic trans-
lation into predicates does not produce however the same Fibonacci program that pro-
grammers usually write (input parameters are calculated right before making the recur-
sive calls), and it turns out that it cannot be directly parallelized using existing order-
preserving annotators and restricted IAP. On the other hand it can be automatically
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Fig. 9. Speedups for some selected benchmarks with and without granularity control.
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Fig. 11. Fibonacci with granularity control
vs. maximum speedup in a real machine.

parallelized (including the translation from functional to logic programming notation)
using the unrestricted operators.

Despite our observation that the T2000 cannot produce linear speedups beyond 8
processors even for independent computations, we wanted to try at least a Prolog exam-
ple using as many threads as natively available in the machine, and compare its speedup
with that of a C program generating completely independent computations. Such C pro-
gram provides us with a practical upper bound on the attainable speedups. The results
are depicted in Figure 11 which shows both the ideally parallel C program and a paral-
lelized Fibonacci running on our implementation. Interestingly, the speedup obtained is
only marginally worse than the best possible one. In both curves it is possible to observe
a sawtooth shape, presumably caused by tasks filling in a row of units in all cores and
starting to use up additional thread units in other cores, which happens at 1×8, 2×8,
and 3×8 threads.

6 Conclusions

We have presented a new implementation approach for exploiting and-parallelism in
logic programs with the objectives of simpler machinery and more flexibility. The ap-
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proach is based on raising the implementation of some components to the source lan-
guage level by using more basic high-level primitives than the fork-join operator and
keeping only some relatively simple operations at a lower level. Our preliminary ex-
perimental results show that reasonable speedups are achievable with this approach,
although the additional overhead, at least in the current implementation, makes it neces-
sary to use granularity control in many cases in order to obtain good results. In addition,
recent compilation technology and implementation advances [6, 22] provide hope that
it will eventually be possible to recover a significant part of the efficiency lost due to the
level at which parallel execution is expressed. Finally, we have observed that the avail-
ability of unrestricted parallelism contributes in practice to better observed speedups.
We are currently working on improving the implementation both in terms of efficiency
and of improved support for backtracking. We have also developed simultaneously spe-
cific parallelizers for this approach, which can take advantage of the unrestricted nature
of the parallelism which it can support [8].
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Abstract. Logic programming systems often need to deal with large
but otherwise regular predicates, e.g. wide ground facts. Such predicates
can be treated as any other predicate by the compiler, but there are
good reasons to treat them specially, the most important being that sep-
arating the code from the data really pays off. We call the technique
exo-compilation: it reduces the memory needed for the code to about
one third of the normal WAM compilation schema without undue slow-
down. As a bonus, queries with lots of void variables get a significantly
better treatment. We first introduce the idea of exo-compilation by an
example and present its implementation in hProlog. We show how other
optimisations can be built on top of it, and evaluate how it performs
in practice. We then show how the same ideas have been applied to the
compilation of Mercury, whose implementation is based on very different
principles.

1 Introduction

In some applications, logic programming systems must run queries over pred-
icates consisting of a large set of wide facts, i.e. facts where the arity of the
predicate is large. As one example, such predicates appear in Machine Learning
datasets ranging from gene expression databases, where the biological study may
include a large number of activity observations for the same gene, to medical re-
ports, where the doctor may annotate a large number of possible conditions and
parameters of interest, to film databases, where communities may store a large
number of fields of interest per film and performer, and so on. Wide predicates
also have been used to represent properties input stream, or to represent tables
for scanner and parser generators.

One key observation is that most often these facts are typed and moded nicely,
i.e. the facts are ground and the arguments are all constants. Traditional, WAM-
based Prolog implementations do not exploit this situation. Moreover, such pred-
icates are often called with only a few arguments instantiated (typically, but not
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always, a key or sub-key of the relation), and most arguments are void. Note
that in WAM parlance one says a variable is void if it is singleton in the query.
The WAM does have limited support for void variables that can be recognised
at compile-time. However, in this case, different queries will have different void
variables. Therefore, the WAM must process void variables as it processes any
other logical variable, forcing both the caller and the callee side to do an amount
of work that is linear in the number of these variables. We would prefer to avoid
that work altogether.

We show in Section 2 how both issues (wide facts and void variables) can
be addressed by a technique where data and code are separated and which was
named exo-compilation by the third author. We discuss next how exo-compilation
was implemented in hProlog (see [6]): Section 3 contains an experimental eval-
uation thereof. Section 4 discuss how exo-compilation can be applied to other
forms of regular code. The ideas of exo-compilation also apply to other logic pro-
gramming systems. Section 5 shows how Mercury deals with large predicates:
there is a great deal of similarity between the emulator and compiler approaches,
but it is worth showing the details in both contexts. Section 6 discusses related
work and concludes.

2 Exo-compilation

We first introduce some conventions that will be useful when showing abstract
machine code.

– when an instruction refers to the ith WAM argument register, we denote that
by A(i), as in getatom A(3), foo

– the instruction try (and others) takes as argument a number that represents
an arity, say 3 - we denote this as try arity(3)

Other operands are adorned in similarly way, to make clearer what they stand
for.

When an atom (like foo) or a functor (bla/3) is used as an operand of an
instruction - and in an exo-table (see later) - we actually mean the internal
tagged representation of the atom or functor. Such a representation typically
fits in a machine word.

We use @x to denote an address labeled x.

2.1 The basic idea

We start from a predicate p/3 which consists of 4 facts and whose arguments
are atoms:

p(a1,b1,c1).
p(a2,b2,c2).
p(a3,b3,c3).
p(a4,b4,c4).
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For explanatory reasons, we go through some steps before arriving at the
final code we want to generate: in the final code the instructions are separated
from the data. For now, we ignore both indexing and instruction merging: they
are orthogonal issues. The WAM compiles the above predicate to code such as
can be seen in the left column below:

| set_exo_pointer @t ------------------> a1 b1 c1
try_me_else arity(3) @2 | try_me_else_exo arity(3) @2 a2 b2 c2
getatom A(1) a1 | getatom_exo A(1) a3 b3 c3
getatom A(2) b1 | getatom_exo A(2) a4 b4 c4
getatom A(3) c1 | getatom_exo A(3)
proceed | proceed

@2: retry_me_else arity(3) @3 | @2: retry_me_else_exo arity(3) @3
getatom A(1) a2 | getatom_exo A(1)
getatom A(2) b2 | getatom_exo A(2)
getatom A(3) c2 | getatom_exo A(3)
proceed | proceed

@3: retry_me_else arity(3) @4 | @3: retry_me_else_exo arity(3) @4
getatom A(1) a3 | getatom_exo A(1)
getatom A(2) b3 | getatom_exo A(2)
getatom A(3) c3 | getatom_exo A(3)
proceed | proceed

@4: trust_me_else arity(3) | @4: trust_me_else_exo arity(3)
getatom A(1) a4 | getatom_exo A(1)
getatom A(2) b4 | getatom_exo A(2)
getatom A(3) c4 | getatom_exo A(3)
proceed | proceed

The code left above is very repetitive: we just scan each fact symbol by symbol.
To show this idea clearly, we can re-arrange the code to separate walking through
the arguments from the actual constants. The new code is shown in the right
column. It relies on the following new WAM instructions:

– set exo pointer has one argument @t: it is a pointer to a table with the
constants occurring in the facts. The table is nicely rectangular and compact.
A WAM register exo pointer is set to this pointer.

– try me else exo acts as the try me else instruction in the WAM and also
stores the current exo pointer in its choice point.

– retry me else exo arity(N) @alt fetches the exo pointer from the choice point,
adds N to it and stores that value in the choice point. The other WAM actions
associated to retry me else are also performed.

– trust me else exo arity(N) fetches the exo pointer from the choice point and
adds N to it. The other WAM actions associated to trust me else are also
performed.

– getatom exo A(i) fetches the ith element from the current row in the exo-
table (the exo pointer points to that row now) and unifies it with Argument
register i.

Note that the arity in the (re)try/trust me else exo instruction is also
the width of the exo table, so we could have denoted that operand as width(3).
In fact, the width and the arity can be processed independently, and thus could
be given separately.

At this point, have we gained anything? The amount of space needed for
code+data has not decreased, and the instructions have a small extra overhead
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in fetching the constants from the table and manipulating the exo pointer. On
the other hand, the code for p/3 is now generic, i.e. it suffices to make the
exo pointer point to a different table - say

u1 v1 w1
u2 v2 w2
u3 v3 w3
u4 v4 w4

to see that all the code except for setting the exo pointer can be reused for
executing a different set of facts.

Clearly every fact consists of the same code: three getatom exo instructions
and a proceed. We exploit that by generating the following (final) code:

try_exo arity(3) @a @e @t ----------> a1 b1 c1
@a: keep_trying_exo arity(3) a2 b2 c2
@e: getatom_exo A(1) a3 b3 c3

getatom_exo A(2) a4 b4 c4
getatom_exo A(3) NULL
proceed

We have added a NULL entry to the table as sentinel, so that we can check
whether we have reached the end of the table. (We could have used a count of
rows or entries; as we will see, Mercury uses the latter.)

The new instructions act as follows:

– try exo N @a @e @t sets exo pointer to point to the table @t, creates a
choice point, saves exo pointer in it and sets the alternative field to @a, and
then transfers control to @e.

– keep trying exo N fetches exo pointer from the choice point, adds N to it, and
stores the resulting value in the choice point; the alternative in the choice
point is not updated. If (exo pointer+N) points to the NULL sentinel, the
choice point is discarded. Either way, this instruction restores the argument
registers.

These new instructions give us a major benefit of exo-compilation: they allow
us to eliminate all but one copy of the fact handling code, which can mean a
potentially huge memory saving, while preserving the genericity of the code.

2.2 Void Variables

In the context of ILP - but also in general in the database context - one is
often confronted with wide facts that are queried by goals containing lots of
void variables, i.e. fields in which one is not interested during a particular query.
E.g. for a fact p/12, the query could be ?- p(bruce,willis, , , , , , , , ,Salary, ).1

Exo-compilation suggests dealing with void variables by generating a specialised
predicate p 1 2 11/3 whose code is:
1 The point is that only the first, second and eleventh argument take part in the query,

not that the first two arguments are instantiated or manifest.

CICLOPS 2007

Bart Demoen, Phuong-Lan Nguyen, V. Santos Costa and Zoltan Somogyi 120



try_exo arity(3) @a @e @t(p/12) --------------> table for p/12
@a: keep_trying_select width(12) arity(3)
@e: getatom_exo A(1)

getatom_exo A(2)
getatom_exo_offset A(3), offset(11)
proceed

The instruction keep trying select is a variant if keep trying exo, but where
the width of the exo-table is different from the choice-point’s arity.

getatom exo offset A(3), offset(11) unifies the third argument register with
the atom to be found at offset 11 in the row currently pointed to by exo pointer.

Replacing the original query by ?- p 1 2 11(bruce,willis,Salary) eliminates
all the unnecessary overhead of the void variables: initialisation, unification,
trailing/untrailing, and storing in/restoring from the choice point.

In the context of ILP the above goal is typically generated dynamically and
as part of a conjunction. In that case, before executing the conjunction, a void
variable detection analysis can be performed and the appropriate transformation
can be carried out. Since other analyses/transformations are already performed
on such conjunctions (subsumption testing, once-transformation, ...) this seems
reasonable - see for instance [9]. The code above must be generated at runtime.
This is feasible as well, as other approaches have dealt with compiling (totally,
partially, on the fly, and just in time) such code. See for instance [2].

