
Proceedings of INAP 2009

18th International Conference on Applications of
Declarative Programming and Knowledge

Management

Salvador Abreu and Dietmar Seipel (Eds.)

November 5–7, 2009

Évora, Portugal

Organization

INAP 2009 was organized by the Informatics Department of Universidade de
Évora, in cooperation with the Portuguese A. I. Society (APPIA).

Workshop Chairs

Salvador Abreu Universidade de Évora, Portugal
Dietmar Seipel Universität Würzburg, Germany

Organizing Committee

Vitor Nogueira University of Évora, Portugal
Vasco Pedro University of Évora, Portugal
Pedro Salgueiro University of Évora, Portugal

Program Commitee

Salvador Abreu University of Évora, Portugal (co-chair)
Sergio Alvarez Boston College, USA
Philippe Codognet CNRS/JFLI, Tokyo, Japan
Vitor Santos Costa University of Porto, Portugal
Daniel Diaz University of Paris I, France
Ulrich Geske University of Potsdam, Germany
Gopal Gupta UT Dallas, USA
Petra Hofstedt Technical University of Berlin, Germany
Ulrich Neumerkel Technical University of Vienna, Austria
Vitor Nogueira University of Évora, Portugal
Enrico Pontelli New Mexico State University, USA
Irene Rodrigues University of Évora, Portugal
Carolina Ruiz Worcester Polytechnic Institute, USA
Dietmar Seipel University of Wuerzburg, Germany (co-chair)
Terrance Swift CENTRIA, Portugal
Hans Tompits Technical University of Vienna, Austria
Masanobu Umeda Kyushu Institute of Technology, Japan
Armin Wolf Fraunhofer FIRST, Berlin, Germany
Osamu Yoshie Waseda University, Japan

Table of Contents

An Alternative Declarative Approach to Database Interaction and Man-
agement (invited talk) . 1

António Porto

Design Patterns for Tabled Logic Programming (invited talk) 3
Terrance Swift

Applications

Elder Care via Intention Recognition and Evolution Prospection 5
Luis Moniz Pereira and Anh Han The

Knowledge Management Strategy and Tactics for Forging Die Design Sup-
port . 21

Masanobu Umeda and Yuji Mure

Network Monitoring with Constraint Programming: Preliminary Specifi-
cation and Analysis . 37

Pedro Salgueiro and Salvador Abreu

Searching in Protein State Space . 53
Dietmar Seipel and Jörg Schultz

The Contact-Center Business Analyzer: a case for Persistent Contextual
Logic Programming . 69

Cláudio Fernandes, Nuno Lopes, Manuel Monteiro and Salvador Abreu

Databases and Query Languages

An Efficient Logic Programming Approach to Sub-Graph Isomorphic Queries 83
Hasan Jamil

Database NL Dialogues question answering as a Constraint Satisfaction
Problem . 97

Irene Rodrigues, Luis Quintano and Ĺıgia Silva Ferreira

Extending XQuery for Semantic Web Reasoning . 109
Jesus Manuel Almendros-Jimenez

JSquash: Source Code Analysis of Embedded Database Applications for
Determining SQL Statements . 125

Dietmar Seipel, Andreas Böhm and Markus Fröhlich

Table of Contents Table of Contents

Reference Model and Perspective Schemata Inference for Enterprise Data
Integration . 141

Valéria Magalhães Pequeno and João Moura Pires

Foundations and Extensions of LP

A Very Compact and Efficient Representation of List Terms for Tabled
Logic Programs . 157

João Raimundo and Ricardo Rocha

Inspection Points and Meta-Abduction in Logic Programs 171
Luis Moniz Pereira and Alexandre Miguel Pinto

Stable Model implementation of Layer Supported Models by program
transformation . 185

Luis Moniz Pereira and Alexandre Miguel Pinto

Towards Computing Revised Models for FO Theories 199
Johan Wittocx, Broes De Cat and Marc Denecker

ISTO: a Language for Temporal Organisational Information Systems 213
Vitor Nogueira and Salvador Abreu

Knowledge Representation Using Logtalk Parametric Objects 225
Paulo Moura

Adaptive Reasoning for Cooperative Agents . 241
Luis Moniz Pereira and Alexandre Miguel Pinto

Runtime Verification of Agent Properties . 257
Stefania Costantini, Pierangelo Dell’Acqua, Luis Moniz Pereira and
Panagiota Tsintza

IV

An Alternative Declarative Approach to
Database Interaction and Management

António Porto

Faculdade de Ciências
Universidade do Porto

ap@dcc.fc.up.pt

Abstract. Most real-world applications inevitably face the issue of per-
sistence, generally understood as how to design, maintain and interact
with a database. The standard approach relies on the mature technology
of relational databases, with interaction specified through SQL embed-
ded in the host programming language. Attempts to raise the level of the
error-prone interaction code have been in the direction of object-oriented
databases or deductive databases, with simpler queries but less mature
technology on the database part.
Here we present a different high-level approach, close in spirit to natural
language, using variable-free conceptual expressions that are quite con-
cise, natural and easy to read and understand, promoting much better
code maintenance than the alternative approaches. This is achieved by
using the flexible operator syntax and the deductive capabilities of logic
programming in two ways, first to compile the database scheme from a
modular structural description into a clausal representation, and then
to translate (using the compiled scheme) terms expressing queries and
commands into SQL statements.
The approach relies crucially on the use of attributes, whose inheritance
and composition avoid many explicit joins. Expressions become natural
by choosing the right noun phrases (rather than verbal) for the attributes.
A useful feature is the use of global parameters for implicit current val-
ues. Our deductive handle on the scheme allows the query translation
to automatically split the needed joins into inner and outer joins. The
abstraction power is further raised by having manifold attributes, whose
values actually vary along a parametric domain, the main examples being
the handling of temporal and multi-lingual data.
Commands can also be very high-level, for example the simple statement
of update of an identity value (part of the primary key) of an individual
results in its replacement in all tuples of all concepts where the individual
was referenced, this being done in the correct order to prevent violation
of foreign keys.
We present the ideas incrementally, with examples along with a rigorous
account of the used syntax and semantics.

António Porto 1

2

Design Patterns for Tabled Logic Programming
(Abstract)

Terrance Swift

Centro de Inteligência Artificial, Universidade Nova de Lisboa

The past few years have brought an increasing amount of research into Tabled
Logic Programming (TLP), so that TLP is now available in several Prolog sys-
tems including XSB, YAP, B Prolog, Mercury, ALS, and Ciao. A leading reason
for this interest is the demonstrated ability of TLP to solve practical problems.
TLP has been used in XSB to implement systems for program analysis, model
checking, agent frameworks, semantic web applications, natural language pro-
cessing, medical informatics, and software engineering. TLP has been extensively
used in YAP for machine learning and bioinformatics applications; TLP has also
been used B Prolog to implement probabilistic reasoning in the PRISM system.
In some of these applications, TLP is used simply as a means to compute transi-
tive closure. In other applications, the uses of TLP are more elaborate: tabling is
used to evaluate large sets of mutually recursive predicates, to provide full well-
founded negation, to provide a basis for quantitative reasoning, or is combined
with logical constraints. A bibliography of such applications is available in [2].

This paper attempts to synthesize approaches to TLP by making use of the
organizing principle of software design patterns (cf. [1]). Software design patterns
were originally applied to object-oriented programs, but they have since been
applied to a variety of areas including workflow systems, stream databases, and
enterprise architectures. However, within logic programming the use of design
patters is uncommon, perhaps because of their lack of formality. While software
design patterns do not provide a formal basis for program synthesis or develop-
ment, they can provide a useful framework to highlight programming idioms and
to associate these idioms with their uses. Even a partial framework can benefit
users by providing a survey of “tricks of the trade”; it can benefit engine im-
plementors by indicating the types of operations that must be made efficient or
robust; and it can benefit compiler writers by indicating analysis problems that
are characteristic of TLP. Towards that end, this paper makes the first known
attempt at using design patterns to classify TLP programming idioms.

References

1. J. Coplien and D. Schmidt. Pattern Languages of Program Design. Addison-Wesley,
1995.

2. T. Swift and D.S. Warren. XSB: Extending the power of prolog using tabling, 2009.
available at www.cs.sunysb.edu/ tswift.

Terrance Swift 3

4

Elder Care via Intention Recognition and Evolution
Prospection

Luı́s Moniz Pereira and Han The Anh
lmp@di.fct.unl.pt, h.anh@fct.unl.pt

Centro de Inteligência Artificial (CENTRIA)
Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

Abstract. We explore and exemplify the application in the Elder Care context of
the ability to perform Intention Recognition and of wielding Evolution Prospec-
tion methods. This is achieved by means of an articulate use of Causal Bayes
Nets (for heuristically gauging probable general intentions), combined with spe-
cific generation of plans involving preferences (for checking which such inten-
tions are plausibly being carried out in the specific situation at hand). The over-
all approach is formulated within one coherent and general logic programming
framework and implemented system. The paper recaps required background and
illustrates the approach via an extended application example.
Keywords: Intention Recognition, Elder Care, Causal Bayes Nets, P-Log, Evo-
lution Prospection, Preferences.

1 Introduction

In the last twenty years there has been a significant increase of the average age of
the population in most western countries and the number of elderly people has been
and will be constantly growing. For this reason there has been a strong development
of supportive technology for elderly people living independently in their own homes,
for example, RoboCare Project [8] – an ongoing project developing robots for assisted
elderly people’s living, SINDI – a logic-based home monitoring system [9].

For the Elder Care application domain, in order to provide contextually appropriate
help for elders, it is required that the assisting system have the ability to observe the
actions of the elders, recognize their intentions, and then provide suggestions on how to
achieve the recognized intentions on the basis of the conceived plans. In this paper we
focus on the latter two steps in order to design and implement an elder care logic pro-
gramming based assisting system. The first step of perceiving elders’ actions is taken for
granted. For elders’ intention recognition based on their observable actions, we employ
our work on Intention Recognition system using Causal Bayes Networks and plan gen-
eration techniques, described in [1]. The intention recognition component is indispens-
able for living-alone elders, in order to provide them with timely suggestions. The next
step, that of providing action suggestions for realizing the recognized intention gleaned
from the previous stage, is implemented using our Evolution Prospection Agent (EPA)
system [2,3]. The latter can prospectively look ahead into the future to choose the best
course of evolution whose actions achieve the recognized intention, while being aware

Luis Moniz Pereira and Anh Han The 5

of the external environment and of an elder’s preferences and already scheduled future
events. Expectation rules and a priori preferences take into account the physical state
(health reports) information of the elder to guarantee that only contextually safe healthy
choices are generated; then, information such as the elder’s pleasure, interests, etc. are
taken into account by a posteriori preferences and the like. The advance and easiness of
expressing preferences in EPA [3] enable to closely take into account the elders’ pref-
erences, which we believe, would increase the degree of acceptance of the elders w.r.t.
the technological help - an important issue of the domain [10].

Recently, there have been many works addressing the problem of intention recogni-
tion as well as its applications in a variety of fields. As in Heinze’s doctoral thesis [11],
intention recognition is defined, in general terms, as the process of becoming aware
of the intention of another agent and, more technically, as the problem of inferring an
agent’s intention through its actions and their effects on the environment. According
to this definition, one approach to tackle intention recognition is by reducing it to plan
recognition, i.e. the problem of generating plans achieving the intentions and choosing
the ones that match the observed actions and their effects in the environment of the
intending agent. This has been the main stream so far [11,14].

One of the main issues of that approach is that of finding an initial set of possible
intentions (of the intending agent) that the plan generator is going to tackle, and which
must be imagined by the recognizing agent. Undoubtedly, this set should depend on
the situation at hand, since generating plans for all intentions one agent could have, for
whatever situation he might be in, is unrealistic if not impossible.

In this paper, we use an approach to solve this problem employing so-called
situation-sensitive Causal Bayes Networks (CBN) - That is, CBNs [18] that change
according to the situation under consideration, itself subject to ongoing change as
a result of actions. Therefore, in some given situation, a CBN can be configured
dynamically, to compute the likelihood of intentions and filter out the much less likely
intentions. The plan generator (or plan library) thus only needs, at the start, to deal
with the remaining more relevant because more probable or credible intentions, rather
than all conceivable intentions. One of the important advantages of our approach is
that, on the basis of the information provided by the CBN the recognizing agent can
see which intentions are more likely and worth addressing, so, in case of having to
make a quick decision, it can focus on the most relevant ones first. CBNs, in our
work, are represented in P-log [4,6,5], a declarative language that combines logical and
probabilistic reasoning, and uses Answer Set Programming (ASP) as its logical and
CBNs as its probabilistic foundations. Given a CBN, its situation-sensitive version is
constructed by attaching to it a logical component to dynamically compute situation
specific probabilistic information, which is forthwith inserted into the P-log program
representing that CBN. The computation is dynamic in the sense that there is a process
of inter-feedback between the logical component and the CBN, i.e. the result from the
updated CBN is also given back to the logical component, and that might give rise to
further updating, etc.

In addition, one more advantage of our approach, in comparison with those us-
ing solely BNs [12,13] is that these just use the available information for constructing
CBNs. For complicated tasks, e.g. in recognizing hidden intentions, not all information

6 Elder Care via Intention Recognition and Evolution Prospection

is observable. The approach of combining with plan generation provides a way to guide
the recognition process: which actions (or their effects) should be checked whether they
were (hiddenly) executed by the intending agent. In practice, one can make use of any
plan generators or plan libraries available. For integration’s sake, we can use the ASP
based conditional planner called ASCP [16] from XSB Prolog using the XASP package
[7,24] for interfacing with Smodels [22] – an answer set solver – or, alternatively, rely
on plan libraries so obtained.