2.3 Instruction merging and specialisation

The code for the facts can benefit from instruction merging: both in the original
WAM and in the exo-compilation approach, we can easily collapse a sequence of
get atom instructions. We can even exploit the fact that the argument registers
to be unified with table elements are consecutive and invent one new instruc-
tion like get5atoms exo which needs no arguments at all, leading to a further
reduction of the memory needed to represent the code and less argument fetch-
ing. Yap [10] performs such an instruction merging in ordinary WAM code: a
sequence of up to 6 get atom instructions from consecutive argument registers
(and starting from 1) is compressed [8]. hProlog merges any sequence of up to
3 get atom instructions, irrespective of the argument register they refer to. We
have performed its analogue for the getatom exo instruction.

Instruction specialisation is also applicable: hProlog and Yap (as many other
systems) have specialised versions of the try/retry/trust me else instructions for
several arities. hProlog does this specialisation up to arity 5, Yap up to arity 4.
The same can be done for the analogous exo-instructions. We did not do this
specialisation in our exo-compiler, because we are mainly interested in much
higher arities.
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3 Experiments in hProlog

Exo-compilation was implemented in hProlog as follows: for arities up to 15,
there are predefined predicates (generated at startup) with code of the following
form, which is for arity 5:

keep_trying_exo arity(5) keep_trying_exo arity(5)
getatom_exo A(1) getatom3_exo A(1) A(2) A(3)
getatom_exo A(2) getatom2_exo A(4) A(5)
getatom_exo A(3) proceed
getatom_exo A(4)
getatom_exo A(5)
proceed

where the left half shows the code without instruction merging and the right
with instruction merging. For larger arities, these would need to be generated
on the fly.

This code acts as entry points for the code for an exo-compiled set of facts.
This compilation is currently integrated in the compiler as follows: when the pro-
log flag named exo compiling is on, and the predicate to be compiled contains
only facts with an atom for each argument, the predicate is exo-compiled. The
compiler constructs the exo table. An exo-predicate is compiled to one try exo
instruction which sets the exo pointer and then transfers control to the appro-
priate pre-defined predicate.

Instruction merging of the exo-instructions was made into a command line
hProlog option, so it is easy to run the benchmarks with and without instruction
merging.

Generating code for the void specialisations is done by calling a new built-in
predicate create void specialisation/3 which takes as arguments

– the exo-predicate - so that the exo-table can be retrieved
– the name/arity of the new predicate
– a description of which arguments of the original exo-predicate need to be

selected

Because of the application we have in mind (dynamically generated queries
in ILP), the user needs to call this built-in, but nothing prevents the compiler to
do so as well. E.g., ?- create void specialisation(foo/5, gee/3, [2,4,5]). generates
the following code for gee/3:

@gee_3: try_exo arity(3) @a @e @t(foo/5)
@a: keep_trying_select width(5) arity(3)
@e: getatom3_exo_offset A(1) offset(2) A(2) offset(4) A(3) offset(5)

proceed

when instruction merging is on.
We use @t(foo/5) to denote the address of the exo-table for foo/5: it is known

at load/link time.
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The timings in Tables 1, 2 and 3 were obtained on a PC with a 1.8 GHz
Pentium 4 CPU running Debian. Times are given in milliseconds. We used hPro-
log 2.7, Yap 5.1.1 and SICStus 3.12.0.

We start with an experiment in which a set of predicates p/n, n=1..15, each
with 150 facts and with all atom arguments is called with free, unshared argu-
ments. We do this in Yap and in hProlog, both in a version with and without
instruction merging. The table also contains the timings for SICStus. In this
way, one gets a better view on the performance. In this and following tables,
we have added the ratio between subsequent columns between brackets. Table

Arity Yap Yap hProlog hProlog SICStus
merging no merging merging no merging merging

1 664 676 (0.98) 552 568 (0.97) 2720
3 948 2032 (0.46) 1464 1993 (0.73) 3480
5 1620 2905 (0.55) 1752 2596 (0.67) 5490
7 3040 3604 (0.84) 3053 3324 (0.91) 6560
9 4284 4812 (0.89) 3904 4373 (0.89) 8230

11 5085 5592 (0.90) 4613 4784 (0.96) 10130
13 5884 6248 (0.94) 5024 5648 (0.88) 12580
15 6304 6793 (0.92) 5761 6457 (0.89) 12860

Table 1. Performance on plain WAM code

1 shows that without instruction merging Yap and hProlog have close perfor-
mance. With instruction merging, the figures show that up to arity 6, the Yap
compression is superior, while the hProlog merging is better for larger arities.
SICStus performs significantly worse on all arities. As far as we know, SICStus
merges two consecutive get atom instructions, as well as a (get atom proceed)
combination.

The general trend in Table 1 is clear: timings become larger with larger
arities.

Arity hProlog hProlog exo hProlog hProlog exo
no merging no merging merging merging

1 568 1412 (0.4) 552 1476 (0.37)
3 1993 2372 (0.84) 1464 2056 (0.71)
5 2596 2868 (0.9) 1752 2072 (0.84)
7 3324 3433 (0.96) 3053 3040 (1.00)
9 4373 4816 (0.9) 3904 3744 (1.04)

11 4784 4889 (0.97) 4613 4452 (1.03)
13 5648 5656 (0.99) 5024 4908 (1.02)
15 6457 6364 (1.01) 5761 5485 (1.05)

Table 2. hProlog in plain WAM mode and in exo mode

Table 2 shows that for hProlog exo-compilation starts paying off from arity
7 (actually 6 with the full data) with merging, but only from arity 13 without
merging. There is indeed an overhead in the getatom exo instruction, probably
because of the lack of registers: there is no spare register for the pointer to the
exo-table.
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In Table 3, we show hProlog on the same set of benchmarks, but with a query
with only three non-void arguments. The exo void columns take advantage of
that in the way described in Section 2.2, while the plain exo columns follow the
plain exo-compilation schema. The difference is clear: the left column is close to
constant (as it should be), while the right column’s runtime increases linearly
with the arity. It is nice to see that the break even point is close to three. All
the code was generated beforehand, i.e. not dynamically as would be needed in
an ILP context where the queries are not known in advance.

Arity hProlog exo void hProlog plain exo hProlog exo void hProlog plain exo
no merging no merging merging merging

3 2312 2328 (0.99) 1540 1564 (0.98)
5 2288 2964 (0.77) 1492 1820 (0.81)
7 2284 3672 (0.62) 1492 2805 (0.53)
9 2256 4284 (0.52) 1565 3760 (0.41)

11 2272 4725 (0.48) 1504 4605 (0.32)
13 2353 5528 (0.42) 1580 5188 (0.30)
15 2384 6156 (0.38) 1688 5724 (0.29)

Table 3. Optimising queries with void variables

4 Generalising exo-compilation

Exo-compilation as described above exploits a specific form of regularity of code.
The generalisation to other atomic types besides atoms is straightforward. An
example shows how facts with structured (ground) terms can be dealt with:

p(foo(a,b(c))). p(gee(x,y(z))).

These facts have enough in common to treat them by exo-compilation, especially
if there are many thousands of them. The generalisation of the getatom exo
instruction to functors is

get_struct_exo_offset A(i), offset(j)

with obvious meaning. Other instructions need an exo version as well.
The above p/1 would be translated to

try_exo arity(1) @a @e @t ----------------> foo/2 a b/1 c
@a: keep_trying_select arity(1) width(4) gee/2 x y/1 z
@e: get_struct_exo_offset A(1), offset(1) NULL

unify_atom_exo_offset offset(2)
unify_struct_exo_offset offset(3)
unify_atom_exo_offset offset(4)
proceed

The meaning of the instructions should be clear, and dealing with void vari-
ables in a call to such non-flat facts is clearly feasible. The next steps in general-
ising exo-compilations are: allow variables, allow lists (of different length), allow
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clauses with similar bodies, and allow arbitrary ground terms; the first few of
those are described in more detail in [4]. The same reference also contains some
preliminary ideas about combining indexing with exo-compilation in the context
of the WAM.

5 How Mercury handles large predicates

5.1 Large predicates without indexing

In Mercury, every predicate (or function) has one or more modes. Each mode
specifies, for each argument, whether that argument is input or output in that
mode, and also specifies a determinism, which specifies upper and lower bounds
on the number of solutions expected in that mode. For example, append(in,in,out)
has determinism det, meaning calls to append in that mode will have exactly one
solution, while append(out,out,in) has determinism multi, meaning calls to ap-
pend in that mode will have one or more solutions.

The Mercury compiler generates a separate piece of code for each mode: each
mode of a predicate is called a procedure. The easiest modes to generate good
code for when the predicate body is defined by a large set of facts are the modes
in which all arguments are output (and whose determinism is therefore multi).
The C code generated by the compiler for this mode of the predicate p/3 with
four facts from Section 2.1, will look something like this, after discarding some
irrelevant details:

p_3_0:
mkframe(1, local_label_2);
temp1 = &common_table_0[0];
framevar1 = 3;
r1 = temp1[0];
r2 = temp1[1];
r3 = temp1[2];
succeed();

local_label_2:
r4 = framevar1;
if (r4 >= 9) goto local_label_3;
framevar1 = framevar1 + 3;
temp1 = &common_table_0[r4];
r1 = temp1[0];
r2 = temp1[1];
r3 = temp1[2];
succeed();

local_label_3:
temp1 = &common_table_0[r4];
r1 = temp1[0];
r2 = temp1[1];
r3 = temp1[2];
succeed_discard();

The first block of the code handles the first solution, the last block of code
handles the last solution, and the middle block handles all the others in between,
rather like a try/retry/trust chain in the WAM in which all retry’s are collapsed
into one block of code.
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The mkframe macro allocates a frame on the nondet stack; this frame func-
tions as a combination choice point and environment. The environment part
holds one slot (containing the equivalent of the WAM’s exo-pointer) and the
backtrack point is local label 2. The common table 0 is Mercury’s internal name
for what was named exo table in Section 2.1, and it stores the data which in
this case is the 12 atoms. The Mercury calling convention for multi procedures
requires argument n to be returned in register rn, so the assignments to r1, r2

and r3 pick up the value of each argument of the first solution from a table con-
taining all the solutions. The succeed macro then returns to the return address
recorded in the stack frame by the mkframe macro.

After backtracking causes execution to reach local label 2, the code checks
whether the next solution is the last one. If not, the stack frame is updated
to show that this solution was returned but otherwise it is left intact. If the
last solution is reached, execution branches to code that uses the succeed discard
variant of the succeed macro: it discards the stack frame after picking up the
return address from it.

Unlike most Prolog implementations, the Mercury compiler does not convert
procedure bodies to disjunctive normal form. The goal form representing a table
facts (a disjunction in which each disjunct is a conjunction of unifications that
create static terms) may therefore appear inside other goals, e.g. an if-then-else,
either in the program as written or after inlining. In such cases, the generated
code is very similar code to the code above, the main difference being that it
won’t have to create a stack frame (the surrounding code having already created
one), and the mechanism used to record the next alternative will be slightly
different [3]. The reasons why the names of the tables don’t refer to procedure
names is that a single procedure may refer to more than one of these tables,
while a table may be referred to from more than one procedure if the predicate
whose data is contained in the table is inlined at more than once call site. This
works because Mercury does not support dynamic predicates.

In Mercury, the exo tables can contain any type of ground term. For ground
terms, there is never any need to copy them: the exo table contains the term
exactly as it would be laid out in the heap, so all what needs to be returned as a
result is a pointer to the term. The same technique can be used in the WAM, but
would require minor changes in the garbage collector (which Mercury’s use of a
conservative collector renders moot). In fact, ECLiPSe has implemented static
terms at least since 1990.