In the sequel we briefly describe the intention recognition and evolution prospection
systems, but not the planner. Then we show in detail how to combine them to provide
contextual help for elderly people, illustrating with an extended example.

2 Intention Recognition

2.1 Causal Bayes Networks

A Bayes Network (BN), recapitulated here for convenience in order to help see their
realization in P-log, is a pair consisting of a directed acyclic graph (dag) whose nodes
represent variables and missing edges encode conditional independencies between the
variables, and an associated probability distribution satisfying the assumption of con-
ditional independence (Causal Markov Assumption - CMA), saying that variables are
independent of their non-effects conditional on their direct causes [18].

If there is an edge from node A to another node B, A is called a parent of B, and B
is a child of A. The set of parent nodes of a node A is denoted by parents(A). Ancestor
nodes of A are parents of A or parents of some ancestor nodes of A. If A has no parents
(parents(A) = ∅), it is called a top node. If A has no child, it is called a bottom node.
The nodes which are neither top nor bottom are said intermediate. If the value of a node
is observed, the node is said to be an evidence node. In a BN, associated with each
intermediate node of its dag is a specification of the distribution of its variable, say A,
conditioned on its parents in the graph, i.e. P (A|parents(A)) is specified. For a top
node, one without parents, the unconditional distribution of the variable is specified.
These distributions are called Conditional Probability Distribution (CPD) of the BN.

Suppose the nodes of the dag form a causally sufficient set [17], i.e. no common
causes of any two nodes are omitted, then implied by CMA [17], the joint distribution
of all node values of the set can be determined as the product of conditional probabilities
of the value of each node on its parents

P (X1, ..., XN) =
N∏

i=1

P (Xi|parents(Xi))

where V = {Xi|1 ≤ i ≤ N} is the set of nodes of the dag.
Suppose there is a set of evidence nodes in the dag, say O = {O1, ..., Om} ⊂ V .

We can determine the conditional probability of a variable X given the observed value
of evidence nodes by using the conditional probability formula

P (X|O) =
P (X,O)
P (O)

=
P (X,O1, ..., Om)
P (O1, ..., Om)

(1)

Luis Moniz Pereira and Anh Han The 7

where the numerator and denominator are computed by summing the joint probabilities
over all absent variables with respect to V , as follows

P (X = x,O = o) =
∑

av∈ASG(AV1)

P (X = x,O = o,AV1 = av)

P (O = o) =
∑

av∈ASG(AV2)

P (O = o,AV2 = av)

where o = {o1, ..., om} with o1, ..., om being the observed values of O1, ..., Om, re-
spectively; ASG(V t) denotes the set of all assignments of vector Vt (with components
are variables in V); AV1, AV2 are vectors components of which are corresponding ab-
sent variables, i.e. variables in V \ {O ∪ {X}} and V \O, respectively.

In short, to define a BN specify the structure of the network, its Conditional Proba-
bility Distribution (CPD) and the prior probability distribution of the top nodes.

2.2 Intention recognition with Causal Bayesian Networks

The first phase of the intention recognition system is to find out how likely each possible
intention is, based on current observations such as observed actions of the intending
agent or the effects its actions (either actually observed, or missed direct observation)
have in the environment. It is carried out by using a CBN with nodes standing for binary
random variables that represent causes, intentions, actions and effects.

Intentions are represented by intermediate nodes whose ancestor nodes stand for
causes that give rise to intentions. Intuitively, we extend Heinze’s tri-level model [11]
with a so-called pre-intentional level that describes the causes of intentions, used to
estimate prior probabilities of the intentions. This additional level guarantees the causal
sufficiency condition of the set of nodes of the dag. However, if these prior probabilities
can be specified without considering the causes, intentions are represented by top nodes.
These reflect the problem context or the intending agent’s mental state.

Observed actions are represented as children of the intentions that causally affect
them. Observable effects are represented as bottom nodes. They can be children of
observed action nodes, of intention nodes, or of some unobserved actions that might
cause the observable effects that are added as children of the intention nodes.

The causal relations among nodes of the BNs (e.g. which causes give rise to an in-
tention, which intentions trigger an action, which actions have an effect), as well as their
CPD and the distribution of the top nodes, are specified by domain experts. However,
they might be learnt mechanically. By using formula 1 the conditional probabilities of
each intention on current observations can be determined, X being an intention and O
being the set of current observations.

Example 1 (Elder Care). An elder stays alone in his apartment. The intention recogni-
tion system observes that he is looking for something in the living room. In order to as-
sist him, the system needs to figure out what he intends to find. The possible things are:
something to read (book); something to drink (drink); the TV remote control (Rem);
and the light switch (Switch). The CBN representing this scenario is that of Figure 1.
Its CPD and the distribution of top nodes will be given directly in P-log code.

8 Elder Care via Intention Recognition and Evolution Prospection

Fig. 1: Elder’s intentions CBN

2.3 P-log

The computation in CBNs is automated using P-log, a declarative language that com-
bines logical and probabilistic reasoning, and ASP as its logical and CBNs as its prob-
abilistic foundations. We recap it here for self-containment, to the extent we use it.

The original P-log [4,6] uses ASP as a tool for computing all stable models of the
logical part of P-log. Although ASP has been proved to be a useful paradigm for solv-
ing a variety of combinatorial problems, its non-relevance property [7] makes the P-log
system sometimes computationally redundant. Newer developments of P-log [5] use the
XASP package of XSB Prolog [24] for interfacing with Smodels [22] – an answer set
solver. The power of ASP allows the representation of both classical and default nega-
tion in P-log easily. Moreover, the new P-log uses XSB as the underlying processing
platform, allowing arbitrary Prolog code for recursive definitions. Consequently, it al-
lows more expressive queries not supported in the original version, such as meta queries
(probabilistic built-in predicates can be used as usual XSB predicates, thus allowing full
power of probabilistic reasoning in XSB) and queries in the form of any XSB predicate
expression [5]. Moreover, the tabling mechanism of XSB [23] significantly improves
the performance of the system.

In general, a P-log programΠ consists of the 5 components detailed below: a sorted
signature, declarations, a regular part, a set of random selection rules, a probabilistic
information part, and a set of observations and actions.

(i) Sorted signature and Declaration The sorted signature Σ of Π contains a set of
constant symbols and term-building function symbols, which are used to form terms
in the usual way. Additionally, the signature contains a collection of special reserved
function symbols called attributes. Attribute terms are expressions of the form a(t̄),
where a is an attribute and t̄ is a vector of terms of the sorts required by a. A literal is
an atomic statement, p, or its explicit negation, neg p.

Luis Moniz Pereira and Anh Han The 9

The declaration part of a P-log program can be defined as a collection of sorts and
sort declarations of attributes. A sort c can be defined by listing all the elements c =
{x1, ..., xn}, specifying the range of values c = {L..U} where L and U are the integer
lower bound and upper bound of the sort c. Attribute a with domain c1 × ... × cn and
range c0 is represented as follows:

a : c1 × ...× cn --> c0

If attribute a has no domain parameter, we simply write a : c0. The range of attribute a
is denoted by range(a).
(ii) Regular part This part of a P-log program consists of a collection of rules, facts,
and integrity constraints (IC) in the form of denials, formed using literals of Σ. An IC
is encoded as a rule with the false literal in the head.
(iii) Random Selection Rule This is a rule for attribute a having the form:

random(RandomName, a(t̄), DynamicRange) :- Body

This means that the attribute instance a(t̄) is random if the conditions in Body are sat-
isfied. The DynamicRange, not used in the particular examples in the sequel, allows
to restrict the default range for random attributes. The RandomName is a syntactic
mechanism used to link random attributes to the corresponding probabilities. If there
is no precondition, we simply put true in the body. A constant full can be used in
DynamicRange to signal that the dynamic domain is equal to range(a).
(iv) Probabilistic Information Information about probabilities of random attribute in-
stances a(t̄) taking a particular value y is given by probability atoms (or simply pa-
atoms) which have the following form:

pa(RandomName, a(t̄, y), d (A,B)):- Body.

meaning that if theBody were true, and the value of a(t̄) were selected by a rule named
RandomName, then Body would cause a(t̄) = y with probability A

B .
(v) Observations and Actions These are, respectively, statements of the forms obs(l)
and do(l), where l is a literal. Observations are used to record the outcomes of ran-
dom events, i.e. of random attributes and attributes dependent on them. The statement
do(a(t, y)) indicates that a(t) = y is enforced true as the result of a deliberate action,
not an observation.

2.4 An example: recognizing elders’ intentions

To begin with, we need to declare two sorts:

bool = {t,f}.
elder_intentions = {book,drink,rem,switch}.

where the second one is the sort of possible intentions of the elder. There are five
top nodes, named thirsty(thsty), like reading(lr), like watching(lw), tv on(tv),
light on(light), belonging to the pre-intention level to describe the causes that might
give rise to the considered intentions. The values of last two nodes are observed
(evidence nodes). The corresponding random attributes are declared as

10 Elder Care via Intention Recognition and Evolution Prospection

thsty:bool. lr:bool. lw:bool. tv:bool. light:bool.
random(rth,thsty,full). random(rlr,lr,full).
random(rlw,lw,full). random(rtv,tv,full).
random(rl, light, full).

and their independent probability distributions are encoded with pa-rules as

pa(rth,thsty(t),d_(1,2)). pa(rlr,lr(t),d_(8,10)).
pa(rlw,lw(t),d_(7,10)). pa(rtv,tv(t),d_(1,2)).
pa(rl,light(t),d_(1,2)).

The possible intentions reading is afforded by four nodes, representing the four possi-
ble intentions of the elder, as mentioned above. The corresponding random attributes
are coded specifying an attribute with domain elder intentions and receives boolean
values

i:elder_intentions --> bool. random(ri, i(I), full).

The probability distribution of each intention node conditional on the causes are coded
in P-log below. Firstly, for i(book):

pa(ri(book),i(book,t),d_(0,1)):-light(f).
pa(ri(book),i(book,t),d_(0,1)):-light(t),tv(t).
pa(ri(book),i(book,t),d_(6,10)):-light(t),tv(f),lr(t),lw(t),thsty(t).
pa(ri(book),i(book,t),d_(65,100)):-light(t),tv(f),lr(t),lw(t),thsty(f).
pa(ri(book),i(book,t),d_(7,10)):-light(t),tv(f),lr(t),lw(f),thsty(t).
pa(ri(book),i(book,t),d_(8,10)):-light(t),tv(f),lr(t),lw(f),thsty(f).
pa(ri(book),i(book,t),d_(1,10)):-light(t),tv(f),lr(f),lw(t).
pa(ri(book),i(book,t),d_(4,10)):-light(t),tv(f),lr(f),lw(f).

For i(drink):

pa(ri(drink),i(drink,t),d_(0,1)) :- light(f).
pa(ri(drink),i(drink,t),d_(9,10)) :- light(t), thsty(t).
pa(ri(drink),i(drink,t),d_(1,10)) :- light(t), thsty(f).

For i(rem):

pa(ri(rem),i(rem,t),d_(0,1)):-light(f).
pa(ri(rem),i(rem,t),d_(8,10)):-light(t),tv(t).
pa(ri(rem),i(rem,t),d_(4,10)):-light(t),tv(f),lw(t),lr(t),thsty(t).
pa(ri(rem),i(rem,t),d_(5,10)):-light(t),tv(f),lw(t),lr(t),thsty(f).
pa(ri(rem),i(rem,t),d_(6,10)):-light(t),tv(f),lw(t),lr(f),thsty(t).
pa(ri(rem),i(rem,t),d_(9,10)):-light(t),tv(f),lw(t),lr(f),thsty(f).
pa(ri(rem),i(rem,t),d_(1,10)):-light(t),tv(f),lw(f),lr(t),thsty(t).
pa(ri(rem),i(rem,t),d_(2,10)):-light(t),tv(f),lw(f),lr(t),thsty(f).
pa(ri(rem),i(rem,t),d_(0,1)):-light(t),tv(f),lw(f),lr(f),thsty(t).
pa(ri(rem),i(rem,t),d_(3,10)):-light(t),tv(f),lw(f),lr(f),thsty(f).

For i(switch):

pa(ri(switch),i(switch,t),d_(1,1)) :- light(f).
pa(ri(switch),i(switch,t),d_(1,100)) :- light(t).

Luis Moniz Pereira and Anh Han The 11

There is only one observation, namely, that is the elder is looking for something (look).
The declaration of the corresponding random attribute and its probability distribution
conditional on the possible intentions are given as follows:

look : bool. random(rla, look, full).
pa(rla,look(t),d_(99,100)):-i(book,t),i(drink,t),i(rem,t).
pa(rla,look(t),d_(7,10)):-i(book,t) i(drink,t),i(rem,f).
pa(rla,look(t),d_(9,10)):-i(book,t),i(drink,f),i(rem,t).
pa(rla,look(t),d_(6,10)):-i(book,t),i(drink,f),i(rem,f).
pa(rla,look(t),d_(6,10)):-i(book,f),i(drink,t),i(rem,t).
pa(rla,look(t),d_(3,10)):-i(book,f),i(drink,t), i(rem,f).
pa(rla,look(t),d_(4,10)):-i(book,f),i(drink,f),i(rem,t).
pa(rla,look(t),d_(1,10)):-i(book,f),i(drink,f),i(rem,f),i(switch,t).
pa(rla,look(t),d_(1,100)):-i(book,f),i(drink,f),i(rem,f),i(switch,f).