5.2 Large predicates with indexing

Mercury uses indexing quite aggressively, i.e., not just on arguments in the head
of a predicate, but also in explicit disjunctions. In the past, the implementation
of indexing was based on using a table (e.g. a hash table) to map the value of the
switched-on variable to a code address, with the code address giving the start of
the code for handling a particular switch arm. Remember that Mercury generates
C code. This indexing schema works fine for small and even medium-sized code.
But when the size of the predicate increases, and as a consequence the size of the
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generated C code also increases, this becomes problematic: it exposes quadratic
behaviour in the C optimiser, as well as limits in the Mercury compiler’s own
low level optimiser. Exo-compilation avoids the problem of generated code size
explosion: only the size of the generated C data arrays increases.

Indexing kicks in when enough input is available to reduce the alternatives
that can return answers. In the context of exo-compilation, and for simplicity
of explanation, we focus on a predicate consisting of facts, and for which there
is one input argument that is an integer. We assume also that the range of this
integer is dense in some range starting from 0, so that the input can be used as
in index in an array without further manipulation.2 We work by example, and
distinguish three cases, namely that the procedure is (1) det, (2) semidet and
(3) nondet or multi.

A det procedure: This corresponds to a predicate like

:- pred p(int:in, term1:out, term2:out).
p(0,a0,b0).
p(1,a1,b1).
p(2,a2,b2).
p(3,a3,b3).
p(4,a4,b4).

It is clear that a two dimensional table of the form

a0 b0
a1 b1
a2 b2
a3 b3
a4 b4

can be addressed directly with the input argument to retrieve the necessary
output. The generated code’s size is independent of the number of facts: this
will be true for the other cases as well.

A semidet procedure: This occurs when there is no solution for one or more input
values, as in

:- pred q(int:in, term1:out, term2:out).
q(0,a0,b0).
q(2,a2,b2).
q(3,a3,b3).
q(4,a4,b4).

The compiler generates a bit vector, which at place i indicates whether the
corresponding input argument corresponds to a solution. A successful test causes
a jump to the same code as in the det case; an unsuccessful test causes failure.3

2 Mercury uses appropriate generalisations of these conditions.
3 Mercury has long generated lookup tables for predicates like p and q, but it has

traditionally generated a separate vector for each output argument. The genera-
tion of a two-dimentional table like the one shown above is new, as is every other
exocompilation technique we present in the paper.
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A nondet or multi procedure: This occurs for instance in the following predicate:

:- pred r(int:in, term1:out, term2:out).
r(0,a0,b0).
r(0,c0,d0).
r(0,e0,f0).
r(0,g0,h0).
r(2,a2,b2).
r(3,a3,b3).
r(4,a4,b4).
r(4,c4,d4).
r(4,e4,e4).

The compiler generates two tables, the first one of which is addressed by using
the input argument as an index. The table contains n + 2 columns if there are
n output arguments - in our example n = 2 and the table is shown in Figure 1.
The first entry in each column contains an indication of whether the input value

first solution
      table

later solution
      table

c0 d0
e0 f0
g0 h0
c4 d4

f4e4

a0 b0

−1
0

−

−

−

− −

a2 b2

a3 b3

a4 b4

0

1
2

3

4
0

     

Fig. 1. First and later solution table for a nondet procedure

corresponds to a switch arm with no solution (-1), exactly one solution (0) or
more than one solution (any value above 0). Code tests this value and branches
to the appropriate continuation, which consists in failure in the first case.

If the selected switch arm has one solution, the indexing code will pull the
values of the output variables out of the last n columns of the selected row, put
them where the code after the switch (which may be the procedure epilogue)
expects them, and then jump to that code.

If the selected switch arm has more than solution, the indexing code will also
pull the values of the output variables out of the last n columns and put them
where they are expected, but before jumping to the code after the switch, it will
set up the return of the later solutions on backtracking.

Part of this involves saving the values of the first and second columns in the
current stack frame (as framevar1 and framevar2 respectively in the example
code below). Each switch arm that has more than one solution stores all those
solutions except the first in a contiguous region of the second table. The first
column of the first-solution table row points to (contains the index of) the start
of the first of these solutions in the later-solution table, while the second column
points to the start of the last of these solutions.
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The other part is directing execution to code that uses these saved values.
How this is done depends on the context. The required code may be as expensive
as pushing a temporary frame (effectively a mini choicepoint) on the nondet
stack, as cheap as simply updating the backtrack code pointer of the current
nondet stack frame, or something in between (see [3] for more info, through
some details have changed since then).

If the switch is the entirety of a procedure body, the code executed on back-
tracking will look like the following, which is a generalised version of the code at
local labels 2 and 3 above (common table 1 refers to the later solutions table).

local_label_5: local_label_6:
r4 = framevar1; temp1 = &common_table_1[r4];
if (r4 >= framevar2) goto local_label_6; r1 = temp1[0];
framevar1 = framevar1 + 3; r2 = temp1[1];
temp1 = &common_table_1[r4]; r3 = temp1[2];
r1 = temp1[0]; succeed_discard();
r2 = temp1[1];
r3 = temp1[2];
succeed();

5.3 Semantic analysis of large predicates

Code generation, is not the only area in which large predicates pose challenges.
Many semantic analysis algorithms (which Prolog does not need but Mercury
does) have behavior that is quadratic (or worse) in the number of clauses, in
the sizes of terms, or both. The Mercury compiler certainly contained many
such algorithms. We had to find and try to fix them one by one (unfortunately,
some fixes require more work than we have funding for). The most ubiquitous
problem was algorithms that added something to the end of a list after each
disjunct; doing O(n) work at disjunct n yields a quadratic algorithm. We changed
these to instead return a list of those somethings (which differ from analysis to
analysis), and then used code patterned after balanced mergesort to generate
the final output.

6 Discussion, related work, and conclusion

Large datasets occur in a wide range of applications. Our experience includes

– knowledge bases processed by an inductive logic programming system;
– tables generated by scanner and parser generators; and
– large databases of structured patterns to look for in an input stream.

There are doubtless many more. While each one of these may be only a niche,
put together they are significant enough to be worthy of attention.

Most current logic programming systems do not have any support for large
datasets. The reason for this is mostly historical: such systems have traditionally
been called deductive databases. As a result, the handling of large datasets by
most logic programming systems has left a lot to be desired. Each of us bumped
into these problems in our daily work, and decided to fix the situation.
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As it happened, though we started working on different systems (Yap, hPro-
log and Mercury) and got our driving motivations from different application ar-
eas, we ended up with techniques that are quite similar. 4 Thought both Prolog
and Mercury compilers traditionally generate code for each part of the program,
two of us (Santos Costa and Somogyi) independently decided that the efficient
implementation of large tables of facts requires breaking this rule, and generat-
ing generic table lookup code instead, with all the information specific to the
program confined to the tables. Although this is a fairly standard programming
technique used in databases, parsers and in many other programs, it is unusual
to find it in code generated automatically by a compiler.

The most obvious benefit of this approach, which we call exo-compilation,
is of course the large reduction in the amount of code required. However, it
also yields speedups, which is a more important benefit, though it is also much
less obvious. For some people, it may even be counter-intuitive, because exo-
compilation actually increases the number of memory accesses, due to accesses
to data in tables requiring an extra level of indirection. Though this extra indi-
rection reduces locality a bit, eliminating redundant copies of WAM instructions
and putting the arguments of each fact closer together improves locality by far
more, and it is this latter effect that dominates in our applications. Our exper-
iments show performance improvements, and detailed cache simulations (per-
formed with the cachegrind option of valgrind-3.2.0-Debian) have revealed
that D1 misses and L2 references can drop by a factor of 5, even though overall
I and D references increase by about 6%: these figures were obtained for running
the totality of the benchmarks in Tables 1 and 2.

Exo-compilation also brings other benefits. In the ILP context often each
example is represented by some predicates each of which consists of a few small
facts only. Treating an individual example by exo-compilation might seem sense-
less. However, there are often too many examples to keep them all in memory
and ILP tools need to switch between examples frequently. For that reason,
hipP (an ILP dedicated cousin of hProlog) has an intricate module for switch-
ing between examples, where each example is pre-compiled fully to WAM code.
Applying exo-compilation to the examples as a whole, would result in generic
code that can be used for each example and switching between examples would
consist of switching between exo-tables. Since these are smaller than fully com-
piled code, it allows more examples simultaneously in memory, it reduces the
amount of memory traffic when an example needs to be (re)loaded, and as a re-
sult it increases performance and the size of the datasets that can be handled by
the system. These considerations were in fact a major motivation for exploring
exo-compilation in the context of Prolog.

4 Our different choices were partly dictated by differences in the languages. partly
motivated by differences in the existing technology bases: Prolog supports dynamic
predicates and dynamic loading of predicates while Mercury doesn’t, and likewise for
variables in facts; the Mercury abstract machine and the WAM are quite dissimilar,
and the WAM is usually interpreted while Mercury compiles to C.
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Exo-compilation also serves as the basis for further optimisations. For ex-
ample, dynamic indexing fits in nicely with exo-compilation, and it would be
more difficult to implement without separating the operands from the code. Or
consider the optimisation we presented in Section 2.2 which was intended to
remove the overhead of void variables in queries. This overhead can be reduced
by the Vienna Abstract Machine (see [7]) or by a tagging schema that caters for
void variables (as in Beer [1] which caters for uninitialised variables), but these
techniques still perform actions that are linear in the number of void variables,
while our technique does not.

We have just started using exo-compilation in live applications such as ILP.
The future will show how well the idea actually works in practice, but the initial
indications are quite promising.
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Abstract. Tabled evaluation has been proved an effective method to improve
several aspects of goal-oriented query evaluation, including termination and com-
plexity. Several “native” implementations of tabled evaluation have been devel-
oped which offer good performance, but many of them need significant changes
to the underlying Prolog implementation. More portable approaches, generally
using program transformation, have been proposed but they often result in lower
efficiency. We explore some techniques aimed at combining the best of these
worlds, i.e., developing a portable and extensible implementation, with minimal
modifications at the abstract machine level, and with reasonably good perfor-
mance. Our preliminary results indicate promising results.

1 Introduction

Tabling [16, 2, 15] is a resolution strategy which tries to memoize previous calls and
their answers in order to improve several well-known shortcomings found in SLD reso-
lution. It brings some of the advantages of bottom-up evaluation to the top-down, goal-
oriented evaluation strategy. In particular, evaluating logic programs under a tabling
scheme may achieve termination in cases where SLD resolution does not (because of
infinite loops —for example, the tabled evaluation of bounded term-size programs is
guaranteed to always terminate). Also, programs which perform repeated computations
can be greatly sped up. Program declarativeness is also improved since the order of
clauses and goals within a clause is less relevant, if at all. Tabled evaluation has been
successfully applied in many fields, such as deductive databases [11], program analy-
sis [17, 3], reasoning in the semantic Web [19], model checking [9], and others.

In all cases the advantages of tabled evaluation stem from checking whether calls
to tabled predicates, i.e., predicates which have been marked to be evaluated using
tabling, have been made before. Repeated calls to tabled predicates consume answers
from a table, they suspend when all stored answers have been consumed, and they
fail when no more answers can be generated. However, the advantages are not without
drawbacks. The main problem is the complexity of some (efficient) implementations of
tabled resolution, and a secondary issue is the difficulty in selecting which predicates to
table in order not to incur in undesired slow-downs.
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Two main categories of tabling mechanisms can be distinguished: suspension-based
and linear tabling mechanisms. In suspension-based mechanisms the computation state
of suspended tabled subgoals has to be preserved to avoid backtracking over them.
This is done either by freezing the stacks, as in XSB [13], by copying to another area,
as in CAT [5], or by using an intermediate solution as in CHAT [6]. Linear tabling
mechanisms maintain a single execution tree where tabled subgoals always extend the
current computation without requiring suspension and resumption of sub-computations.
The computation of the (local) fixpoint is performed by repeatedly looping subgoals
until no more solutions can be found. Examples of this method are the linear tabling of
BProlog [18] and the DRA scheme [7].

Suspension-based mechanism have achieved very good performance results but, in
general, deep changes to the underlying Prolog implementation are required. Linear
mechanisms, on the other hand, can usually be implemented on top of existing sequen-
tial engines without major modifications. One of our theses is that it should be possible
to find a combination of the best of both worlds: a suspension-based mechanism that
is efficient and does not require complex modifications to the underlying Prolog imple-
mentation, thus contributing to maintainability. Also, we would like to avoid introduc-
ing any overhead that would reduce the execution speed for SLD execution.

Our starting point is the Continuation Call Mechanism presented by Ramesh and
Chen in [12]. This approach has the advantage that it indeed does not need deep changes
to the underlying Prolog machinery. On the other hand it has shown up to now worse
efficiency than the more “native” suspension-based implementations. Our aim is to an-
alyze the bottlenecks of this approach, explore variations of it, and propose solutions in
order to improve its efficiency without losing much in implementation simplicity and
portability.

2 Tabling Basics

We will now sketch how tabled evaluation works from a user point of view (more details
can be found in [2, 13]) and then we briefly describe the continuation call mechanism
implementation technique proposed in [12] on which we base our work.

2.1 Tabling by Example

Let us use as running example the program in Figure 1, taken from [12], whose purpose
is to determine reachability of nodes in a graph We ignore for now the :- tabled
path/2 declaration (which instructs the compiler to use tabled execution for the des-
ignated predicate), and assume that SLD resolution is to be used. Then, a query such
as ?- path(a, N). will never terminate since there is a left-recursive clause which
generates a goal with the same instantiation as the initial call.

Adding the :- tabled declaration forces the compiler and runtime system to dis-
tinguish the first occurrence of a tabled goal (the generator) and subsequent calls which
are identical up to variable renaming (the consumers). The generator applies resolution
using the program clauses to derive answers for the goal. Consumers suspend the cur-
rent execution path (using implementation-dependent means) and move to a different
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edge(a, b).
edge(b, c).
edge(b, d).

:− tabled path/2.

path(X, Y):−
path(X, Z),
edge(Z, Y).

path(X, Y):−
edge(X, Y).

Fig. 1. A simple tabled program.

path(X, Y):− slg(path(X, Y)).

slg path(path(X, Y), Id):−
slgcall ( Id , path(X, Z ), path cont).

slg path(path(X, Y), Id):−
edge(X, Y),
answer(Id, path(X, Y)).

path cont(Id , path(X, Z)):−
edge(Z, Y),
answer(Id, path(X, Y)).

Fig. 2. Program in Figure 1 transformed for tabled ex-
ecution.

branch. When such an alternative branch finally succeeds, the answer generated for the
initial query is inserted in a table associated with the original goal. This makes it pos-
sible to reactivate suspended calls and to continue execution at the point where it was
stopped. Thus, consumers do not use SLD resolution, but obtain instead the answers
from the table where they have been previously inserted by the producer. Predicates not
marked as tabled are executed following SLD resolution, hopefully with (minimal or
no) overhead due to the availability of tabling in the system.

2.2 The Continuation Call Technique

The continuation call technique [12] implements tabling by a combination of program
transformation and side effects in the form of insertions to and reads from an internally-
maintained table which relates calls, answers, and the continuation code to be executed
after consumers read answers from the table. We will now sketch how the mechanism
works using the path/2 example shown in Figure 1. The original code is transformed
into the program in Figure 2 which is the code actually executed.

Roughly speaking, the transformation for tabling is as follows: a bridge predicate
for path/2 is introduced so that calls to path/2 made from regular Prolog execution
do not need to be aware of path/2 being tabled. The call to the slg/1 primitive will
ensure that its argument is executed to completion and will return, on backtracking, all
the solutions found for the tabled predicate. slg/1 also inserts the call in the answer
table and generates an identifier for it. Control is then passed to a new distinct predi-
cate (in this case, slg path/2) by constructing a goal from path(X, Y) (which is
passed as an argument to slg/1) and then calling this term, suitably instantiated, from
inside the implementation of slg/1.4 The first argument contains the variables in the
original call to path/2 and the second one is the identifier generated for the parent
call, which is used to relate operations on the table with this initial call. Each clause of
slg path/2 is derived from a clause of the original path/2 predicate by:

4 The new term has been created in the example simply by prepending the prefix slg to the
argument passed to slg/1. Any means of constructing a new unique predicate symbol based
on the original one is acceptable. Our implementation performs at compile time as much of
this work as possible.
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:− tabled path/2.

path(X, Z):−
edge(X, Y),
path(Y, Z).

path(X, Z):−
edge(X, Z).

Fig. 3. A program which needs to
keep an environment.

path(X, Y):− slg(path(X, Y)).

slg path(path(X, Y), Id):−
edge(X, Y),
slgcall ( Id , [ X ], path(Y, Z ), path cont 1).

slg path(path(X, Y), Id):−
edge(X, Y),
answer(Id, path(X, Y)).

path cont 1(Id , [ X ], path(Y, Z)):−
answer(Id, path(X, Z)).

Fig. 4. The program in Figure 3 after being transformed
for tabled execution.

– Adding an answer/2 primitive at the end of each clause resulting from a trans-
formation and which is not a bridge to call a continuation predicate. answer/2 is
responsible for checking for redundant answers and executing whatever continua-
tions (see the following item) there may be associated with that call identified by
its first argument.

– Instrumenting recursive calls to path/2 using the slgcall/3 primitive. If the
term passed as an argument (i.e., path(X, Y)) has already been inserted in the
table, slgcall/3 creates a new consumer which reads answers from the table.
Otherwise, the term is inserted in the table with a new call identifier and execution
follows using the slg path/2 program clauses to derive new answers. In the
first case, path cont/2 is recorded as (one of) the continuation(s) of path(X,
Y) and slgcall/3 fails. In the second case path cont/2 is only recorded
as a continuation of path(X, Y) if the tabled call cannot be completed. The
path cont/2 continuation will be called from answer/2 after inserting a new
answer or erased upon completion of the path(X, Y) subgoal.

– The body of path cont/2 encodes what remains of the clause body of path/2
after the recursive call. It is constructed in a similar way to slg path/2, i.e.,
applying the same transformation as for the initial clauses and calling slgcall/3
and answer/2 at appropriate times.

This strategy tries to complete subgoals as soon as possible, failing whenever new
answers are found, and thus implements the so-called local scheduling [13]. This im-
plementation uses the same completion detection algorithm as the SLG-WAM.

Figures 3 and 4 illustrate how additional modifications are required in the transla-
tion for some programs in order to pass on additional variables to continuations. Note
that in the program in Figure 3 an answer to ?- path(X, Y) may need to provide
a value to variable X which does not appear in the recursive call to path/2. If the
simple translation of Figure 2 is performed, this variable will not be available at the
point in the code where the answer is inserted in the table. The solution adopted in
this case is to explicitly carry a set of variables when preparing the call to the con-
tinuation. This set is also inserted in the table, and is passed to the continuation call
when resumed. The translation is shown in Figure 4. Note that the call to slgcall/4
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answer(callid Id , term Answer) {
insert Answer in answer table
If ( Answer /∈ answer table)

for each continuation call C
of tabled call Id {

call (C) consuming Answer;
}

return FALSE;
}

Fig. 5. Pseudo-code for answer/2.

slgcall ( callid Parent, term Bindings,
term Call , term CCall) {

Id = insert Call into answer table;
if ( Id . state == READY) {

Id . state = EVALUATING;
call the transformed clause of Call ;
check for completion;

}
consume answers for Id;
if ( Id . state != COMPLETE) {

Id depends on Parent;
add a new continuation

call (CCall, Bindings) to Id ;
}
return FALSE;

}
Fig. 6. Pseudo-code for slgcall/4.

in path cont 1 includes a list containing variable X. This list is, on resumption, re-
ceived by path cont 1 and used to construct and insert in the table an answer which
includes X. A safe approximation of the variables which should appear in this list is the
set of variables which appear in the clause before the tabled goal and which are used in
the continuation, including the answer/2 primitive if there is one in the continuation
—this is the case in our example. Variables appearing in the tabled call itself do not
need to be included, as they will be passed along anyway.

The list of bindings is a means to recover the environment existing when a call is
suspended. Other approaches recover this environment using, e.g., lower-level mech-
anisms, such as the forward trail of SLG-WAM plus freeze registers [13]. The con-
tinuation call approach, has, however, the nice property that several of the operations
are made at the Prolog level through program transformation, which simplifies the im-
plementation (and helps portability). On the other hand, the primitives which insert
answers in the table and retrieve them are usually, and for efficiency reasons, written
using some lower-level language and accessed using a suitable interface.

The pseudo-code for answer/2 and slgcall/4 is shown in Figures 5 and 6,
respectively. The pseudo-code for slg/1 is similar to that of slgcall/4 but, instead
of consuming answers, they are returned by backtracking and it finally fails when all
the stored answers have been exhausted.

2.3 Issues in the Continuation Call Mechanism

We have identified two performance-related issues when implementing the technique
sketched in the previous section. The first one is rather general and related to the heavy
use of the interface from C to Prolog (and back) that the implementation needs to make,
and which adds an overhead which cannot be neglected.

The second one is the repeated copying of continuation calls. Continuation calls
(Prolog predicates with an arbitrarily long list of variables as an argument) are com-
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pletely copied from Prolog memory to the table for every consumer found. Storing a
pointer to these structures in memory is not enough, since slg/1 and slgcall/3
fail immediately after associating a continuation call with a table call in order to force
the program to search for more solutions and complete the tabled call. Therefore, the
data structures created during forward execution may be removed on backtracking and
not be available when needed. When continuations are resumed by answer/2, it is
necessary to reconstruct them as Prolog terms from the data stored in the table to be
able to call them as a goal. This can also clearly have a negative impact on performance.

Finally, an issue found with the baseline implementation that we used as a starting
point [14], is that it did not allow backtracking over Prolog predicates called from C and
this compromised extensibility. In particular, this makes it difficult to implement other
scheduling strategies. Since this shortcoming may appear also in other C interfaces, it
is a clear candidate for improvement.

3 An Improvement over the Continuation Call Technique

We now propose some improvements to the different limitations of the original design
and implementation that we discussed in Section 2.3.

3.1 Using a Lower-Level Interface

Calls from C to Prolog were initially performed using a relatively high-level interface
similar to those commonly found in current state of the art logic programming systems:
operations to create and traverse Prolog terms appear to the programmer as regular C
functions, and details of the internal data representation are hidden to the programmer.
This interface imposed a noticeable overhead in our implementation, as the calls to C
functions had to allocate environments, pass arguments, set up Prolog environments to
call Prolog from C, etc.

Since the low-level code which constructs Prolog terms and performs calls from C is
the same regardless of the program being executed, we decided to skip the programmer
interface and call directly macros available in the engine implementation. Given that
the complexity of the C code involved is certainly manageable, that was a not a difficult
task to do and it sped the execution up by a factor of 2.5 on average.

3.2 Calling Prolog from C

A relevant issue when using a C-to-Prolog interface is the need to call Prolog goals from
C efficiently. This is needed both by slgcall/3 and answer/2 in order to invoke
continuations of tabled predicates. As mentioned before, we want to design a solution
which relies as little as possible on non-widely available characteristics of C-to-Prolog
interfaces (to simplify portability), but which keeps the efficiency as high as possible.