Recall that the two nodes tv on and light on are observed. The probabilities that the
elder has the intention of looking for book, drink, remote control and light switch given
the observations that he is looking around and of the states of the light (on or off) and
TV (on or off) can be found in P-log with the following queries, respectively:

?− pr(i(book , t) ′|′ (obs(tv(S1)) & light(S2) & obs(look(t))),V1).
?− pr(i(drink , t) ′|′ (obs(tv(S1)) & light(S2) & obs(look(t))),V2).
?− pr(i(rem, t) ′|′ (obs(tv(S1)) & light(S2) & obs(look(t))),V3).
?− pr(i(switch, t) ′|′ (obs(tv(S1)) & light(S2) & obs(look(t))),V4).

where S1, S2 are boolean values (t or f) instantiated during execution, depending on
the states of the light and TV. Let us consider the possible cases

– If the light is off (S2 = f), then V1 = V2 = V3 = 0, V4 = 1.0, regardless of the
state of the TV.

– If the light is on and TV is off (S1 = t, S2 = f), then V1 = 0.7521, V2 =
0.5465, V3 = 0.5036, V4 = 0.0101.

– If both light and TV are on (S1 = t, S2 = t), then V1 = 0, V2 = 0.6263, V3 =
0.9279, V4 = 0.0102.

Thus, if one observes that the light is off, definitely the elder is looking for the light
switch, given that he is looking around. Otherwise, if one observes the light is on, in
both cases where the TV is either on or off, the first three intentions book, drink, remote
control still need to be put under consideration in the next phase, generating possible
plans for each of them. The intention of looking for the light switch is very unlikely to
be the case comparing with other three, thus being ruled out. When there is light one
goes directly to the light switch if the intention is to turn it off, without having to look
for it.

2.4.1 Situation-sensitive CBNs Undoubtedly, CBNs should be situation-sensitive
since using a general CBN for all specific situations (instances) of a problem domain is
unrealistic and most likely imprecise. However, consulting the domain expert to man-
ually change the CBN w.r.t. each situation is also very costly. We here provide a way

12 Elder Care via Intention Recognition and Evolution Prospection

to construct situation-sensitive CBNs, i.e. ones that change according to the given situ-
ation. It uses Logic Programming (LP) techniques to compute situation specific proba-
bilistic information which is then introduced into a CBN which is general for the prob-
lem domain.

The LP techniques can be deduction with top-down procedure (Prolog) (to deduce
situation-specific probabilistic information) or abduction (to abduce probabilistic infor-
mation needed to explain observations representing the given situation). However, we
do not exclude various other types of reasoning, e.g. including integrity constraint sat-
isfaction, contradiction removal, preferences, or inductive learning, whose results can
be compiled (in part) into an evolving CBN.

The general issue of how to update a CBN with new probabilistic information can
take advantage of the advances in LP semantics for evolving programs by means of rule
updates [19,20,21]. In this paper, however, we don’t need such general updates, and
make do with a simpler way, shown in the sequel.

Example 2 (Elder Care, cont’d). In this scenario, the CBN may vary depending on
some observed factors, for example, the time of day, the current temperature, etc. We
design a logical component for the CBN to deal with those factors:

pa_rule(pa(rlk,lr(t),d_(0,1)),[]):-time(T), T>0, T<5, !.
pa_rule(pa(rlk,lr(t),d_(1,10)),[]):-time(T), T>=5, T<8, !.
pa_rule(pa(rlw,lw(t),d_(9,10)),[]):-time(T),schedule(T,football),!.
pa_rule(pa(rlw,lw(t),d_(1,10)),[]):-time(T), (T>23; T<5), !.
pa_rule(pa(rth,thsty(t),d_(7,10)),[]):-temp(T), T>30, !.
pa_rule(pa(rlk,lr(t),d_(1,10)),[]):-temp(TM), TM >30, !.
pa_rule(pa(rlw,lw(t),d_(3,10)),[]):-temp(TM), TM>30, !.

Given P-log probabilistic information by pa/3 rules, then the corresponding so-
called situation-sensitive pa rule/2 predicate takes the head and body of some pa/3
rule as its first and second arguments, respectively, and includes conditions for its acti-
vation in its own body. Now, a situation is given by asserted facts representing it and,
in order to find the probabilistic information specific to the given situation, we simply
use the XSB Prolog built-in findall/3 predicate to find all true pa/3 literals expressed
by the pa rule/2 rules with true bodies in the situation. For example, when the time
and temperature are defined (the assisting system should be aware of such information),
they are asserted using predicates time/1 and temp/1. Note that in this modelling, to
guarantee the consistency of the P-log program (there must not be two pa-rules for the
same attribute instance with non-exclusive bodies) we consider time with a higher pri-
ority than temperature, enacted by using XSB Prolog cut operator, as can be seen in the
rlk and rlw cases.

2.5 Plan Generation

The second phase of the intention recognition system is to generate conceivable plans
that can achieve the most likely intentions surviving after the first phase. The plan gener-
ation phase can be carried out by ASCP – an ASP logic programming based conditional
planner [16], as in our work [1], which details the method and the language for express-
ing actions. For lack of space, we will simply assume here that the system has been

Luis Moniz Pereira and Anh Han The 13

furnished a plan library that provides recipes for achieving the recognized intentions in
the situation. This alternative method has also been employed in several works of plan
recognition, e.g. [11,14].

3 Elder Assisting with Evolution Prospection

3.1 Preliminary

We next describe constructs of the evolution prospection system that are necessary for
representation of the example. A full presentation can be found in [2]. The separate
formalism for expressing actions can be found in [1] or [16].

3.1.1 Language Let L be a first order language. A domain literal in L is a domain
atom A or its default negation not A. The latter is used to express that the atom is false
by default (Closed World Assumption). A domain rule in L is a rule of the form:

A← L1, . . . , Lt (t ≥ 0)

where A is a domain atom and L1, . . . , Lt are domain literals. An integrity constraint
in L is a rule with an empty head. A (logic) program P over L is a set of domain rules
and integrity constraints, standing for all their ground instances.

3.1.2 Active Goals In each cycle of its evolution the agent has a set of active goals or
desires. We introduce the on observe/1 predicate, which we consider as representing
active goals or desires that, once triggered by the observations figuring in its rule bodies,
cause the agent to attempt their satisfaction by launching all the queries standing for
them, or using preferences to select them. The rule for an active goal AG is of the form:

on observe(AG)← L1, ..., Lt (t ≥ 0)

whereL1,...,Lt are domain literals. During evolution, an active goal may be triggered by
some events, previous commitments or some history-related information. When start-
ing a cycle, the agent collects its active goals by finding all the on observe(AG) that
hold under the initial theory without performing any abduction, then finds abductive
solutions for their conjunction.

3.1.3 Preferring abducibles Every program P is associated with a set of abducibles
A ⊆ L. These, and their default negations, can be seen as hypotheses that provide hypo-
thetical solutions or possible explanations to given queries. Abducibles can figure only
in the body of program rules. An abducible A can be assumed only if it is a considered
one, i.e. if it is expected in the given situation, and, moreover, there is no expectation to
the contrary

consider(A)← expect(A), not expect not(A), A

The rules about expectations are domain-specific knowledge contained in the theory
of the program, and effectively constrain the hypotheses available in a situation. To

14 Elder Care via Intention Recognition and Evolution Prospection

express preference criteria among abducibles, we envisage an extended language L?. A
preference atom in L? is of the form a / b, where a and b are abducibles. It means that
if b can be assumed (i.e. considered), then a / b forces a to be assumed too if it can. A
preference rule in L? is of the form:

a / b← L1, ..., Lt (t ≥ 0)

where L1, ..., Lt are domain literals over L?. This preference rule can be coded as
follows:

expect not(b)← L1, ..., Ln, not expect not(a), expect(a), not a

In fact, if b is considered, the consider–rule for abducible b requires expect not(b) to be
false, i.e. every rule with the head expect not(b) cannot have a true body. Thus, a / b,
that is if its body in the preference rule holds, and if a is expected, and not counter-
expected, then a must be abduced so that this particular rule for expect not(b) also
fails, and the abduction of b may go through if all the other rules for expect not(b) fail
as well.

A priori preferences are used to produce the most interesting or relevant conjectures
about possible future states. They are taken into account when generating possible sce-
narios (abductive solutions), which will subsequently be preferred amongst each other
a posteriori.

3.1.4 A posteriori Preferences Having computed possible scenarios, represented by
abductive solutions, more favorable scenarios can be preferred a posteriori. Typically,
a posteriori preferences are performed by evaluating consequences of abducibles in
abductive solutions. An a posteriori preference has the form:

Ai � Aj ← holds given(Li, Ai), holds given(Lj , Aj)

where Ai, Aj are abductive solutions and Li, Lj are domain literals. This means that
Ai is preferred to Aj a posteriori if Li and Lj are true as the side-effects of abductive
solutions Ai and Aj , respectively, without any further abduction when testing for the
side-effects. Optionally, in the body of the preference rule there can be any Prolog pred-
icate used to quantitatively compare the consequences of the two abductive solutions.

3.1.5 Evolution result a posteriori preference While looking ahead a number of
steps into the future, the agent is confronted with the problem of having several different
possible courses of evolution. It needs to be able to prefer amongst them to determine
the best courses from its present state (and any state in general). The a posteriori pref-
erences are no longer appropriate, since they can be used to evaluate only one-step-far
consequences of a commitment. The agent should be able to also declaratively spec-
ify preference amongst evolutions through quantitatively or qualitatively evaluating the
consequences or side-effects of each evolution choice.

A posteriori preference is generalized to prefer between two evolutions. An evolu-
tion result a posteriori preference is performed by evaluating consequences of follow-
ing some evolutions. The agent must use the imagination (look-ahead capability) and

Luis Moniz Pereira and Anh Han The 15

present knowledge to evaluate the consequences of evolving according to a particular
course of evolution. An evolution result a posteriori preference rule has the form:

Ei ≪ Ej ← holds in evol(Li, Ei), holds in evol(Lj , Ej)

where Ei, Ej are possible evolutions and Li, Lj are domain literals. This preference
implies that Ei is preferred to Ej if Li and Lj are true as evolution history side-effects
when evolving according to Ei or Ej , respectively, without making further abductions
when just checking for the side-effects. Optionally, in the body of the preference rule
there can be recourse to any Prolog predicate, used to quantitatively compare the con-
sequences of the two evolutions for decision making.

3.2 Evolution Prospection as An Intention Consumer

Having recognized the intention of another agent, EPA system can be used to provide
the best courses of evolution for that agent to achieve its own intention. These courses
of evolution might be provided to the other agent as suggestions.

In Elder Care domain, assisting systems should be able to provide contextually ap-
propriate suggestions for the elders based on their recognized intentions. The assisting
system is supposed to be better aware of the environment, the elders’ physical states,
mental states as well as their scheduled events, so that it can provide good and safe sug-
gestions, or simply warnings. We continue with the Elder Care example from a previous
section for illustration.

Example 3 (Elder Care, cont’d). Suppose in Example 1, the final confirmed intention
is that of looking for a drink. The possibilities are natural pure water, tea, coffee and
juice. EPA now is used to help the elder in choosing an appropriate one. The scenario
is coded with the program in Figure 2 below.

The elder’s physical states are employed in a priori preferences and expectation
rules to guarantee that only choices that are contextually safe for the elder are generated.
Only after that other aspects, for example the elder’s pleasure w.r.t. to each kind of drink,
are taken into account, in a posteriori preferences.

The information regarding the environment (current time, current temperature) and the
physical states of the elder is coded in the Prolog part of the program (lines 9-11). The
assisting system is supposed to be aware of this information in order to provide good
suggestions.

Line 1 is the declaration of program abducibles: water, coffee, tea, and juice. All of
them are always expected (line 2). Line 3 picks up a recognized intention verified by
the planner. The counter-expectation rules in line 4 state that coffee is not expected if
the elder has high blood pressure, experiences difficulty to sleep or it is late; and juice
is not expected if it is late. Note that the reserved predicate prolog/1 is used to allow
embedding prolog code in an EPA program. More details can be found in [2,3]. The
integrity constraints in line 5 say that is is not allowed to have at the same time the
following pairs of drink: tea and coffee, tea and juice, coffee and juice, and tea and
water. However, it is the case that the elder can have coffee or juice together with water
at the same time.

16 Elder Care via Intention Recognition and Evolution Prospection

1. abds([water/0, coffee/0, tea/0, juice/0]).
2. expect(coffee). expect(tea). expect(water). expect(juice).
3. on_observe(drink) <- has_intention(elder,drink).

drink <- tea. drink <- coffee. drink <- water. drink <- juice.
4. expect_not(coffee) <- prolog(blood_high_pressure).

expect_not(coffee) <- prolog(sleep_difficulty).
expect_not(coffee) <- prolog(late).
expect_not(juice) <- prolog(late).

5. <- tea, coffee. <- coffee, juice.
<- tea, juice. <- tea, water.

6. coffee ’<|’ tea <- prolog(morning_time).
coffee ’<|’ water <- prolog(morning_time).
coffee ’<|’ juice <- prolog(morning_time).

7. juice ’<|’ coffee <- prolog(hot). juice ’<|’ tea <- prolog(hot).
juice ’<|’ water <- prolog(hot). water ’<|’ coffee <- prolog(hot).
water ’<|’ tea <- prolog(hot).

8. tea ’<|’ coffee <- prolog(cold). tea ’<|’ juice <- prolog(cold).
tea ’<|’ water <- prolog(cold).

9. pleasure_level(3) <- coffee. pleasure_level(2) <- tea.
pleasure_level(1) <- juice. pleasure_level(0) <- water.

10.sugar_level(1) <- coffee. sugar_level(1) <- tea.
sugar_level(5) <- juice. sugar_level(0) <- water.

11.caffein_level(5) <- coffee. caffein_level(0) <- tea.
caffein_level(0) <- juice. caffein_level(0) <- water.