The solution we have adopted is to move calls to continuations from the C level to
the Prolog level. Continuations are stored in a (Prolog) list which is pointed to from the
corresponding table entry, and they are returned one at a time on backtracking using an
extra argument of slgcall/3 and answer/2. These continuations are then called
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path(X,Y) :−
slgcall (path(X, Y), Sid,

true , Pred),
(

nonvar(Pred) −>
(call (Pred) ;
test complete(Sid))

;
true

),
consume answer(path(X, Y), Sid).

slg path(path(X, Y), Sid) :−
edge(X, Y),
answer(path(X, Y), Sid, CCall , 0),
call (CCall).

slg path(path(X, Y),Sid) :−
edge(X, Z),
slgcall (path(Z, Y), NewSid,

path cont 1, Pred),
(

nonvar(Pred) −>
(call (Pred);
test complete(NewSid))

;
true

),
read answers(Sid, NewSid, [X], CCall, 0),
call (CCall).

path cont 1(path(X, Y), Sid , [ Z]) :−
answer(path(Z, Y), Sid , CCall , 0),
call (CCall).

Fig. 7. New program transformation for right-recursive definition of path/2.

from Prolog.5 Failure happens when there is no pending continuation call. New contin-
uations found during program execution can be destructively inserted at the end of the
list of continuations transparently to Prolog.

In Figure 7 (which shows the translation we propose now for the code in Fig-
ure 3), answer/4, read answers/5, and slgcall/4 return in variables Pred
and CCall the continuations of a tabled call that are to be called as Prolog goals. This
avoids using up C stack space due to repeated Prolog → C → Prolog → . . . calls,
which may exhaust the available space. Additionally, the C code is somewhat simpli-
fied (e.g., there is no need to set up a Prolog environment to be used from C) which
makes using the lower-level, faster interface less of a burden. The last unused argument
of answer/4 (and read answers/5) implements a trick to make the correspond-
ing choicepoint have an extra, unused slot (corresponding to a WAM argument), which
will be used to hold a pointer to the rest of the list of continuations. Having such a slot
avoids changing the structure of choicepoints and how they are managed. This pointer
is destructively updated every time a continuation call is handed to the Prolog level.

We would like to clarify how some of the primitives used in Figure 7 work for this
case. Note that the functionality of slgcall/3 (slg/1 when called from SLD-type
execution) has been split across slgcall/3, test completion/1 and
read answer/5 (consume answers/2when associated with slg/1) in order to
be able to perform calls to continuations from Prolog. slgcall/5, as in the original
definition, checks if a call to a tabled goal is a new one. If so, Pred is unified with
a goal whose main functor is slg path/2 and whose arguments are appropriately
instantiated. A free variable is returned otherwise. test complete/1 always suc-
ceeds but performing a side effect: it tests if the tabled goal identified by Sid can be

5 In our implementation this exploits being able to write non-deterministic predicates in C. If
this feature is not available in a given system, a list of continuations can always be returned
instead which is then traversed on backtracking using member/2.
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marked as complete, and marks it in that case. read answers/5 consumes actual
answers for the call identified by NewSid and then associates a new continuation call
with NewSid if the tabled call is not completed. Its first argument, Sid, is needed to
mark dependencies between tabled calls. consume answer/2 returns the answers
stored in the table one at a time and on backtracking if the tabled call is completed.
Otherwise, it behaves internally as read answers/5.

3.3 Freezing Continuation Calls

In this section we will sketch some proposals to reduce the overhead associated with
the way continuation calls are handled in the original approach.

Overhead related to resuming consumers: The original continuation call technique
saved a binding list to reinstall the environment of consumers instead of copying or
freezing the stacks and using a forward trail, as CAT, CHAT, or SLG-WAM. This is a
relatively non-intrusive technique, but it requires copying terms back and forth between
Prolog and the table where calls are stored. Restarting a consumer needs to construct a
term whose first argument is the new answer (which is stored in the heap), the second
one the goal identifier (an atomic item), and the third one a list of bindings (which may
be arbitrarily large). If the list of bindings has N elements, constructing the continuation
call requires creating ≈ 2N + 4 heap cells. If a continuation call is resumed often and
N is high, the efficiency of the system can degrade quickly.

The technique we propose constructs all the continuation calls in the heap as a
regular Prolog term. This makes calling the continuation a constant time operation,
since answer/4 only has to unify its third argument with the continuation call. Since
that argument is a variable at run time, full unification is not needed. However, the
fragment of code which constructs this call performs backtracking as it fails after every
success of answer/4. This would remove the constructed call from the heap, thereby
forcing us to construct it again. Protecting that term would make it possible to construct
it only once. The solution we propose can be seen as a variant of the approach taken by
CHAT, but without having to introduce new abstract machine instructions.

In the explanation of our proposed freezing technique we will use the following
notation. H denotes the pointer to the top of the heap. B is the pointer to the most recent
choicepoint. To distinguish different kinds of choicepoints (borrowing from [6]) we
will use BT, where T can be G, C or P, which stand for generator, consumer, or Prolog,
respectively. The pointer to the heap stored in a choicepoint will be denoted as BT[H].

In CHAT the heap pointer is not reset on backtracking (as the WAM does with the
assignment H := BP[H]) by manipulating the heap pointer field BP[H] of the Prolog
choicepoints between the (newly created) consumer choicepoint and the choicepoint
corresponding to its generator so that they all point to the current top of the heap H:
BP[H] := BC[H]. Therefore, forward execution will continue building terms on the
heap on top of the previous solutions.

This solution can generate garbage in the heap, which is not a serious problem
as garbage collection can eventually free it. A more critical problem is the need to
traverse an arbitrarily long series of choicepoints, which could make the system effi-
ciency decrease. A solution for this problem has been proposed [4], which for us has
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Fig. 8. Initial state.
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Fig. 9. Frozen continuation call.

the drawback of needing new WAM-level instructions and adding a new field to some
choicepoints. As an alternative solution, we update the B[H] fields of the choicepoints
between a new consumer and its generator so that they point to a pointer H’ which
in turn points to the heap top. Whenever we need to change again the B[H] field for
these choicepoints, we simply update H’ plus the choicepoints pushed since the last
adjustments. Determining whether B[H] points to the heap or to H’ is easy and simply
entails deciding whether it falls within the heap limits. This needs changing the WAM
instructions used for backtracking in a very localized way which, in our experience, has
an unmeasurable impact over SLD execution performance.

Figure 8 shows the state of the choicepoint stack and heap before freezing a con-
tinuation call. On the left of Figure 9 all B[H] fields of the choicepoints G, P, and C
have changed to a common pointer H’ to the heap top. Thus, the continuation call (C,
[X,1,2], Ans) is frozen.

Trail management to recover a continuation call state: The same term T corre-
sponding to a continuation call C can be used several times to generate multiple an-
swers to a query. This is in general not a problem as answers are in any case saved in
a safe place (e.g., the answer table), and backtracking would undo the bindings to the
free variables in T . There is, however, a particular case which needs special measures.
When a continuation call C1, identical to C, is resumed within the scope of C, and it is
going to read a new answer, the state of T has to be reset to its frozen initial state. The
variables which may have been bound by C (Figure 10) are reset to unbound by using
a list of free variables collected when this term was copied to the heap (Figure 9, at the
right). Since C1 is using the same term T as C, we say that C1 is a reusing call. This
approach to call reuse avoids repeatedly copying several times the same continuation
call to the heap.

When C1 finishes and execution has to continue with C, the state of T has to be
restored to the one existing just before starting C1, i.e., that in Figure 10, where some
initially free variables were bound. This is done by constructing a value trail (Figure 11)
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Fig. 10. Before reusing a cont. call.
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Fig. 11. Setting up the value trail.

just before untrailing T prior to calling C1. This value trail is used to put back in T the
bindings generated by C up to the point in which it was interrupted. Value trails are
pointed to from the choicepoints associated with answer/4.

Other systems like CHAT or SLG-WAM also spend some extra time while preparing
a consumer to be resumed, as they need to record bindings in the forward trail in order
to later reinstall them. This is done for every resumption, and not only for reusing calls.

3.4 Freezing Answers

When a consumer is found or when read answers/5 is executed a continuation
call is created and its third argument needs to be instantiated using the answers found
so far to continue execution. These answers are, in principle, stored in the table (i.e.,
answer/4 inserted them), and they have to be constructed on the heap so that the
continuation call can access them and proceed with execution.

The ideas in Section 3.3 can be reused to freeze the answers and avoid the overhead
of building them again. In fact, since there are no reused answers, trail management is
not needed for them. As done with the continuation calls, a new field is added to the
table pointing to a (Prolog) list which holds all the answers found so far for a tabled
goal. When a continuation for some tabled goal is to be executed, the elements of the
answer list are unified with the corresponding argument of the continuation call. The list
head is, again, accessed through a pointer which is saved in a slot of the corresponding
choicepoint and which is updated on backtracking.

In spite of this freezing operation, answers to tabled goals are stored in the table
in addition to being linked in a list. There are two reasons for this: the first one is that
when some tabled goal is completed, all the answers have to be accessible from outside
the derivation tree of the goal. The second one is that the table (which is a trie in our
implementation, following [10]) makes checking for duplicate answers faster.
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lchain X Left-recursive path program, unidimensional graph.
lcycle X Left-recursive path program, cyclic graph.
rchain X Right-recursive path program (this generates more continuation calls), uni-

dimensional graph.
rcycle X Right-recursive path program, cyclic graph.
numbers X Find arithmetic expressions which evaluate to some number N using all the

numbers in a list L.
numbers Xr Same as above, but all the numbers in L are all the same (this generates a

larger search space).
Table 1. Terse description of the benchmarks used.

4 Performance Evaluation

We have implemented the proposed techniques as an extension of the Ciao system [1].
Tabled evaluation is provided to the user as a loadable package that provides the new
directives and user-level predicates, performs the program transformations, and links in
the low-level support for tabling. We have implemented and measured three variants:
the first one is based on a direct adaptation of the implementation presented in [14],
using the standard, high-level C interface. We have also implemented a second variant
in which the lower-level and simplified C interface is used, as discussed in Sections 3.1
and 3.2. Finally, a third variant incorporates the proposed improvements to the model
discussed in Sections 3.3 and 3.4.

We have then evaluated the performance of our proposal using a series of bench-
marks which are briefly described in Table 1. The results are shown in Table 2, where
times are given in milliseconds. All measurements have been made using Ciao-1.13 and
XSB 3.0.1 compiled with local scheduling and disabling garbage collection in all cases
(this in the end did not impact execution times very much). We used gcc 4.1.1 to
compile both systems, and we executed them on a machine with Fedora Core Linux,
kernel 2.6.9.

For reference, we have made an attempt to also compare with the execution times re-
ported in [12]. Due to the difference in technology (Prolog system, C compilers, CPUs,
available memory, etc.) it is not possible to compare directly with those execution times.
Instead, we took those graph benchmarks which can be executed using SLD resolution
and measured their execution times on Ciao-1.13. We then compared these times to
those reported in [12] (which were originally executed using the then current version
of SICStus Prolog) and obtained a speed ratio. Finally, we applied this ratio in order
to estimate the execution time that would be obtained for other (tabled) programs by
the original implementation in our platform. These predicted times for the original con-
tinuation call-based execution (when available) are presented in the second column of
Table 2.