12.Ai << Aj <- holds_given(pleasure_level(V1), Ai),
holds_given(pleasure_level(V2), Aj), V1 > V2.

13.on_observe(health_check) <- time_for_health_check.
health_check <- precise_result.
health_check <- imprecise_result.

14.expect(precise_result) <- no_hight_sugar, no_high_caffein.
expect(imprecise_result).
no_high_sugar <- sugar_level(L), prolog(L < 2).
no_high_caffein <- caffein_level(L), prolog(L < 2).

15.Ei <<< Ej <- holds_in_evol(precise_result, Ei),
holds_in_evol(imprecise_result, Ej).

beginProlog.
:- assert(scheduled_events(1, [has_intention(elder,drink)])),
assert(scheduled_events(2, [time_for_health_check])).
late :- time(T), (T > 23; T < 5).
morning_time :- time(T), T > 7, T < 10.
hot :- temperature(TM), TM > 32.
cold :- temperature(TM), TM < 10.
blood_high_pressure :- physical_state(blood_high_pressure).
sleep_difficulty :- physical_state(sleep_difficulty).

endProlog.

Fig. 2: Elder Care: Suggestion for a Drink

Luis Moniz Pereira and Anh Han The 17

The a priori preferences in line 6 say in the morning coffee is preferred to tea,
water and juice. And if it is hot, juice is preferred to all other kinds of drink and water
is preferred to tea and coffee (line 7). In addition, the a priori preferences in line 8 state
if the weather is cold, tea is the most favorable, i.e. preferred to all other kinds of drink.

Now let us look at the suggestions provided by the Elder Care assisting system
modelled by this EPA program, considering some cases:

1. time(24) (late); temperature(16) (not hot, not cold); no high blood pressure; no
sleep difficulty: there are two a priori abductive solutions: [tea], [water]. Final
solutions: [tea] (since it has greater level of pleasure than water, which is ruled out
by the a posteriori preference in line 12).

2. time(8) (morning time); temperature(16) (not hot, not cold); no high blood pres-
sure; no sleep difficulty: there are two abductive solutions: [coffee], [coffee, water].
Final: [coffee], [coffee, water].

3. time(18) (not late, not morning time); temperature(16) (not cold, not hot); no high
blood pressure; no sleep difficulty: there are six abductive solutions: [coffee], [cof-
fee,water], [juice], [juice,water], [tea], and [water]. Final: [coffee], [coffee,water].

4. time(18) (not late, not morning time); temperature(16) (not cold, not hot); high
blood pressure; no sleep difficulty: there are four abductive solutions: [juice],
[juice,water], [tea], and [water]. Final: [tea].

5. time(18) (not late, not morning time); temperature(16) (not cold, not hot); no
high blood pressure; sleep difficulty: there are four abductive solutions: [juice],
[juice,water], [tea], and [water]. Final: [tea].

6. time(18) (not late, not morning time); temperature(8) (cold); no high blood pres-
sure; no sleep difficulty: there is only one abductive solution: [tea].

7. time(18) (not late, not morning time); temperature(35) (hot); no high blood pres-
sure; no sleep difficulty: there are two abductive solutions: [juice], [juice,water].
Final: [juice], [juice,water].

If the evolution result a posteriori preference in line 15 is taken into account and the
elder is scheduled to go to the hospital for health check in the second day: the first
and the second cases do not change. In the third case: the suggestions are [tea] and
[water] since the ones that have coffee or juice would cause high caffein and sugar
levels, respectively, which can make the checking result (health) imprecise (lines 13-
15). Similarly for other cases . . .

Note future events can be asserted as Prolog code using the reserved predicate
schedule events/2. For more details of its use see [2,3].

As one can gather, the suggestions provided by this assisting system are quite con-
textually appropriate. We might elaborate current factors (time, temperature, physical
states) and even consider more factors to provide more appropriate suggestions if the
situation gets more complicated.

4 Conclusions and Future Work

We have shown a coherent LP-based system for assisting elderly people based on an
intention recognizer and Evolution Prospection system. The recognizer is to figure out

18 Elder Care via Intention Recognition and Evolution Prospection

intentions of the elders based on their observed actions or the effects their actions have
in the environment, via a combination of situation-sensitive Causal Bayes Nets and a
planner. The implemented Evolution Prospection system, being aware of the external
environment, elders’ preferences and their note future events, is then employed to pro-
vide contextually appropriate suggestions that achieve the recognized intention. The
system built-in expectation rules and a priori preferences take into account the phys-
ical state (health reports) information of the elder to guarantee that only contextually
safe healthy choices are generated; then, information such as the elder’s pleasure, inter-
ests, scheduled events, etc. are taken into account by a posteriori and evolution result a
posteriori preferences.

We believe to have shown the usefulness and advantage of our approach of combin-
ing several needed features to tackle the application domain, by virtue of an integrated
logic programming approach.

One future direction is to implement meta-explanation about evolution prospection.
It would be quite useful in the considered setting, as the elder care assisting system
should be able to explain to elders the whys and wherefores of suggestions made.

Moreover, it should be able to produce the abductive solutions found for possible
evolutions, keeping them labeled by the preferences used (in a partial order) instead of
exhibiting only the most favorable ones. This would allow for final preference change
on the part of the elder.

References

1. L. M. Pereira, H. T. Anh. Intention Recognition via Causal Bayes Networks plus Plan Gen-
eration, Procs. 14th Portuguese Conf. on AI (EPIA’09), Springer LNAI, October 2009 (to
appear).

2. L. M. Pereira, H. T. Anh. Evolution Prospection, in: K. Nakamatsu (ed.), Procs. Intl. Sympo-
sium on Intelligent Decision Technologies (KES-IDT’09), pages 51-63, Springer Studies in
Computational Intelligence 199, 2009.

3. L. M. Pereira, H. T. Anh. Evolution Prospection in Decision Making. Intl. Journal of Intelli-
gent Decision Technologies, IOS Press (to appear in 2009).

4. C. Baral, M. Gelfond, and N. Rushton. Probabilistic reasoning with answer sets. In Procs.
Logic Programming and Nonmonotonic Reasoning (LPNMR 7), pages 21–33, Springer LNAI
2923, 2004.

5. H. T. Anh, C. K. Ramli, C. V. Damásio. An implementation of extended P-log using XASP. In
Procs. Intl. Conf. Logic Programming, Springer LNCS 5366, 2008.

6. C. Baral, M. Gelfond, N. Rushton. Probabilistic reasoning with answer sets. Theory and Prac-
tice of Logic Programming, 9(1): 57-144, January 2009.

7. L. Castro, T. Swift, and D. S. Warren. XASP: Answer set programming with xsb and smodels.
Accessed at http://xsb.sourceforge.net/packages/xasp.pdf

8. A. Cesta, F. Pecora. The Robocare Project: Intelligent Systems for Elder Care. AAAI Fall
Symposium on Caring Machines: AI in Elder Care, USA 2005.

9. A. Mileo, D. Merico, R. Bisiani. A Logic Programming Approach to Home Monitoring for
Risk Prevention in Assisted Living . In Procs. Intl. Conf. Logic Programming, Springer LNCS
5366, 2008.

10. M. V. Giuliani, M. Scopelliti, F. Fornara. Elderly people at home: technological help in
everyday activities. IEEE International Workshop on In Robot and Human Interactive Com-
munication, pp. 365-370, 2005.

Luis Moniz Pereira and Anh Han The 19

11. C. Heinze. Modeling Intention Recognition for Intelligent Agent Systems, Doctoral
Thesis, the University of Melbourne, Australia, 2003. Online available: http :
//www.dsto.defence.gov.au/publications/scientific record.php?record = 3367

12. K. A. Tahboub. Intelligent Human-Machine Interaction Based on Dynamic Bayesian Net-
works Probabilistic Intention Recognition. J. Intelligent Robotics Systems, vol. 45, no. 1,
pages 31-52, 2006.

13. O. C. Schrempf, D. Albrecht, U. D. Hanebeck. Tractable Probabilistic Models for Intention
Recognition Based on Expert Knowledge, In Procs. 2007 IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS 2007), pages 1429–1434, 2007.

14. H. A. Kautz and J. F. Allen. Generalized plan recognition. In Procs. 1986 Conf. of the Amer-
ican Association for Artificial Intelligence, AAAI 1986: 32-37, 1986.

15. T. Eiter, W. Faber, N. Leone, G. Pfeifer, A. Polleres. A Logic Programming Approach to
Knowledge State Planning, II: The DLV K System. Artificial Intelligence 144(1-2): 157-211,
2003.

16. P. H. Tu, T. C. Son, C. Baral. Reasoning and Planning with Sensing Actions, Incomplete
Information, and Static Causal Laws using Answer Set Programming. Theory and Practice of
Logic Programming, 7(4): 377-450, July 2007.

17. C. Glymour. The Mind’s Arrows: Bayes Nets and Graphical Causal Models in Psychology.
MIT Press, 2001.

18. J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge U.P., 2000.
19. J. J. Alferes, A. Brogi, J. A. Leite, L.M. Pereira. Evolving logic programs. Procs. 8th Euro-

pean Conf. on Logics in AI (JELIA’02), pages 50−61, Springer LNAI 2424, 2002.
20. J. J. Alferes, F. Banti, A. Brogi, J. A. Leite. The Refined Extension Principle for Semantics

of Dynamic Logic Programming , Studia Logica 79(1): 7-32, 2005.
21. J. J. Alferes, J. A. Leite, L. M. Pereira, H. Przymusinska, T. C. Przymusinski. Dynamic

updates of non-monotonic knowledge bases. J. Logic Programming, 45(1-3):4370, 2000.
22. I. Niemelä, P. Simons. Smodels: An implementation of the stable model and well-founded se-

mantics for normal logic programs. 4th Intl. Conf. on Logic Programming and Nonmonotonic
Reasoning, Springer LNAI 1265, pages 420–429, 1997.

23. T. Swift. Tabling for non-monotonic programming. Annals of Mathematics and Artificial
Intelligence, 25(3–4):201-240, 1999.

24. The XSB System Version 3.0 Vol. 2: Libraries, Interfaces and Packages. July 2006.

20 Elder Care via Intention Recognition and Evolution Prospection

��������� 	
�
������ ��
����
�� �
�����

��� ������� ��� ������ ������

�������� �	
��� ��� ��� ���
�

� ������ ����	���
 ��
��������� ����� ������� �	���� ��������� �����
��
 	�!�	"����
��"��"#�

� ������	�� $
�
��� �� ����	���
 �� ��%��� 	��
��������� &����& '������(%��
�	 	��	��� ������	�� �))��&��� �����

��
!������	���	�"��"#�

��������� �
 %
�	�� ����� �� ���% �� �
% � �%���� �
 *
 � 	��� �
���� +
����
 ��
� ��*
 �
�� 	�,�
��
 �� ��
 -���	�� �� .��� � �%����
��% ��
 �� �	�� %	
 �	�
" �
 %
�	��
/�
 �	�

-�	
% �� ��
 %
�	��
	�� ���
*
 � �+��� �� +
 �����

% ��% ����� ��% ��

��
 � � ��
�� �
��
��+�	�� ��
 ���������	��� ��	�	���	��� ��%
*����	�� ��
/�
 �	�
 	�
�
���� �

%
%" �
 ����� � ��*
 +

� %
*
���	�� � �����
%�
�+��
%
����
� �� ����� � � ��
�� �����	�� ��% ��
 %
�	�� �� %	
� ��% %	
��
��
�� ���% �� �
% � �%����" �
 �����
%�
 +��
 �����	�� %
�	�� �����
%�

�� %	�� ���% �� �	��� ��% ��
 %
�	�� �����
%�
 	� ����
���	�
% +��
%
�� ��
 �� ��� %
.�	�	�� �� %	
 %
�	�� � �+�
�� ��% �� �
���%� �	��
�	�� �
�
 ��	�� ��
���*	�� ��
�
 � �+�
��" �
�
 �
���
� ����� ��

	�� �*
�
�� �� � �%��� -���	�� +� ��
/�����	*
 �
� �� �� � ��
�� �����
��% %	
 �� ����
�� ��% ��
 	�� �*
�
�� �� %
�	�� �
 �� ����
 +� ���
�����	�� %
�	�� �� �" �
� ���� ���
 	�
��	
 �� ���� �� ��%
��

/�
 �	�
 +� �����	�� %
�	��
/�
 �� �� ��%	� ��% ��	���	� � �����
%�

+��
 +� ��
��
�*
�" �
 � ����
% ����
� ��� +

� ����	
% �� �
*
 ��
�� �
% � �%����" 0/�
 	�
��� ���� ���� 	� ��� �
�
 ��
 ����	��
 �� �	��
� ��
�� ������ %	
�� ��% %	
��
�� +��
% �� ��
 %
�	�� �����
%�
� ��% ����
�
��	+�
 �����	��� ��� +
 �+��	�
% �	��	� � � ���	��� ������ �� �	�
"

� �������	�
��

����� ���	
� �� ���� ������� ��
 ��������� ��
� �� 	��� �������� ���� �� ���
��	����
�� ���������� ��� ��	

�
������� ��������
�� ���� �� �
����
 ��
� ���

��
 ��������
� �� ������������ �� 	��� ����������� ��	
������� ��������� ���
�	����
	
��� �� 	
�������� ����
���
�� ��
 �
���� ����� �� ���� ����
� �����
���� ��
 �
�� �	������� �
����
 ��
� ���
 ��
�� ����
��
 �� ��
 ������ �� !���
�������� ��� ��
 ������� ��
 ���
� "� ��
�
 �
���� ������ 	��� ����� ��
#�
����

�� ������� ����
�� �������� ��� ��
 �
���� �� ��
� ��� ��
��
�� ��
 �
 ���
� ���
����� ������ ��� ��$����� ����������� %���
#�
����
 ��� ��$
�
�� ����� �� �

�����
�
� ��� ���� �
����
 �� ��
 �	�
����� �
���
	
�� ��
#�
��
��
�
#�
����
����
#�
����
 ��� �

� �����
 ����	
��
� ��� ��� �

� ������
��
� �� ����������
������ ������� �����	�� ��		���������� "� ���
� �� ����
	�������� ���� �� ����

Masanobu Umeda and Yuji Mure 21

#�
����
� �� ��
��
����� �� �
���&
 � ���	
$��� $����
����
� ��
 �
���� ���$��

��
 ��
#�
��
��
�
#�
��� �� �
 ����	����
� �� �	������� ����$��
 ���
��� ���
������������ �����&
� ���
����
� �� �� ������&����� �� ���������� ��		������

' ��	�
� �� ���$�
��
����
� ����
	� ���
 �

� �
�
���
� ��
����
 ��

������������ �� ������� ����
�� �������� ��� ��
 �
����� ��
� ��� �
 �������
������!
� ���� ��
 �����$��� �$� ���
����
�� (��
����
� �� ����
������
� ����
	�
)*� +, ���	����
 ���� ����
����� �
���� �
����� �� �
���� ���
� �� ����
���� ���
�
���
 � �������� ���	 � ��	���� ���
� '������� ��
�
 ����
	� ���
 ��
 ��������

�� ��������� ��
 ���
 �
������ ��
 ����
�� �� ���������
 �������� �������� �
�
���
�� ��
 ���
� �� ����
��� ���� ���
 �

� ����	����
�� (���
������� ���
����
�
����
	�)-./, �
��
�
�� �
���� ����
���
� ��
#�
����
 �� ���������� ���
�� ���
���
 ��
 ��������
� �� ������������ �� �
$ ��������� 0�$
�
�� ���������� ���
�
��
 ��1���� �� 	������� ���
#�
��� �
����
 ���
��
�
��
 �
�$

� ���
�� ���
��	����������
#������� ���
#
������ ������� �� ���
� �
��	
 �
����� �����
	�
�� � ���$�
��
 ���
 �
��	
� ����
)2,�

��
 ������� ���
 �

� �
�
������ � ���$�
��
����
� ����
	 �� ������� ����
�
�� �������� ��� ��
 �
���� �� ��
� ��� ��
��
�� ��� ���� ����
� ��������� ��

���$�
��
 ���
 �������� �
���� ���$�
��
 �
������� ���� �������� ��� ��
 �
����
���$�
��
 �� ����
	���&
� ���
� �� ��
 ���	�� �
!������ �� ��
 �
���� �����
	�
��� �� 	
����� $��� ���� �
�
������ ��� �
������� ��
�
 �����
	�� ��
 ���$��

��
 �
��
�
������� �������
 �� ��
 ���$�
��
 ���
 �� �������
 ��� �
��
�
�����
�
���� ����
���
� ��������� ����� ���
���� $������ ��� ���
�
3
���� ��� ��� �

��
� �� ��	��
�
����
��
��	
���
 ��� �������
 ��������� �� ������� ����
��
�
��� ��
 ��������
�� ��
�
 �
����
� ����$ ��
 �	����
	
�� �� ������� ������ ��
��
#�������
 �
���� �� ����
�� ����� ��� ��
 ��������
� ��� ��
 �	����
	
��
�� �
���� �
����	���
 �� ����	����� �
���� $���� ��
� ���� 	��
 ��
���
� ��
���
��� ��
 ��������

#�
����
 ���
����
 �� �� ����$��� �
����
#�
��� �� �����
��� 	������� � ���$�
��
 ���
 �� ��
	�
��
��

���� ���
� !��� �
�����
� �� ��
���
$ �� ��
 ���
����
� ��
 �
���� �������
����
	 ��� ���� �������� �
���� ��
�� 	��
�� �� � ����
� ������� ��� � ��
�
��� ��
 ���	���&����� ��� ����
	���&����� 	
��������� �� ������� ��
 �
����
���$�
��
� ��
 �	��
	
������� �� ��
 ����
	 �� ��
� ���
�� ��������
�� 4�������

#�
��	
���� �
����� �����
� �� �
�
��� ����
� �������� ��
 ���$��

� ����� �����
��

5
�
������ ��
 �
���� ����
�� �� � ����
� ������� �� �� �����$�� 4����� ��
 ����

�� � ����
� ������� �� �
����
� ���
� �� � !��� ������� �
���� �� ������
����
���� 	�������� ����
��
�� ��
�� ������� ����
�� �������� �� �
����	
� �� �
���

��
 ����
 ��	�
� �� ��
 ���	��� ����
��� ��
 ����
 �� �� ���
�	
����
 ����
�
�������� ��
 ���	��� 	
������
��� "� ��
 ��������� ������� �
���� ������������
���� �� ��
 ���� �������� �� ��
�� 	�����
� ��� ��
 ���	��� ��	��� ��� 	
��� ��$
�� 	��
����� ��
 ���
� ���� �������� 4������� ��
� ��� ��
��
�� ��
 �
����
� ���

��� ����
 �� ��
 ���	��� ����
��
� �� ������
���� ��
 ������� ������ ��� ��
 ��

���
� "� �
�
������ ��
 	
��� ��$ ��
������
� �����
#�
��	
���� �������� �� 46�

22 Knowledge Management Strategy and Tactics for Forging Die Design Support

	
�� �� (*
 *	
� �� ��
 	��
� ��
% %	
 %
�	�� ����� � ����
�

��������� '������� ��
 �
��

 �� �
�	
���� �
���	����� ��

��	 �� �
�
����� ����
�� ������� ����
�� ��������� �
���� ������������ ���� �� ��
 ���	��� ��	��� ���
	
��� ��$ �� 	��
������ ��
 ������� ��
�
���
� �� �� ��1����
�
� ���
#�
��
��
�

#�
��� �� !�� �� ����������
 �������� ���	 ������
�� ����
�� ����� ��� ��
 ��

��������
��

��
 ���
����
� ��
 �
���� ������� ����
	 �� ���
��
� �� �������
���� �������
���� �
���� ����
��� "� �������� �� ��
 �����$��� ���� �������
	� ���$� �� 4��� *7
������� ����
�� ��������� ��
 ��� ��
��
� �
����� 	
��� ��$ ��
�������� ��� ����

����������

��
 ������� ����
�� �������� ����
	 �� �� ������� ��
 �������� �� � ����
������� ����
�� ��� � ���
� �#���		
������ ����
� �������� "� ��� ������
 	�����
��
 �
���	���
 ����
�� ����� ����� ��
 '����	
�� �� %�
��
� (�����
� 8'%(9
	
����):,� ;
����
 ��
 '%(
���� �� ���
� �� � ��	�������� �� ��	��
 �
�
�	
���� �
���	����� ��� �����	
���� �
���� ������������ �� ��� �
�
���
 ���
��������
 �����
�
� �� �� ��	���� �
�� �������
� ��� �
 ����� �� � ���
����
�
���$�
��
 ���
�

��
 ��
 ��� ��
��
� �
���� ����
	 �
�
���
� 	������
 ��
 ��������
� ��� �
�
����
� ����
� �� ��
�� ��	���
���� ���� �� ��
 ���
���� ������ ��� ��������� �����
��� ��
 �
�
���
� ����
�� ������ ;
����
 ��
� ��
 ���
��
� �� ���� ���
��� ��
�
��
 ����
 �� ��
����
� ���� �� ������� ��
�
���
� ��
 ��
 ���
 ��� �� �
 ���
� ����
������� �� ������
����
	������� �������� ���� �� ������������ � ��
 ���
�� ����
��
�
� ��� �������� ��
����
 ���� ���� �
�
��
 ��
 ��
����
 �� ��
��

4��	��� ��	��� �� 	��
������ ���� �� ��
 �
������� �� ��
�� ��
 ���
� ����
������� �� ��
�
 �$� �������
	�� "� ��� ��$
�
�� ����� �
�
����� ��
������
 ��

	
��� ��$ �����
#�
��	
���� �������� �� 46� �������� �� � ���
 �� �� �����$�
�� ����	����� ����
� �
����
 �� �� ��� ��1��
�� ��
������
 ��
 ������
 ��� ���
��
��� �
�
���� "� ��� ��$
�
�� ��	
 �����	��� �� �	��������� ��
������
 ��
 	
���
��$ �� ��� �
�
���
� ��������� ����� ��
 ����� �������� 	
������ ��
 	
��� ��$

Masanobu Umeda and Yuji Mure 23

��
������� ����
)*<, �� �
����
� �� �
�� 	��
 � ����� ��� ���� ��������
���

��������� �� 	
��� ��$ �� ����� ��
 ���$�
��
 ��
#�
��
��
�
#�
��� ���
�
���	����� �������
��������

(�������
� �� ������� ����
�� ����� ��� ��
 ��������
� ��
 ���
� ������
�
���	 ��
�
 �$� �������
	�� ��
�
���
� �� �� ���
��� �� �����
 �� ����	�� ����
�����
 	�������� �
����
 	��� ���
��� �� ��
 ��������
� 	��� �
 �
�� �� 	����
��
 ����
��������� ����
	 �� �
����
� �� �
�� �����
 �� ����	�� ��������
 ��

��������� ��
 ��������
� ��
���� �� �
�	� �� ������� ������� ���������� �����
��� ���������� �
�� ��	
�

� �����
�� �� ������ �����	� ��� �
�

��� ����� 	��
��������

;
����
 ��
 ����
 �� � ����
� ������� �� �#���		
����� ��
 ��������� ����
� ��
��	������ ������� ��
� ��
 ���� �#���		
����� ��
�
���
� ���� � ����
� �������
����
 ��� � ��
 ����
 ��� �
 �
��
�
��
� �� � �
��
� �� �#���		
������ �
��
�
�
������� ����� ����
� ����� ������� 8;6�9� 4����
 + ���$� � ���� �� ��
 �����

�
	
���� 6��� �����
�
	
�� ��� �
�	
������ ��������
�� ���� ��
�
	
�� ���
�
���	
�
�� ��� �
����� 4����
 - ���$�
#�	��
� �� ��
 ����
 �
��
�
�������� �� �
����
� ������� ��� � ��
� "� ��
�

#�	��
�� ��
 ����
 �� � ����
� ������� ���
�
 �
��
�
��
� �� �� ���
� ����
 ������������������� ��
 ����
 �� � �����$
��
 ��� �
 �
��
�
��
� �� ��
 ��	�������� �� �� ���
� ����
 ����� ��� �� ���
�
����
 ������������������� ���� ������	 �
��
�
������� ��	���!
� ��
 ����

�
��
�
������� �� � ����
� ������� ��� � ��
� ��� ��
 ���$�
��
 �
���������
�

�
� ��� ������� ����
�� �������� ��� ��
 �
���� ��� ��
�
����� �
 ���
����
��

	
�� � 1��	�
�
�
��� �� ����

�
�
����	��

��� ����� ����� 	��
��������

' ����
� �������� � ��
� ��� � ��
��
� ��
 �����������
�� �
��
�
��
� �� � �
����
��
�� 	��
� ����
� �� �������� �
���
�� $���� �� ��	���!
� ��� ��
 $��� ��

24 Knowledge Management Strategy and Tactics for Forging Die Design Support

	
�� �� 2���

�
�
����	��� �� � � �%��� ��% � %	
 ��	�� +��	�
�
�
���

�#���		
������ ��
�� ���
� �� ��
 	��
� ������
� ��� 	
������	 �����)**,�
4����
 = ���������
� ��
 ���
	��� ��������
 �� � ����
� ������� ��� ���� �� �
��
 ��� � ��
��
�� $�
�
 ��
 ����$� �������
 ��
 �
�
��
��� �
�$

�
�
	
����
��
 ���
	��� ��������
 �� ��
 ����
� ������� �� 4��� = 8�9 �
��
�
��� � ����
��
�� ���
�	
����
 ����
� �������� �� � !��� ����
� �������� ��
 ��
�� 	��
� ��
� ����
� ������� ��� ���
� ��� ���
� ����
� �
��
�
��
� �� � �
��
� �� �����

�
	
���� ��� ���
� ��������
�� ���� �� 	��
����� ���	��� 	
����� ��� ���	���
����� >� ��
 ���
� ����� ��
 ���
	��� ��������
 �� ��
 ��
 ��� ��
��
� �� 4���
= 8�9 �
��
�
��� � $���
 ��������
 �� �� ���
� ��
� � ��$
� ��
� ��� � ��
��
��
��
 ��
�� 	��
� �� � ����� $���� ���������� �� ���
� ��
� � ��$
� ��
� �� � ��
�
�
�� ��� ���
� ��� ���
� ����
� ��� ���
� ��	���� ��������
� �� ���� �� � ����
�
��������

��
 	��
� ���
� �� ��
 ���
	��� ��������
 ��
��� ��
#�
�� �� �
�� $���
��	
������� ��� �
�	
������ ���
����
� ���� �
����
 �� �
�� �	������� �
����

�������� 	����
	
�� �� � ����
� ������� ��� � ��
 ��
��
����� �� ���� ��������

� ������
���
�� �� �
� ��� �
����� ���
�� ��� ����

5
�
����� ��
������ 	��� �
���� ����� ��� �
 �

� �� ��������
� �� �
���
 ������
����� ��������
� ���	 �
 ���
� ���������� ��������
� �� ������� �� ���
��
 �����
�
	�� ;
����
 ��
�
 ����� �� �����
	� ��
 ���
� ������
��� �� �� ��1���� �� ����

��
	 ������������� ��� ��
� ���� ��
� �� �
 ����
� �� ����� ���
���� ���
� ��

#�
��
��
� �� ���������� ?
������ �����#�	��
 ��������� ���	 ���� �
���� �
�����
�� �
���� ����������� ����� ���� ����������� �� ��
#�	��
 �� ��$ ��
�
 �����
�
	� ���
 �

� ����
�� ��
�
 �
������� 	
����� ��
� ��$
�
�� ������� ��� �

��
��� �
����
� �� ������&������ ��
 �
���� �
����� ������������� ��� �������
 ������ �� � �
����
� ������� ��3
� ���	 ����
 �� ���
� �
����
���
�
� ��� ��

� (� ��
 ���
 ���%� � %	
�� � �+�
� 	� ���*
% +� %
 	*	�� �����	���� ��� 	+��
� � ��
�� ���� �� ��� 	+��
�" �	� 	� ���
� ����
% ������	�"

Masanobu Umeda and Yuji Mure 25

	
�� �� 3��
�+�� �� ����
� �� � �� �
% � �%��� ��% � %	
 ��% %	
��
�

��	
 �����
	� 4�� ���� �
�����
�
� �� ��
�
� �� �
������� ���$�
��
 ��
 ����
��
�
���	
#�
��
��
�
#�
��� ������� ���
���
$� ��� �
�����
� �� ���������� ���
��
��
 �
�
������ �� ���� ���$�
��
 �� ���
 ��$ ��� ��� ������������� �� ��	��
� �� �
�����$ ����
 �� �����
	�� ' ���$�
��
 ���
 �
�
���
� �� ���� $�� �� ��1����
�� 	������� ���
#�
�� ��� �� ���� ���
�� �� �
��	
 ��� �� ���
� "� ��������� ��
$���� ��������� �
 	��

3
����
 ���
1��
�� ���
#�
��
��
�
#�
��� �� �
�
���
��� 	������� � ���$�
��
 ���
 �� ��
	�
��
��

4�� ���� �
����� �� ��
��
����� �� ������
 � ���	���&����� 	
��������� �� ����$
�
����
#�
��� �� �
������&
� �
�����
� ������ ��� 	������� ��
�� �
���� ���$��

��
 �� ��
	�
��
�� ��� �� ����
����
 ��
	 �� �
��
�
�� ���������� �
�������
���$�
��
 �� �� �
�
��� � ���	 �� �������
�

��� ��
��� �������� �� ���� � !
�����

��
 ������� ���
 �����
� ��
 �
���� ����
)*+, �� ��
 ���	�� �
!������ �� ��

��� ��
��
� �
���� �����
	�� ��
 �
���� ����
 �� �� � �
� �� �
���� ���������

26 Knowledge Management Strategy and Tactics for Forging Die Design Support

���
��������� �
!�
� �� �
�
����� ��� ��1��
�� �
���� ��������
� ��� ��
 �
����
����������� �
�$

� ��
	� "� �� �
��
�
��
� �� ���������� $�
�
 � �� � �
�
�� �
���� ��������
�� � �� � �
� �� ��
 ��	���� �� ��
 ��������
�� � �� � �
� ��
��
 �
����������� �
�$

� ��
 ��������
�� ��� � �� � �
� �� ��
 ����������� �� ��

��������
��

4����
 @ ���������
� ��
 ��
����
 ���� ��� �
���� ����
 �� ��
 ��
����
 ����
�
����� ��
 ���� �
���� �� � ��
��
�� ��� ��
 ��
� ��� ��������� ��
 ���	���
��
����
 ��� ��
�
����� ��
 �
���	����� �� � ��
�� 	�����
� ���� �
���� �����
	
�� �� �
���
 ��
 ��	�
� 	 � ������
��
 � ��� ������ � �� ��
 ���� ���	 ���
�
��������
�� ���� �� ��
 �
�
����� ������ �<� �
�
����� ��
����
 �<� ��� ��
����

����������� ����
 �� $�
�
 � �� ��
 ��������
� ��
����
 ��� � �� ��
 ������
$�
�
 ��
 ���� �������� �
�
��
 ��
 ��
����
� ��
 ��������� 	��� ������� ���� �
�� �	���
� ���� � ���� ��	�� "���"��� �� � ��
�� 	�����
�

"� � �
���� �����
	 �� ����
 ��� ��	������
�� �
����
�� ���
� ����
 �� ��
�������� �� ���� �
�
��� ��������
	� ��� ������� ��
	 ��
� �� ��
�� %��� � ��	�
������
� �
���� �����
	 ��� �
 �
��
�
��
� �� � ������
������ �� �
���� ����
�
�
��
�
����� ��������
	�� ��
 ������
������ �������
� ��
 ���
� �� $���� ��

��������
	� �

� �� �
 ����
�� ��� � �
� �� ��� ��������� ��� �

#��
��
� �� �
�
���� �� �
�
��� ��� ��
������� ��
� ��
 �
���� ����
�� ��
 ��� ��
������� ����
�� ������� ��� ��� ���
�� �������� �� �
�
�	��
� �� ��$ � ��
�
���� �
����
����
 ��� � �����$��� �
���� ����
 �� ��	���
� ��� ��
 �
�
��
��� �
�$

�
��
	� '�
#�	��
 �� ��
 ������
������ �� �
���� ����
� �� ���$� �� �
����� @�

	
�� �� 4
�	�� ����
 �� �
���
 ��%� %
�	��

��� 	����#�� ����� �� �� ���� � �����

"� � �
���� �����
	 �� ��1���� �� ����
 ������������� � ����� ���
���� ����
��
�� ������� �
�
������ ����������� '" �
���� �
� ��� ��	���������� ����	�&�����

Masanobu Umeda and Yuji Mure 27

�����
	� ��
 ��
���� ���������
 �� ���� �
���� �����
	� �� 	��� ���
�� ���
	��� �� ��
�
 �
���� �
� ��
 ��� ��
 ���
 ��� �
�������� �
���� ���$�
��
 �� �
	����
���
 ���
#�
�����
 $��� ���� �� �
����
 ��	
 ��
 ��	��
� �� ���������

����
 ��� 	�� �
��	
 �������
� �� ��
 �����

#�
����� �� � ���$�
��
 ���
�
��� ���
� �
���� �
� ��
 ��1���� ��� �
����
#�
��� �� ��
 ��
	 �� �
�����
�
������ ��� 	������� � ���$�
��
 ���
 �� ��
	�
��
��

��
 �
�
���
 ��� �
�� 	
���� �� � �
�� ��	��
 ��� �
�
��� 	
���� ��� �
�
������� ���� � �����
	 �� � 	����
���
 ���
#�
�����
 $��� ' �
���� �����
	
�
!�
� �� � �
���� ����
 ��� �

����� ���	����
� ����� ��
 �
�
���
 ��� �
��
	
����� ���� ��� ��� � ���
� �
���� ����
 ���������� ��
 ��������� ��� �
 ���
����
� �� ����	��� ��
 ����
� �� ���
 ��������
� $����� �� $�
�
 ���
 ��������
�
��
 	
	�
�� �� � �
�
����� ��� ��1��
�� ����
� �� � ��� ��
������� � ��� �

�
���� ��������� ����������� ����
� �� ���
� �
�
��
�� ��������
� ���	 ��
 ���

��������
� ����� �� ��� �
������� ���� � �� �����!
�� 4����
 A ���������
� � �����
��$ ������	 �� ��
 �
������� 	
���� ���
� �� ��
 �
�
���
 ��� �
�� 	
���� ���
��
 �
���� ����
 �� ��
����
 ���� �
���� �� 4��� @�

	
�� �� 4����,�� %	�� �� �� �
���
 ��%� %
�	��

! �������
���
�� �� �
� ��� �
����� ���
�� "��������

����� ��	������ � ��
 ��� � ��
��
� ��� �
 ������� ������!
� ���� � ���	��� ����
����� � ��
����
 �
�
��
�� ��� � 	������� ������� ��������� �� ��
�� ���
�� ��

�
���� ����
���
 �� � ��
 ��� � ��
��
� �� ���������&
� ���
� �� ���� ������!�������
��
 ���	��� ������� $���� �� ����
 �� ��
����
 �� !��� �
����
� ��������� �� ��

28 Knowledge Management Strategy and Tactics for Forging Die Design Support

�
����� �� ������� ����
�� ��������� ��� ��
� ��
 ��
����
 �
�
��
� �� �
����
�
�� $�������� ��
 ���	��� ��
����
� 4������� ��
 	������� �������� �� $���� ��

���	��� ������� ��� ��
����
 �
�
��
� ��
 	����
� �� � ��
�� 	�����
� �� �
�
����
�� 4����
 / ���������
� ��
 ��
���� ��������
 �� ��
�
 ��������� "� ���� �
������
��
 ����
	���&����� 	
��������� �� �
���� ���$�
��
 �� � ��
 ��� � ��
��
� ��
��������
� �����
#�	��
� �� ��
 ���	��� ��������

	
�� �� (*
 ��� �� ����
 �� � %	
 ��% � %	
��
�

$�� ���� � ����� �� ��
��� !�
��� ���� �

��
 ���	��� �������� $���� �������� �� � ������ � ��
 ���
��� ���
�� ������ ������
������ ��� ��������� ����� �� ���
���� �
���
� �� ��
 ���	��� �� ����
� ���������
;
����
 �� �� ���
��
� �� ���� ���
��� ��
 ����
� �� ��� ����� ���
 �� �
 �
����
�
$��� ���	��� 	
����� ��� ����� �� 	��� �� ���
� ��� �� �
 ����
�� ��
 �
�
���� ����
���
 �� ��
 ���	��� ������� $�� �����
� ���� �� ������
 �
���� ���
� �
����
� �
����� 4����� ��
 ������
 ����
� �� ��
 ���	��� ������� ��
 �
���
�
��������� �� � ����
�� ���� �� ������ ���� ������� �
���� ������������ ���� ��
��
 ���
����� ��� ��
�� !� ����� �� � ��
� ' ��	�
� �� ��������� $��� ��3
�
�� ��

��������
� 	�� �
 ��������
 ��� ��
 ��	
 ����
� �� ���
�	
����
 ������� �� 	�����
��
 ���	��� 	
����� ��
 ���������
� ��
 �
����
� ����
� ��
 ��
� �
�
�	��
� ��
������ ���� ������� �
���� ������������ ���� �� ��
 �
���	����� �������
�������
�� 	��
����� ��� ��
 �
������� �� ��
��

��
 �
���� ����
 �� ��
 ���	��� ������� �
���� ��� �
 �
��
�
��
� �� � ����
���
������ �� �
� �
���� ����
�� 4����
 2 ���������
� ��
�
 �
���� ����
�� 4��

Masanobu Umeda and Yuji Mure 29

�� ��
	 ���	 ��
 �
������� ����
����� �� ��
 ������
 �
����� ��� ��
 �
�� ��
��
 �
����
� �
����� "� ��
 �����$���� ��
 �
���� ����
 �� ��
 ��
 ���
�� �
����
�
�
���� �� ���
��
#�����
� �� ��
#�	��
�

	
�� �� 5�����
���
% %
�	�� ����
� �� ��
 �� �	�� �� �	�� %
�	��

$�� ���� � ����� �� ��� %���
 ������� ���� �

"� ��
 �
����
� �
���� �� � ��
 ���
��� ��
 ��������� �� � ��
 ���
��� ��
����� ��
������ ��� �������� �����	
�� �� ��
 ���
� ��� ��$
� ��
� ���
 �� �
 ����
�� 4��
��
 ���
 �� ��	�������� ���� ���
� �����
� �� ��
 ��������� �� � ��
 ���
���

;
����
 ��
 ���	��� ������� �� ���
��
� �� ���� ���
�� �� �
�����
� �
���
�
� ��
 ���
�� ��� � ����� ��
 ���
� ��	��
� �� 	
��� ������
� "� ���� � ���
� ��
�� ������� �������
 �� ����� ��
����
 �� �������� ��
�� �
�	
���
� �� ���
� ��
�
���
 ��
 ����
�������� �� ��
 ���
��� "� ��
 ���
 �� � ��
 ���
��� �� ��
3
����

�� ��������� ��
 ��
 ���
�� ���� �$� ����� ������ � ���
�� ����
�������� &��
�
B
������� ��
 ��������� �� � ��
 ���
�� �� ��$ ����� �
����
 �� �� �������
 �� �
����

���� ��
 ���� �� ��
 ���������
� ��
 ���
�� ���� �� ����
�� >� ��
 ���
� ����� ��

��������� ��� �����������
�� �
����
 �� �� ������ �� ������
 ��
 �� ��� ����
��
�
��	�
� �� ��	���
��� ��� ��	������
� �
�	
����

��
�
 ��
 ������� �$� ������� 	
����� �� � ��
 ���
��� �� ���������
� �� 4���
:� ��
 �
������ ��������� 8�9 �� �������
 ��� ���
����� �
����
 � ��
 ���
�� �� ����

��
� ��
��
������ ���� ���
��� ��
 ����&����� ��������� 8�9 ��� ����
��� �������

��� ���$���
#������� $�
�
 ��
 �
������� �� ��
� �� ��� �
�� ����
� ��� �� ��
���������
 �� ���
� ���	��� 	
������ 4����
 *< �� � �������$ ������	 ��� ��

���
�� ��������� �
���� �� ���
 �� ���$���
#�������� "� ���� ������	�
���
� ��
��
 ������� 	
����� �� ����	
� ���� $�
� ��
 ����������� �� ���	��� ���� ���
��
 �
������� �� ��
� ��
 �����!
�� ��� ��
 ����
� �� ���������
� ��
 ���
��� ��

�
���
� ��������� �� ��
 ����	
� ������� 	
�����

30 Knowledge Management Strategy and Tactics for Forging Die Design Support

	
�� �� $� �	�� �
���%� �� � %	
 	��
 �

	
�� ��� 4����,�� %	�� �� �� %	
 	��
 � �� �	�	�� %
�	��

����� ��$��������
��

��
 ������� ���
 �

� �
�
������ �� ���
����
� ��
 �
���� ������� ����
	 ���
�
�� ��
 ������
� 	
���������� 4����
 ** ���������
� ��� ��
���� ����
	 ������
��
���
� ��
 ���$�
��
 ���
 ����
� ����
	���&
� ���$�
��
 ��� ������� ����
��
��������� ��
 ��� ��
��
� �
����� 	
��� ��$ ��
�������� ��� ����
����������
��
 ���
�
��

����
 �
����	� �
������� ����� ��
 ���$�
��
 ���
 ���
������ ���
�������
 ���������� ��
 ������� ����
�� �������� ��������� ��
 ��� ��
��
� �
����
��������� 	
��� ��$ ��
������� ��������� ��� ����
��������� �������� �����&
 ��

���$�
��
 ���
 ������� ��
 ���
�
��

����
� ��� ��
�
�� ��
 ��������� �� ��

��
��

��
 ����
��� �� ��
 ���$�
��
 ���
 ��� �
 ������!
� ���� �$�7 ���
�
��
 ���
�
$���� �
��
�
�� ����
��
�� ������ ��� ����
���
� �� �
���� $���� ���
����

��
��� �����	������ ���� �� �
���� ����������� ��� �
���� ���������� ��
 ���	
� ��

Masanobu Umeda and Yuji Mure 31

	
�� ��� 2���
� � ��	�
���
 �� ��
 	��
� ��
% %	
 %
�	�� ����� � ����
�

�
�����
� ����� � ���$�
��
 �
��
�
������� �������
 ��	
� ?%�)*-,� $���� ��
���
� �� ��������
 ���		���)*=,� ?%� �� � ���������� ������		��� �������

������ ��
 �
���� ���������� ����� ��
 �
�
���
 ��� �
�� 	
����� ;
����
 ��

�������
 �� ������
 �� �
��
�
����� ����� ���
���� $������ ��� ���
�
3
��� �� ����
���������� ��� ���$�
��
 �
���������� ����� ��
 �������
 ��� �
 �
��������
��
�
�� ��� ���
������� �� �� �������
 ��� �
��
�
����� �
���� ����
���
� ���������
�� ����
	���&
� ���$�
��
 ����� ��
 �
���� ����
� ��
 �
������� 	
���� �
��
�
�
��
� �� �������$ ������	� ��� �
 ��������
� ����
#
������
 ?%� ������	�
$��� ��	��� ��
������
 ����
�����
��
� >� ��
 ���
� ����� ��

����

���� ���
���	����� �� �
�����
� �� � ���$�
��
 �
��
�
������� �������
 ��	
� ��;C";
)*@,� $���� �� �������
 ��� �
��
�
����� �
����������� �
�$

� ��������
�� ���� ��
��	
������ �� �������� ����� ��� �������
������� �� 	��
������ �� � ��������
�
	���
�� %
�������� ��
 ����
��� �� ��
 ���$�
��
 ���
 ���� �$� �
��� 	�������
��
 ���$�
��
 ���
 ��� 	��
 �� �������
� �
����
 ��
 ����
� ���
 �� ���$��

��
 ��� 	��
 �������� �� ������������� �
�$

� ��3
�
�� ������&������ ���� ��

���	
��

'�� ��	���
��� �� ��
 ����
	
#�
�� ��� ��
 ���$�
��
 ���
 ��
 �	��
	
��
�
����� �� ���
����
� �
�
���	
��
������	
�� ����
� "����
 ������)*A,� D��$��

��
 �
���������� ����
� �� ��
 ���$�
��
 ���
 ��
 ��������
� ���� ������ ����
���	� �� ��
 ���$�
��
 ���
 	����
	
�� �������� ���
#
���
� �� ��
 ���
��

��

����
� ;
����
 "����
 ������ ������
� �������� ������ ������������� ��� �
����
 ����
�� �� ����������� ������		��� ���
����
� $���� ��

��
����� ��� �������
��� ����������� �
�
���	
��� �� ��
��� �� ���
����
 ��
 ���
�
��

����
 ��� ���
�

32 Knowledge Management Strategy and Tactics for Forging Die Design Support

���������� ��������� �� ��
 �
�
���	
��
������	
��� ��
 ���$�
��
 ���
 ���
���������� ��������� ��� 	
��� ��$ ��
������� ��� ����
��������� ��
 ����� ���
�
�
�
���	
��� $���
 ��������
� �� ��
 ���$�
��
 ���
 ��� ���������� ���������
��� ��
 ���
�� ���
 �

� �	��
	
��
�� ' ���	��� ��
� ���
����
 �� ��
 ����
	 ��
���$� �� 4��� *+�

	
�� �� 2�

� ���� �� ��
 	��
� ��
% %	
 %
�	�� ����� � ����
�

% &'$��
������ (������

��
 ���
����
� ��
 �
���� ������� ����
	 $�� �����
� �� �
�
���
#�	��
� ��
����
� ��������� 4����
 *- ���$� �$� �� ��
	� ��� 4��� *+ ���$� ��
 �
�����
�����
� �� ������� *� "� ����
#�	��
� *+ ������� ����
�� ����� ��
 �
�
���
�
$����� � �
����� ��� = ��������� ��� ��
 ��
 ��������
 ��
 �
�
���
� ��� ��� ����
�
�� ��
 �� ��
 ������� ����
�� ����� $����� � �
����� 4����
 *= ���$� ��
 �� ��

����
�� ������ ��� 4��� *@ ���$� ��
 ����
�������� �
���� �� ��
 ��
 ��� ��
��
�
�
����� ��
 ��3
�
��
� �
�$

� ��
 = ��������� �� ��
 ��������
 ��	
 ���	 ��

�����
� ������� 	
����� �� ��
 ��
 ���
����

��
�

#�
��	
��� ���$ ���� ��
 ����
	 ��� �
�
���
 	������
 ������� ����
�
�� ����� ��� ��
 ��������
� ���
� �� �
���� ���$�
��
� ��� ���� �
�����
 ���
������� ��� �
 ������
� $����� � ��������� �	���� �� ��	
� ��
 ��������� ���

��3
�
�� �������
������� �� �
�	� �� ��
 ����
 ��	�
� �� ���	��� ����
��
�� 	�#�
�	�	 ���	��� ����� 	�#�	�	 ������� ��
 ��	�
� �� ���
����� ����
��
�� ��

Masanobu Umeda and Yuji Mure 33

��������� �� ��
 ���
����
���� ��� �� ����������
 �������� ��� �
 ����
� ���	
��
	�

	
�� ��� 6� �
% � �%���
/����
�

) *��	���
��� ��� ������ +��,

' ���	
$��� ���
������� ��
 ����	�������� �����&������ ���
�������� ��
#�
��
���
 �� �������� �

�
� ��� ���������� ����
�� �������� ��� ��
 �
���� �� ��
�
��� ��
��
�� �� ���� ����
� ��������� �
����
 ����
��
�����
#�
����
 �� ����� ��
�
 �����
�
� ��� ����� ���� ���
� �
�����
� ��
 ���	���&����� ��� ����
	���&��
���� 	
��������� �� ������� ��
 �
���� ���$�
��
 ��
����
 �
����
�� �� �
�
����
������ 	������� ���
#�
�� � ���$�
��
 ���
 �� ��
	�
��
�� "� ���� �
�����
� ��
��
���
$ ��� ���
� �	��
	
������� �� ��
 ���
����
� ��
 �
���� ������� ����
	
���
� �� ��
 ������
� 	
����������

"� ���� ���	
$���� �
���� �����
	� �� ������� ��
� ��� ��
��
�� ��
 ���	����
�
!�
� �� ����� ��
 �
���� ����
� ��� ��
 �
������� 	
���� �� ��
 �
���� ����

��� �
 �
��
�
��
� �� � �������$ ������	 ���
� �� ��
 �
�
���
 ��� �
��
	
����� ��
 �
������� 	
���� �
��
�
��
� �� �������$ ������	� ��� �

���
��� ��������
� ����
#
������
 ������	� $��� ��	��� ��
������
 ����
�����
��

����� � ���������� ������		��� �������
 ���
� �� ��������
 ���		����

��
 ���
����
� ��
 �
���� ������� ����
	 �� �
����
� �� �������
���� �������
����
�� �������� ��� ��
 �
���� �� ��
� ��� ��
��
��� "� ��� ��	��
�
����
��

��	
���
 ��� �������
 ��������� �� ������� ����
��
� ��� ��
 ��������
�� ��� �
��
�����
 �� ����	�� �������� ���	 ��� �� ��
 ���������� ��
 ����
	 $�� �����
� ��

#�	��
� �� ����
� ��������� ��� �� $�� ���$� ���� ��
 ����
	 ����� �
�
���

	������
 ������� ����
�� ����� ��� ��
 ��������
� ���
� �� ��
 �
���� ���$�
��
�
��� ���� �
�����
 ��������� ����� �
 ������
� $����� � ��������� �	���� �� ��	
�

34 Knowledge Management Strategy and Tactics for Forging Die Design Support

	
�� ��� 0/����
 �� � �� �	�� � ��
�� ����

'� $�� ���
�� 	
�����
� �� �
����� -� �������� 	����
	
�� ��
��
�����
�� ���� �������� "� ��
��
����� �� ����������
 ���
����
 �����	����� �� ����
�
�������� ���� ��
 ����
	 ��� ������
 ����
�� ����� ��� ��
 ��������
� �� ����
��
 �������� �� ����
� �������� �� �����!
�� ��
 	
��� ��$ ��
������� ����
	
��� ����
��������� ����
	 ��
 ����� ���
� �
�
���	
��� ��� �����
� �
�
���� ��
�
�
����� ��� ��������� ��
�

-*".�+/&�0�&.1

��
 ������� ��
 ����
��� �� ?� >��	� ������� $�� �
�
���
� ��
 ���������� ��
���� ����
	 �
���
 �
 ����
� �$�� �� ��
 ���	
 �� ���
�

(������	��

&" 7���
� �"� 4�� 8"9 3 �� ��� ��� ���� �� %
�	��	�� �� �	�� �
-�
��
� �� ���%
�� �	��" ���" �� ��
 :3;<�=2;0 >&)�)? &@A��

�" ������ ("� :����	��	� �"� B������	� "9 6� �	����
-�
��
 %
�	��
/�
 � ����
�
� �� ����	����
 ���% �� �	��9 6�
���%" ��9 $ ��" �� $��	.� <	� ���
 ���	����
5���

��
 �� 3 �	.�	�� ���
��	�
��
 C)�" >&))�? &�&A&&D

D" 2
*
��
 � �"� <��������	� $"2"� 3����� "9 6� �	����
-�
��
 %
�	�� �� ����	����

���% �� �	��" �" �� ;
����	��� E� �	��
�������� �� >&)�@? &�&A&D�

�" ;�����%� "� 7
���
�� 1"� '��+��%� ";"9 0/�
 � ����
� �� � ��
�� �����	��
	� ��
 ���% �� �	�� �� ��

�" 0/�
 � $����	�� 2���
�� � >&))�? &�&A&��

�" �	�� '"2"� ��� B""9 3�
/�
 � ����
� �� ���% �� �	�� � ��
�� %
�	�� +��
% �� �
%
����. �� �
� ��" ��� ��� �� ;��
 	��� $ ��
��	��
�������� �� >&)))? ���A�@�

�" ���� � 2"� 2	���� <"9 3 ��� ���� �����
%�
 +��
 ����
� � ��
�� � �� � ��
��	*

%	
 %
�	��" ��� ��� �� ;��
 	��� $ ��
��	��
�������� ��� >����?)��A)��

@" F�
�
�� 5"� 2	��� G"� ���� 5"� F�
��� <"9 <
�
� �� �� �����
%�
�+��
% ����

�� �	�� %
�	�� ����� � ����
�" �
 ���
 ���	���� ��� ��� �� 3%*���
% ;�������
�� 	��
�������� � >����? ��AD�

Masanobu Umeda and Yuji Mure 35

	
�� ��� 0/����
 �� � %	
 ��% %	
��
�

�" H
��� '"9 0/�
 � ����
��" ��� ��� �� ���� ���	�� $ ��
��	�� 2��	
�� �� ����� �

>&)�@? &�@A&�@
)" ������ ("� ;�
� B"� :�����	��� B"� (����� ;"� H�
%�� ;"� :�������� �"9 3

�����
%�
�+��
% ����
� �� � ��
�� �����	�� 	� ���% �� �	�� ��	�� ��
 �%#����
�
�� �� ��
��
% ���	�%
 �
���%" ��9 4
��� ��	*
 $ �� ���	�� �� �����
%�

;����
�
��" I����
 �D�) �� 7
���
 :��
� 	� 5�����
 2�	
��
"� 2� 	��
 2�	�

��
J1��	�
�� ;
%	� >����? &�&A&@�

&�" H�
%�� ;"� B������	� 2"� ;�
� B"9 4
*
����
�� �� �����
%�
�+��
% �
��� ,��
�
%	��	�� ����
� 	� ���% �� �	��" ��9 �
 $ ��

%	��� �� ��
 �)�� �����
�
 ��	��
5���

��
 �� ��

�������� �� $����	�	��" >����? D��AD��

&&" :���	� "� :�������� �"� H�
%�� ;"� '	����	� "� :	��	%�	� B"� �	������� B"� ���
 ����	� "� (�����	� ;"� ������ ("9 3 %
�	�� � �%��� ��%
� �� �
����	�� �� ��
+� 	�#
��	�� ���%	��" ��9 4
��� ��	*
 $ �� ���	�� �� �����
%�
 ;����
�
��"
I����
 �D�) �� 7
���
 :��
� 	� 5�����
 2�	
��
"� 2� 	��
 2�	
��
J1��	�
��
;
%	� >����? &��A&��

&�" B�������	� '"� :�������� �"� H�
%�� ;"� ;���	���	� ;"� G�	���� G"9 �����
%�

�
�
����	�� ��%
� �� +��	� %
�	�� �� ���
 �����
-�	��
��" ������	��� ��
���� ���	�� $ ��
��	�� 2��	
�� �� ����� �� >����? D&��AD&)�

&D" H�
%�� ;"� :�������� �"� '	����	� "9 �

�
�
��� �� � �� ���	�� ����
 	� %
�	��
��������	���" ��9 $ ��

%	��� �� ��
 :	��� ���
 ���	���� 5���

��
 �� ��%��� 	��
��% 0��	�

 	�� 3���	���	��� �� 3 �	.�	�� ���
��	�
��
 ��% 0/�
 � 2���
��" >&))�?
@@A��

&�" 4
 ���� �� $"� ��� %��� ;"�
%�"9 3�� 	+��
 8 ���� � ��% ��
	 3���	���	���"
:��+
 ��& 	� 7
���
 :��
� 	� 5�����
 2�	
��
" 2� 	��
 �I
 ��� >&))�?