The three following columns in the table provide the execution times for the three
variants implemented as explained at the beginning of this section. It is reassuring to
note that the execution times predicted from those in [12] are within reasonable range
(and with a relatively consistent ratio) when compared to those obtained from our first,
baseline version. We are quite confident, therefore, that they are in general terms compa-

CICLOPS 2007

Pablo de Guzmán, M. Carro, M. Hermenegildo, Cláudio Silva and R. Rocha 142



Benchmark Original Ciao Ccal Lower C itf. Copying
lchain 1024 8.65 7.12 2.85 2.07
lcycle 1024 8.75 7.32 2.92 2.17
rchain 1024 - 2620.60 1046.10 603.44
rcycle 1024 - 8613.10 2772.60 1150.54
numbers 5 - 1691.00 676.40 772.10
numbers 5r - 3974.90 1425.48 986.00

Table 2. Comparison of original implementation and Ciao implementations.

rable, despite the difference in the base system, C compiler technology, implementation
of answer tables, etc.

Lowering the level of the C interface and improving the transformation for tabling
and the way calls are performed have a clear impact. It should also be noted that the
latter improvement seems to be specially relevant in non-trivial programs which handle
data structures (the larger the data structures are, the more re-copying we avoid) as
opposed to those where little data management is done. On average, we consider the
version reported in the rightmost column to be the implementation of choice among
those we have developed, and this is the one we will refer to in the rest of the paper.

Table 3 tries to determine how our implementation of tabling compares with a state-
of-the-art one —namely, the latest available version of XSB at the time of writing. In
the table we provide, for several benchmarks, the raw time (in milliseconds) taken to
execute them using tabling and, when possible, SLD resolution, the speedup obtained
when using tabling, for Ciao and XSB, and the ratio of the execution time of XSB vs.
Ciao using SLD resolution and tabling.

It should be taken into account that XSB is somewhat slower than Ciao when ex-
ecuting programs using SLD resolution —at least in those cases where the program
execution is large enough to be really significant (between 1.8 and 2 times slower for
these non-trivial programs). This is partly due to the fact that XSB is, even in the case
of SLD execution, prepared for tabled resolution, and thus the SLG-WAM has an addi-
tional overhead (reported to be around 10% [13]) not present in other Prolog systems
and also presumably that the priorities of their implementors were understandably more
focused on the implementation of tabling.

The speedup obtained when using tabling with respect to SLD resolution (the columns
marked SLD

Tabling ) is, in general, favorable to XSB, specially for benchmarks which are
tabling-intensive but do not resume so many consumers (e.g., the transitive closure with-
out cycles), confirming, as expected, the advantages of the native implementation of
tabling in XSB. However, and interestingly, the difference in the speedups between
XSB and Ciao tends to reduce as the programs get more complex, mix in more SLD
execution, the XSB forward trail gets larger, and consumers are resumed more times,
especially if the answers are large and there are no reusing continuation calls.

For example, in the rchain X and numbers X benchmarks, the speed relation
between XSB and Ciao is roughly constant independently of the value of X. On the
other hand, in rcycle X and numbers Xr this relation is more favorable to Ciao
the larger the execution is. We attribute this to two reasons. The first one is that XSB
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does not resume consumers immediately after finding new answers, so it has to pay an
extra cost during completion to traverse the list of suspended consumers, and this traver-
sal may have to be repeated several times. The second one is the forward trail that XSB
uses: when repeatedly resuming consumers, XSB needs to keep track of the bindings
and reinstall them, while our implementation only performs an initial copy between two
memory areas (to have a continuation ready to execute) and, since there are no reusing
continuation calls in these programs, it can resume continuations in constant time, hav-
ing better asymptotic behavior. Since the number of resumptions of rchain X and
numbers X is linear in the value of X, their behavior is not affected. Besides, answers
for numbers Xr are relatively large (they are arithmetic expressions) and our imple-
mentation freezes them when evaluating a tabled call, while XSB has to reconstruct
them whenever a consumer is resumed.

It is also interesting to note that rchain X and rcycle X are faster in XSB than
in Ciao because their execution is tabling intensive. However, in non-trivial benchmarks
like numbers X and numbers Xr, which at least in principle should reflect more
accurately what one might expect in larger applications, execution times are in the end
somewhat favorable to Ciao. This is probably due in part to the faster raw speed of the
basic engine in Ciao but it also implies that the overhead of the approach to tabling used
is reasonable after the proposed optimizations. More work is in any case needed to com-
pare further not only with XSB but also with other modern systems supporting tabling.
In this context it should be noted that in these experiments we have used the baseline,
bytecode-based compilation and abstract machine, but turning on global analysis and
the optimizing, low-level compiler [8] can further improve the speed of the SLD part of
the computation.

The results are also encouraging to us because they appear to be another example
supporting the “Ciao approach” of starting from a fast and robust, but extensible LP-
kernel system and then including additional characteristics by means of pluggable com-
ponents whose implementation must, of course, be as efficient as possible but which in
the end benefit from the initial base speed of the system.

5 Conclusions

We have reported on the design and efficiency of some improvements made to the con-
tinuation call mechanism of Ramesh and Chen. We argue that the resulting mechanism
is still easier to add to an existing, WAM-based system than implementing the SLG-
WAM, as it requires relatively small changes to the underlying execution engine. In
fact, almost everything is implemented within a fairly reusable C library, and the engine
has to be changed only to conditionally reinterpret the B[H] field when backtracking.

Our experimental results show that in general the speedups that the SLG-WAM ob-
tains with respect to SLD execution are, as expected, better than the ones obtained by
our implementation. However, the difference in raw speed between the systems makes
Ciao have sometimes better results in the absolute, as well as sometimes better conver-
gence results.

Our main conclusion is that using an external module for implementing tabling is a
viable alternative for adding tabled evaluation to Prolog systems, especially if coupled
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Ciao XSB XSB
Ciao

Program SLD Tabling SLD
Tabling

SLD Tabling SLD
Tabling

SLD Tabling

rchain 64 0.02 2.54 0.0080 0.02 0.9 0.027 1.00 0.35
rchain 256 0.11 37.01 0.0027 0.11 14.4 0.008 1.00 0.39
rchain 1024 0.48 603.44 0.0008 0.42 216.1 0.002 0.88 0.36
rcycle 64 - 4.98 - - 2.1 - - 0.42
rcycle 256 - 72.13 - - 35.2 - - 0.49
rcycle 1024 - 1150.54 - - 650.9 - - 0.56
numbers 3 0.56 0.63 0.88 1.0 0.7 1.43 1.79 1.11
numbers 4 24.89 25.39 0.98 44.4 28.7 1.55 1.78 1.13
numbers 5 811.08 772.10 1.05 1465.9 868.7 1.69 1.81 1.13
numbers 3r 1.62 1.31 1.24 3.3 1.8 1.83 2.04 1.37
numbers 4r 99.74 33.43 2.98 197.7 49.3 4.01 1.98 1.47
numbers 5r 7702.03 986.00 7.81 15091.0 1500.1 10.6 1.96 1.52

Table 3. Comparing the speed of our (Ciao) implementation and XSB.

with the proposed optimizations. It is also an approach that ties in well with the modular
approach to extensions which is an integral part of the design of the Ciao system. As
a result, the modifications have already been integrated in the Ciao repository and will
thus also appear in upcoming distributions.
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in Prolog. In S. Etalle and M. Truszczyński, editors, International Conference on Logic
Programming, number 4079 in LNCS, pages 429–430, Seattle, Washington, USA, August
2006. Springer-Verlag.

15. H. Tamaki and M. Sato. OLD resolution with tabulation. In Third International Conference
on Logic Programming, pages 84–98, London, 1986. Lecture Notes in Computer Science,
Springer-Verlag.

16. D.S. Warren. Memoing for logic programs. Communications of the ACM, 35(3):93–111,
1992.

17. R. Warren, M. Hermenegildo, and S. K. Debray. On the Practicality of Global Flow Analysis
of Logic Programs. In Fifth International Conference and Symposium on Logic Program-
ming, pages 684–699. MIT Press, August 1988.

18. Neng-Fa Zhou, Yi-Dong Shen, Li-Yan Yuan, and Jia-Huai You. Implementation of a linear
tabling mechanism. Journal of Functional and Logic Programming, 2001(10), October 2001.

19. Youyong Zou, Tim Finin, and Harry Chen. F-OWL: An Inference Engine for Semantic Web.
In Formal Approaches to Agent-Based Systems, volume 3228 of Lecture Notes in Computer
Science, pages 238–248. Springer Verlag, January 2005.

CICLOPS 2007

Pablo de Guzmán, M. Carro, M. Hermenegildo, Cláudio Silva and R. Rocha 146
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Abstract. In this work, we define how one can build a control flow
graph for programs written in the logic programming language Mercury.
We formally relate paths in this graph to program executions, including
failure and backtracking. We illustrate how our graph could be used
for program analysis by defining a simple (un)reachability analysis for
Mercury.

1 Introduction

Control flow graphs are well-known and widely used structures in software devel-
opment tools such as compilers and debuggers. Their main interest lies in the fact
that they provide an explicit representation of a program’s control flow struc-
ture which makes them well-suited as a building block for implementing program
analyses and optimizations such as dead-code elimination, branch predicate, loop
transformations, etc. [5, 1]. Moreover, the fact that they can easily be visualised
makes that they are frequently used in debugging and (semi) automatic test-case
generation (e.g. [10]).

Notwithstanding these applications, the construction and use of control flow
graphs for logic programs have received little attention. Some notable exceptions
include [4, 3, 2]. This should not be surprising, given that in logic programming
languages control information is far less explicit in programs and hence more
difficult to catch in a static structure.

In this work, we define how one can build and use a control flow graph for
the logic programming language Mercury. The fact that Mercury is a moded
language makes it easier to extract control flow information from a program
than it would be the case for an unmoded language such as Prolog. Nevertheless,
the resulting structure is a non-trivial extension of its counterpart for imperative
programs, since it needs to allow for reasoning about success and failure of goals,
backtracking, and multiple answers.

Our paper is structured as follows. After a short introduction to Mercury, we
define in Section 2 how one can build a control flow graph for programs written in
the language. In Section 3 we formalise the relation between a program execution
– possibly failing or returning multiple answers – and a path in the statically
created graph. Before concluding, we show in Section 4, how such a control flow
graph could advantageously be used for program analysis by defining a simple
(un)reachability analysis for Mercury.
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2 A Control Flow Graph for Mercury

Mercury is a statically typed logic programming language which offers a mode
system describing how the instantiation of a variable changes over the execution
of a goal. Each predicate argument is classified as either input to the call, denoted
by in (the argument is a ground term before and after the call) or output by
the call which is denoted by out (the argument is a free variable that will be
instantiated to a ground term at the end of the call). A predicate may have more
than one mode, each mode representing a particular usage of the predicate. Each
such mode is called a procedure in Mercury terminology. Each procedure has a
declared (or inferred) determinism which states the number of solutions it can
generate and whether it can fail. Determinisms supported by Mercury include
det (indicating that a call to the procedure will succeed exactly once), semidet
(a call will either succeed once or fail), multi (a call will generate at least one
solution but possibly more), and nondet (a call can either fail or generate one
or more solutions). There exist other instantiation states and determinisms but
these are outside the scope of this paper; we refer to [9] for details. Let us
consider for example the definition of the well-known append/3 and member/2
predicates. We provide two mode declarations for each predicate, reflecting their
most common usages:

:- pred append (list(T), list(T), list(T)).
:- mode append(in, in, out) is det.
:- mode append(out, out, in) is multi.

append([], Y, Y).
append([E|Es], Y ,[E|Zs]):- append(Es, Y, Zs).

:- pred member(T, list(T)).
:- mode member(in, in) is semidet.
:- mode member(out, in) is nondet.

member(X, [X|_]).
member(X, [Y|T]) :- not (X=Y), member(X, T).

For append/3, either the first two arguments are input and the third one
is output in which case the call will succeed exactly once (det), or the third
argument is input and the first two are output in which case the call may generate
multiple solutions (multi). Note that no call to append/3 in either of these modes
can fail. For member/2, either both arguments are input and the call will either
succeed once or fail (semidet), or only the second argument is input, in what
case the call can fail, or generate one or more solutions (nondet).

In this work, we consider a program as being a set of procedures. We assume
thus that every mode of a predicate has been translated into a different proce-
dure and that, in addition, every procedure is well-typed and well-moded. Such
a procedure can be translated to superhomogeneous form [9]. A procedure in su-
perhomogeneous form consists of a single clause (usually a disjunction) in which

2
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the arguments in the head of the clause and in procedure calls in the body are all
distinct variables. Explicit unifications are generated for these variables in the
body, and complex unifications are broken down into several simpler ones. The
following definition gives a labelled syntax for procedures in superhomogeneous
form. That is, we associate a distinct label to a number of program points of
interest. These labels – which are written in subscripts and attached to the left
and/or the right of a goal – are intended to indentify the nodes of the program’s
control flow graph.

Definition 1. Let Π denote the set of procedures symbols, Σ the set of function
symbols and V and L respectively the set of variables and labels in a given pro-
gram P. The syntax of a program in labelled superhomogenous form is defined
as follows:

LProc ::= p(X1, . . . , Xk) : −LConj.
LConj ::= lGl′

| lG, C
LDisj ::= C′; C′′

| D; C
LGoal ::= Atom

| Disj
| not(C)
| if C then C′ else C′′

Atom ::= X == Y | X ⇒ f(Y1, ..., Yn) | X ⇐ f(Y1, ..., Yn)
| Z := X | p(X1, ..., Xn)

where C, C′, C′′ ∈ LConj, D ∈ LDisj, G ∈ LGoal, a ∈ Atom, X, Y, Z and
Xi, Yi(0 ≤ i ≤ n) ∈ V , p/k ∈ Π, f ∈ Σ, l, l′ ∈ L. All labels within a given program
are assumed to be distinct.

The body of a procedure is defined as a conjunction of goals. A goal is either
an atom or a number of goals connected by disjunction, if then else or not. An
atom is either a procedure call or an unification. As a result of mode analysis,
each unification is characterized either as a test denoted by X == Y (where both
X and Y are of atomic type and input), an assignment denoted by Z := X, a
construction denoted by X ⇐ f(Y1, . . . , Yn) (where X is output, Y1, . . . , Yn are
input variables or a deconstruction denoted by X ⇒ f(Y1, . . . , Yn) (where X is
input, Y1, . . . , Yn are output variables). Moreover, the conjunctions are reordered
such that values are produced before they are consumed when the predicate is
executed by a left-to-right selection rule [9]. For a procedure p we denote by
head(p) and body(p) respectively the head atom and body of p’s definition.

3
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Example 1. The append(in,in,out),member(in,in) and member(out,in)pro-
cedures in labelled superhomogeneous form would look like:

append(X :: in, Y :: in, Z :: out) : −
l1(l2X⇒ [E|Es],l3 append(Es, Y, W),l4 Z⇐ [E|W]l5 ; l6Z = Yl7)l8 .

member(X :: in, Y :: in) : −
l1Y⇒ [E|Es],l2 (l3X == El4 ; l5member(X, Es)l6)l7 .

member(X :: out, Y :: in) : −
l1Y⇒ [E|Es],l2 (l3X := El4 ; l5member(X, Es)l6)l7 .

Note that our labelled syntax is conceived in such a way that each individual
subgoal is surrounded by two labels. In what follows we will use the function
first, defined on labelled conjunctions and disjunctions, which returns the label
preceding a given goal.

first (lGl′) = l
first (lG, C) = l
first (C; C′) = first(C)
first (D; C) = first(D)

In what follows we translate a program into a control flow graph such that a
path in this graph corresponds to a particular execution of the program. The
nodes of the directed graph are the labels occuring in the program, together
with two special labels: a success label lS and a failure label lF . These two labels
represent the two possible end points of an execution success or failure. In a
control flow graph, we will make a distinction between three different types of
edges. A regular arc (l, l′) denotes a possible transition from the program point
labelled l to the one labelled l′. Regular arcs are annoted by a natural number
n, which we will write in superscript along the arc, as in (l, l′)n. This will allow
later on, during path construction, to impose an order between different arcs that
leave a single node representing a choicepoint. In what follows we will often refer
to that number as the priority of the arc. A return-after-success or return-after-
failure arc, denoted (l, l′)rs respectively (l, l′)rf , implies that the atom preceded
by l is a procedure call and points out the label l′ where the execution should
be resumed upon success, respectively failure, of the call.

Example 2. Let us consider member(in,in), defined in Example 1. The control
flow graph corresponding to a program containing only this procedure would
look as follows:

l1 l2

l3

l5

l4

l6

l7 lS

lF

0

1

0

0

0

0

0

00

0

rs

rf
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For example, the first arc (l1, l2) denotes the success of the atom Y ⇒ [E|Es].
The arc (l1, lF ) denotes the fact that this deconstruction can fail. In order not
to overload the figure, we only depict priorities when relevant, i.e. for subgraphs
representing a disjunction : the edge initiating the first disjunct is annotated
by the highest value, the edge initiating the last disjunct by the lowest value –
which will always be zero. As such these values (or priorities) reflect the order of
the corresponding disjuncts in the source code. A node from which leave several
edges having different priorities represents effectively a choicepoint. When walk-
ing through the graph in order to collect execution paths, the highest priority
must be chosen first. This denotes the fact that, operationally, in a disjunction
(D1; D2) the disjunct D1 is executed first, and D2 is executed only if a back-
tracking occurs.

Formally, we can define a control flow graph of a program thus as follows:

Definition 2. Let P be a labelled program and let L+ denote the set of labels
occuring in P augmented by the dedicated success and failure labels, i.e. L+ =
L∪{lS , lF }. The control graph of P , denoted by GP , is a directed graph (L+, E)
with E ⊆ L+ × L+ in which each edge in E is annotated as either return-after-
success, return-after-failure or with a priority number.

The control flow graph for a program P can be constructed by considering
each procedure in isolation. If we let Arc denote the set of all annotated edges
over L+, we can define a function graph : LGoal×L+×L+×N → P(Arc) that
builds the set of edges associated with a labelled goal. The two label parameters
represent, respectively, the points at which execution should resume upon success
or failure of the given goal, and the natural number parameter represents the
priority given to the arc initiating the next disjunct when treating a disjunction.
As such, we can define the set of edges of the control flow graph of a complete
program as the union of the sets of edges associated to the body goals of the
individual procedures:

GP = (L+,
⋃

p∈Π

graph(body(p), lS , lF , 0)).

where lS and lF represent the special success and failure labels of the control
flow graph. The function graph is then defined by induction on the structure of
a labelled goal, as follows:

graph (l G l′ , ls, lf , nb) = {(l′, ls)0} ∪ arcsG (1)
where arcsG = graph ((lG), l′, lf , nb)

In case of a goal surrounded by two labels l and l′, we build the graph for lG
using l′ as success resume point, and we connect l′ to ls such that upon success
of G, execution will be resumed at ls. A conjunction is treated as follows:

graph((lG, C), ls, lf , nb) = arcsC ∪ arcsG (2)
where arcsC = graph(C, ls, lf , nb)

arcsG = graph((lG, first(C), lf , nb)

5
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In a conjunction of the form (lG, C) (2), the failure of any conjunct leads to the
failure of the entire conjunction. The success of the conjunct G results in the
execution of C – that’s why the local graph of G is built by using the first label
of C as success resume label.

Let a denote a unification, then we define :

graph (l a, ls, lf , nb) ={{(l, ls)0} if a = Z := X | Z ⇐ f(Y1, . . . , Yn)| Z := X ⊕ Y
{(l, ls)0, (l, lf)0} otherwise (3)

Case 3 is one of the base cases of the graph function. It treats the case of a
unification a preceded by a label. If the unification is bound to succeed, we only
add a single regular arc, linking the label preceding a to the success resume label
ls. If it can fail, then we also add another regular arc, linking the label before a
to the failure resume label lf .

graph (l p(X1, ..., Xn), ls, lf , nb) = {(l, lp)0, (l, ls)rs, (l, lf )rf} (4)
where lp = first(body(p))

In case of a predicate call (4), we link the label appearing in front of the call to
the entry label of p’s body goal. We add a return-after-success arc linking l to
ls and, likewise, a return-after-failure arc linking l to lf . Note that this return-
after-failure arc does not need to be added if the determinism of p is either det
or multi meaning that the call cannot fail.

graph (l if C then C′ otherwise C′′, ls, lf , nb) =
{(l, first(C))0} ∪ arcs1 ∪ arcs2 ∪ arcs3 (5)

where arcs1 = graph(C, first(C′), first(C′′), nb)
arcs2 = graph(C′, ls, lf , nb)
arcs3 = graph(C′′, ls, lf , nb)

In the if-then-else construction (5), the success of the test conjunction C leads
to the execution of the then conjunction C′, and its failure leads to the execution
of the else conjunction C′′. For this reasons, we build the local graph of C using
the first label of C′ as the success resume label and the first label of C′′ as the
failure resume label.

graph (lnot(C), ls, lf , nb) = {(l, first(C))0} ∪ arcsC (6)
where arcsC = graph(C, lf , ls, nb)

The graph of the goal not(C) (6) is obtained by inverting the success label and
the failure resume labels when constructing C’s graph. By doing this, failure of
C will lead to a success for not(C), and vice versa.

graph(l(D; C), ls, lf , nb) = {(l, first(C))nb} ∪ arcsD ∪ arcsC

where arcsD = graph(lD, ls, lF , (nb + 1))
arcsC = graph(C, ls, lf , 0) (7)

6
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In a disjunction (7), failure of the first disjunct D implies backtracking to the
second one C. Therefore, when constructing D’s graph, the failure label used is
the global failure label lF . On the other hand, the failure of this second disjunct
C leads to the failure of the whole expression; the failure label used for C’s
graph is then the current failure label. Also note that the label l can be seen
as a choicepoint; the graph corresponding to a disjunction will contain as many
arcs starting from l as there are disjuncts in the disjunction. Every such arc will
be labelled with a number denoting the priority in execution of the disjunct it
corresponds to – the highest the number, the highest the priority. We construct
the graph of l(C; C′) in a similar way:

graph(l(C; C′), ls, lf , nb) =
{(l, first(C′))nb, (l, first(C))nb+1} ∪ arcsC ∪ arcsC′ (8)

where arcsC = graph(C, ls, lF , 0)
arcsC′ = graph(C′, ls, lf , 0)

3 Extracting execution paths

In the following paragraph, we will show how program execution can be modeled
using the defined control flow graph.

Formally, we will represent an execution path as a sequence of execution seg-
ments; each segment being itself a sequence of labels denoting a partial execution
– that is a sequence of computation steps ending in success or failure that do
not include backtracking.

Definition 3. Let GP = (L+, E) be a control flow graph, we define an execution
segment in GP as a sequence of labels over L+. We say that an execution segment
S = 〈l1, . . . , lk〉 is valid iff the following conditions hold:

1. lk is either lS or lF ; and
2. ∀i : 1 ≤ i < k we have that

(a) either (li, li+1)nb ∈ E;
(b) or li = lS and ∃ lm ∈ S (m < i) such that (lm, li+1)rs ∈ E and

〈lm+1, . . . , li〉 is a valid execution segment.
(c) or li = lF and ∃ lm ∈ S (m < i) such that (lm, li+1)rf ∈ E and

〈lm+1, . . . , li〉 is a valid execution segment and ¬∃(lj , lv)nb ∈ E with
nb > 0 and m < j < i

The execution segment S is complete iff #{l ∈ S | (l, l′)rs ∈ E} = #{l′ ∈
S | (l, l′)rs ∈ E}.

A valid execution segment basically constitutes a sequence of labels ending
with either lS or lF (condition 1) such that each pair of successive labels (li, li+1)
with li 6= lS and li 6= lF is connected in the control flow graph (condition 2a).
If the segment contains lS (or lF ) in a position other than the last one, this
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must denote success (or failure) of a procedure and hence the following label
in the sequence must be the endpoint of an appropriate return arc (conditions
2b and 2c). Moreover, the subsequence 〈lm+1, . . . , li〉, representing the execution
between the call and return, must itself be a valid execution segment. However,
the return after the failure of a call can be performed only if the corresponding
call definitely failed, i.e. it is impossible to perform backtracking to a choicepoint
created after the call that would make the latter succeed; this condition means,
in terms of path construction, that all pairs of consecutive labels between the
call and the return – i.e. between lm and li – are linked with an arc with a
priority equal to zero. An execution segment is complete if and only if every call
has a corresponding return.

Example 3. Let us consider member(in,in), defined in example 1. The sequence
of labels s = 〈l1, l2, l3, l4, l7, lS〉 represents a valid and complete execution seg-
ment in the control flow graph depicted in Example 2. Note that it corresponds
to the execution of a call in which the deconstruction of the list into a first
element and a tail succeeds, as does the equality test between the former ele-
ment and the call’s first argument, leading to the success of the predicate. In
other words, the execution segment s represents a call member(X,Y) in which
the element X figures at the first position in the list Y .

Example 4. Let us now consider the nondeterministic member(out,in) proce-
dure, also defined in Example 1. Its control flow graph is as follows :

l1 l2

l3

l5

l4

l6

l7 lS

lF

0

1

0

0

0

0

0

0

0

rs

rf

The sequence of labels s = 〈l1, l2, l3, l4, l7, lS〉 represents a valid and complete
execution segment. The execution segment s represents the execution leading to
the first solution of a call member(X,Y) in which the list Y is not empty.

An execution path is a sequence of execution segments, each of them being itself
a sequence of labels denoting a partial execution ending in success or failure. As
such, in a path 〈S1, ..., Sn〉, a segment Si (i 6= 1) represents the continuation of
the execution of Si−1 by backtracking. Consequently, the first label of Si (i 6= 1)
must necessarily be the label of a node that is connected with a choicepoint.

Example 5. Let us consider again the nondeterministic member(out,in) proce-
dure. The execution path

p = 〈〈l1, l2, l3, l4, l7, lS〉, 〈l5, l1, l2, l3, l4, l7, lS , l6, l7, lS〉, 〈l5, l1, lF , lF , lF 〉〉
corresponds to the execution of a call member(X, Y ) in which a first solution is
produced by assigning the first element of the list Y to X and returning from the
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call (expressed by the first segment of the path, ending in lS). A second solution
is produced by backtracking, continuing the execution at l5, performing a recur-
sive call, assigning the second element of the original list to X , and performing
the return (the second segment, also ending in lS). The execution continues by
backtracking and continuing at l5 and performing a recursive call in which the
deconstruction of the list argument fails. In other words, the execution path p
corresponds to a call to member in which the second argument is instantiated
to a list containing only two elements.

Since a segment Si (i 6= 1) represents the continuation of the execution of
Si−1 by backtracking, concatenating the relevant part of S1 (i.e. representing
the execution up to the choicepoint used for backtracking) with S2 should give
us a new valid segment, denoting a partial execution in which a different choice
was commited.

Definition 4. Let GP = (L+, E) be a control flow graph for a program P and
S1, S2 two execution segments. We define the fusion of the relevant part of the
execution segment S1 with the execution segment S2 as follows:

fusion(〈l11 , ..., l1n〉, 〈l21, ..., l2m〉) = 〈l11, ..., l1j , l21, ..., l2m〉, j < n

such that :

1. (l1j , l
1
j+1)

nb ∈ E, nb > 0
2. (l1k, l1k+1)

nb′
/∈ E, k > j, nb′ > 0

3. (l1j , l
2
1)

nb−1 ∈ E

In this definition, lj refers to the last choicepoint appearing in S1 having at least
1 remaining choice left (1 and 2). The first label of the second segment must be
the next choice at this choicepoint (3). This new definition allows us to define an
ordered path, which is an execution path in which all the possible backtrackings
are performed in the appropriate order.

Definition 5. We define an ordered path as a sequence of execution segments
〈S1, . . . , Sn〉 such that the following conditions hold:

1. if n = 1 then S1 is valid and complete and, if (1) the mode of the predicate
under consideration is multi or nondet, or (2) S1 ends with lF , then there
must not exist li, li+1 ∈ S1 such that (li, li+1)nb ∈ E, nb > 0

2. if n > 1 then :
(a) ∀1 ≤ i ≤ n, Si is a valid execution segment
(b) fusion(S1, S2) exists and is a valid execution segment
(c) the path defined as 〈fusion(S1, S2), . . . , Sn〉 is an ordered path

If an execution path consists of a single segment, this segment must be valid
and complete. This condition is sufficient if the predicate under consideration is
either det or semidet and the segment ends with lS ; indeed, this means that the
execution has reached the only solution, if it exists. Otherwise, we must add the
condition that none of the involved labels must be the departure point of an arc
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with a priority higher than 0 in the graph (1). Indeed, if this were the case, it
would mean that there exists a choicepoint in the segment having an alternative
that has not been exploited.

Moreover, we have to pay attention to the fact that every segment compos-
ing a path must appear in the correct order, i.e. the segment S′

1 obtained by
concatenating the relevant part of S1 with S2 is valid, and the path 〈S′

1, ..., Sn〉
obtained by replacing S1 and S2 by S′

1 in the original path is ordered itself (2b).
Consequently, if we consider a predicate having an infinity of solutions, the

only execution paths considered as valid for this predicate would have an infinite
length. In practice, such a path can easily be "cut" after a given number of
solutions.

Definition 6. Let GP = (L+, E) be a control flow graph for a program P and p
a procedure defined in P , we define an execution path for p in GP as a sequence
of execution segments 〈S1, . . . , Sn〉 such that the following conditions hold:

1. if S1 = 〈l1, . . . , ln〉 then l1 = init(p)
2. 〈S1, . . . , Sn〉 is an ordered path and if Si = 〈li1, . . . , lin〉 then ∀1 ≤ j < n : if

(lij , l
i
j+1)

nb ∈ E then (lij , lk)nb+1 /∈ E

Since in a disjunction, all the disjuncts except the first one can only be reached
by performing a backtracking – either after a failure of the disjuncts preceding
them or after a success of the execution –, a label preceding a disjunct which
is not the first of a disjunction will appear in a path only as the first label of a
segment. Therefore, if a choicepoint lc appears in a segment, the label following
it lc+1 must necessarily be the first label of the first disjunct of the corresponding
disjunction, i.e. the arc (lc, lc+1)nb is the arc having the highest priority among
the arcs starting from the choicepoint lc.

4 Simple unreachability analysis

The control flow graph we defined in the previous sections allows us to easily
perform some analysis on Mercury programs. As an illustration we will devise a
simple “unreachability” analysis for Mercury. That is, given a label l, the analysis
will try to detect whether l cannot be reached by any execution and, as such,
represents dead code in the program. Let us define the concept of primitive path.
Intuitively, a primitive path is an execution path calculated from a graph without
taking into account the mechanisms of backtracking, priorities in disjunctions
and procedure calls.

Definition 7. Let Gp = (L+, E) be a control flow graph for a procedure p, we
define a primitive path for p in GP as a sequence of labels 〈l1, ..., ln〉 such that :

1. l1 = init(p)
2. ln = lS or ln = lF
3. ∀i, j : i 6= j ⇒ li 6= lj
4. ∀li ∈ L+, i < n, (li, li+1)nb ∈ E or (li, li+1)rs ∈ E or (li, li+1)rf ∈ E.
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A primitive path is just a path along the graph, starting from the first label of
the procedure and ending at either the success or the failure label, and where all
the labels are distinct (a primitive path cannot cycle). Therefore, there is only
a finite number of such paths that we can extract from a given graph.

Example 6. Let us consider again the nondeterministic member(out,in) proce-
dure, defined in Example 1. The primitive paths of this procedure are :

〈l1, l2, l3, l4, l7, lS〉, 〈l1, lF 〉, 〈l1, l2, l5, l6, l7, lS〉, 〈l1, l2, l5, lF 〉
In what follows we assume that, in the control flow graph, edges originating

from a label associated to an atom are annotated by a corresponding constraint,
depending of the kind of atom and whether it succeeds or fails, as follows:

a (l, l′) (l, l′′) l′ 6= l′′

lX := Yl′ x = y true

lX == Yl′ x = y x 6= y

lX <= f(Y1, . . . , Yn)l′ x = f(y1, . . . , yn) true

lX => f(Y1, . . . , Yn)l′ x = f(y1, . . . , yn) x 6= f(y1, . . . , yn)

In order to collect the constraints associated to an primitive path, the basic idea
is to walk the segment and collect the constraints associated to the corresponding
edges. We formalise this process by defining a function U that, given an primitive
path returns the constraints collected along the segment.

Definition 8. Let Gp = (L+, E) be a control flow graph and let 〈l1, . . . , ln〉
be a (prefix of a) valid primitive path. We define U(〈l1, . . . , ln〉) as the set of
constraints C obtained as follows:

– If ((l1, l2)nb ∈ E then let c be the constraint associated to the edge (l1, l2).
Let C′ = U(〈l2, . . . , ln〉), then we define C = {c} ∪ C′.

For the base case of the recursion, we have that U(〈l〉, M) = ∅.
Definition 9. Let Gp = (L+, E) be a control flow graph for a procedure p, and
Pp the set of primitive paths of Gp. The label l ∈ L+ is unreachable if ∀pp ∈ Pp

such that l ∈ pp, the set of constraints U(pp′) is not satisfiable, where pp′ is the
unique prefix of pp ending with l.

This definition denotes the fact that a program point cannot be reached if every
possible execution leading to this point necessarily fails. Uniqueness of the prefix
is guaranteed by the fact that all labels of a primitive path are distinct. Of course,
this condition for unreachability is sufficient but by no means necessary, since
the problem is in general undecidable.

5 Conclusion

In this work, we have defined how one can build a control flow graph for pro-
grams written in Mercury, and we have formally shown how program executions
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relate to paths in our graph. We have also illustrated, by defining a simple un-
reachability analysis, how such a graph could be used when analysing Mercury
programs. While the analysis defined in Section 4 is rather simple, we conjecture
that also more involved analyses can fruitfully use such control flow graphs. The
described construction has been implemented, and in our current work we are
using the graphs for driving an algorithm for automatic test case generation for
Mercury [6].

To the best of our knowledge, little work exists in which control flow graphs
are formally defined and used in a logic programming setting. In [3], the authors
present a visual debugging environment for Mercury programs, which employs a
layered AND-OR tree representation of the program to provide a way of visualiz-
ing the execution of a program. Similar tree representations have been previously
used in the context of Prolog, for example in the Transparent Prolog Machine
[2]. Other work on Prolog includes [4], in which the author makes the control
flow of Prolog more explicit by applying program transformations. These trans-
formations introduce, for example, predicates that save and restore the program
state at choicepoints. The results of a program analysis are subsequently used
to contruct a control flow graph.

Although our own work is particularly targeted to Mercury, it would be
interesting to see whether and how the defined notions could be generalised for
use in other logic programming languages, in particular Prolog.
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