&�" H�
%�� ;"� :�������� �"� ���� ;"9 �����
%�

�
�
����	�� ��%
� ��
��	�

 	��
	��� ���	�� �	 �����	�� �� ����%� % �� ��" ������	��� �� ���� ���	�� $ ��
��	��
2��	
�� �� ����� �� >&))@? &)��A&)&�

&�" �����	�
� �"� H�
%�� ;"� :�������� �"� '���	����� ;"9 ���
� ��
% %
*
����
��

�*	 ���
�� �� �����
%�
�+��
% ����
�� ��% 	�� � ���	��� ����	���	��" �0�50
 ������	��� �� ���� ���	�� ��% 2���
�� ����� >����? �@@A���

36 Knowledge Management Strategy and Tactics for Forging Die Design Support

Network Monitoring with Constraint

Programming: Preliminary Specification and

Analysis

Pedro Salgueiro and Salvador Abreu

Departamento de Informática

Universidade de Évora

{pds,spa}@di.uevora.pt

Abstract. Network Monitoring and Intrusion Detection Systems plays

an important role in today’s computer networks health, allowing the

diagnosis and detection of anomalous situations on the network that

could damage the performance and put the security of users data in risk

if not detected or diagnosed in time to take any necessary measures.

In this paper we present a preliminary specification and analysis of a

network monitoring and intrusion detection concept system based on

constraint programming, implemented on several constraint solver sys-

tems. This concept allows to describe the desirable network situations

through constraints on network entities, allowing a more expressive and

clear way of describing network situations.

1 Introduction

Computer networks are composed of numerous complex and heterogeneous sys-
tems, hosts and services. Often, large numbers of users rely on such networks
to perform their regular job and have to interrupt it when, for some reason,
the network has a problem. In order to prevent computer network degradation
or even any failure preventing users from using it, computer networks should be
constantly monitored in order to diagnose its functionality as well as the security
of the network and its users data.

Constraint Programming [1,2,3] is a powerful programming paradigm for
modeling and problem solving and it has been widely used with success on
a variety of problems such as scheduling, vehicle routing, planning and bio-
informatics. Using constraint programming, the modeling of complex problems
is done by asserting a number of constraints over a set of variables in a natural
way, simplifying the modelling of complex problems. The constraints are then
solved by a constraint solver which assigns values to each of the variables, solving
the problem.

Pedro Salgueiro and Salvador Abreu 37

On a computer network, there are some aspects that must be verified in order
to maintain the quality and integrity of the services provided by the network as
well as to ensure its safety. The description of those conditions, together with a
verification that they are met can be seen as network performance monitoring
combined with an intrusion detection task.

These two aspects are usually intertwined, from a network point view, so
that it makes sense to provide a single specification for the desired system and
network properties which can be used to produce network activity monitoring
agents, with knowledge about conditions which must or must not be met. These
conditions, specified in terms of properties of parts of the (observed) network
traffic, will amount to a specification of a desired or an unwanted state of the
network, such as that brought about by a system intrusion or another form of a
malicious access.

It is our claim that the proper operation of a network can be described as
a constraint satisfaction problem (CSP) [1], by using variables which represent
parts of the network traffic as well as structural properties of the network itself.

2 Constraint Programming

Constraint Programming (CP) is a declarative programming methodology which
consists in the formulation of a solution to a problem as a constraint satisfaction
problem (CSP) [1], in which a number of variables are introduced, with well-
specified domains and which describe the state of the system. A set of relations,
called constraints, is then imposed on the variables which make up the problem.
These constraints are understood to have to hold true for a particular set of
bindings for the variables, resulting in a solution to the CSP.

Finite Domain Constraint Programming is one of the most practical and
widely used approaches to Constraint Programming [1]. Many systems and li-
braries have been developed to perform Finite Domain Constraint Programming
and rely on constraint propagation involving variables ranging over some finite
set of integers to solve the problems.

Some of the more well known FD constraint programming systems include
GNU Prolog [4] and SICStus Prolog [5] which extend a Prolog virtual machine
with capabilities of constraint programming. Besides those systems, there are
libraries which provide Constraint Programming capabilities to well known pro-
gramming languages, such as Gecode [6] a constraint solver library implemented
in C++. Gecode is particular, in that it is not designed to be used directly for
modeling but is meant to be interfaced with other systems, such as Gecode/R [7],
a Ruby interface to Gecode. CaSPER [8] (Constraint Solving Programming En-
vironment for Research) is a new and open C++ library for generic constraint
solving, that still needs to be matured.

38Network Monitoring with Constraint Programming: Preliminary Specification and Analysis

The results presented in this paper were obtained using the previously men-
tioned constraint system solvers.

3 Modeling Network Monitoring with Constraint

Programming

Computer Network Monitoring with Constraint Programming relies on the de-
scription of situations that should or should not be seen on a network traffic.
The description of such situations is done by stating constraints over network
entities, such as network packets, ip address, ports, hosts, among others. Net-
work packet is the entity more relevant in the description of a network situation,
since it uses most of the other entities and allows to describe all the traffic on a
given network, which is composed by 19 individual fields.

The solution to such a problem that describes network situations is a set
of network packets that satisfies all the constraints that describes the network
situation. If that set of packets is seen on a network traffic, then that network
situation exists on that network.

Our approach to network monitoring works offline, instead of working with
real time traffic, it uses network traffic logs and looks for the specified network
situations in those logs, which were generated by the packet sniffer tcpdump[9].

Using constraint programming, the variables that are used to model the prob-
lem can take any value that satisfies the stated constraints. In the case of net-
work monitoring, the domain of the packet variables is huge, since each packet
is composed by 19 individual fields, each one having its own large domain. If the
domain of such variables were completely free, but respecting the constraints,
the amount of valid values that could be assigned to a variable which satisfies
the constraints is huge, so it makes sense that the packet variables can only be
assigned with values that satisfies the stated constraints and that exists on the
network traffic log. In Sect. 4 are described the several approaches that we used
to force the network packet variables to only take values from a network traffic
log.

4 Network traffic log as variable domain

Network monitoring based with constraint programming relies on stating rules
and relations between network packets. Such network packets are composed by
19 fields, almost all of them important do describe a network situation. Such
fields have a very wide domain and most of the values that can be assigned to
such fields make no sense on the computer network that is being monitored. The
only values that would make sense to be assigned to each field of each network

Pedro Salgueiro and Salvador Abreu 39

packet involved in a description of a network situation would be the actual values
that exist on the network traffic.

The values of such fields should be chosen from the network log, but not the
individual fields of the packet, since the values of each field on the network traffic
log only make sense when combined with all the other fields of a network packet.

So, instead of each individual field of a packet be allowed to take values from
its correspondent field of any packet on the traffic log, a tuple representing a
network packet and composed with all the fields of a network packet can only
take values from the set of tuples available on the network traffic log, this way,
the network packet variables used on a network description can only take values
that really exists, eliminating any unnecessary values.

4.1 Approaches

In order to force the network packet variables to only be allowed to take values
that belong to a network traffic log, several approaches were taken.

In this implementation of a network monitoring concept based on constraint
programming, the network packet variables are represented as an array of integer
variables, and the traffic logs were converted into a matrix that represents all the
packets available on the log, each line of the matrix corresponding to a packet
of the log.

Using Extensional constraints The first approach to this problem was to
use extensional constraints. Extensional constraints receives as its input a
tuple of variables and a list of tuples of values or variables. In this appli-
cation domain, the tuple of variables is the array representing a network
variable, which is composed by several variables, and the list of tuples is
the list with all packets found on the network log. This constraint forces
the tuple of variables to take values from the list of tuples, which on this
case forces the packet variables to only take values from the network trafic
log. The results obtained when using this approach are described in Sect. 5.1.

The use of the extensional constraint can be described as follows:

P = (P1, . . . , P19),

M = {(V(1,1), . . . , V(1,19)), . . . , (V(k,1), . . . , V(k,19))},

∀Pi ∈ P, ∀M, extensional(P,M)⇒ P ∈M
where P represents a network packet variable and M a set of packets repre-
senting all possible values that packet P can take.

40Network Monitoring with Constraint Programming: Preliminary Specification and Analysis

Using Extensional and Element constraints A second approach to the
problem combines the extensional constraint with the element constraint.
The element constraint allows to use an un-instantiated variable as an index
to an array of values or variables. This allows to translate the matrix rep-
resenting the network packets into a matrix of indexes to an array with all
values that exists on the original matrix. By adopting this approach, one can
use the extensional constraint on this translated matrix, which only have in-
dexes, which have much smaller values than the original matrix, which could
improve the performance in a great scale. Using the extensional with the
translated matrix, the values assigned to the packet variables are indexes
to an array containing all the values of the original matrix, instead of the
values that compose the original packets. This poses a problem, since after
applying the constraints to state that the packet variables should only take
values from the network traffic log, it is also necessary to state other con-
straints over such variables using the values of the original matrix. To solve
this problem, the variables are bonded back to its original values by using
the element constraint, allowing to use constraints over the original values.
The results obtained by this approach are described in Sect. 5.2.

The use of the extensional constraint combined with the element constraint
can be can be described as follows:

P = (P1, . . . , P19),

M = {(V(1,1), . . . , V(1,19)), . . . , (V(k,1), . . . , V(k,19))},
T = {V(1,1) ∪ . . . ∪ V(1,19) ∪ . . . ∪ V(k,1) ∪ . . . ∪ V(k,19)},
N = {(X(1,1), . . . , X(1,19)) . . . , (X(k,1), . . . , X(k,19))},

∀Pj ∈ P, ∀M, ∀X(k,i),∈ N,
extensional element(P,M,N)⇒ P ∈ N, TX(k,i) = M(k,i)

where P represents a network packet variable,M a set of packets representing
all possible values that packet P can take, T all the values in M and N the
translated matrix M .

All these approaches were experimented using several constraint system
solvers. The chosen constraint systems to make the experiments were Gecode
3.1.0, Gecode/R 1.1.0, GNU Prolog 1.3.0-6, SICStus Prolog 4.0.4-x86-linux-
glibc2.6 and CaSPER 0.1.4. Each experiment used the same problem with the
same set of data where possible.

The problem that was used to analyse the performance of each constraint
system solver was the description of a portscan attack. This network situation

Pedro Salgueiro and Salvador Abreu 41

can be detected by a set of constraints between two network packets, the packet
that initiates a TCP/IP connection and the packet that closes it. In order to
detect if there is a portscan attack, there is the need to decide how many sets of
two of these packets have to appear on a network traffic to consider it a portscan
attack. These number of sets of packets used to describe the network situation
affects the performance of our approach as each set adds more constraint vari-
ables to the problem. With this fact in mind, we made several experiments with
the same data sets, but using different number of sets of packets to describe the
problem in order to see how the performance was affected when the size of the
problem rises.

We also made some runs using different data sets in order to see the behaviour
of the performance when the size of the matrix varies and also when the values
of the matrix varies.

On some cases we were forced to use smaller matrices with smaller values
because some constraint system couldn’t handle some matrices while using some
constraints.

4.2 Modeling a portscan attack as a CSP

A portscan attack can be modeled as a CSP in the form of P = (X,D,C), where
X is a set with all the variables that compose the problem, D the domain of
each variable and C the constraints of the CSP. The set of variables X is a set
of integer variables representing all the packets described by the CSP. X can
be defined as follows, where i represents the number of packets that are being
looked:

X = {(P(1,1), . . . , P(1,19)), . . . , (P(i,1), . . . , P(i,19))}

Follows the definition of the domain D, where D(i,n) is the domain of the corre-
sponding variable P(i,n), M the set of all packets in the network traffic log and
k the number of packets seen on the network traffic log.

D = {D(1,1), . . . , D(1,19), . . . , D(i,1), . . . , D(i,19)},
M = {(V(1,1), . . . , V(1,19)), . . . , (V(k,1), . . . , V(k,19))},
∀D(i,n) ∈ D, ∀P(i,n) ∈ X, Pi = (P(i,1), . . . , P(i,19))⇒ Pi ∈M

The constraints C that compose a such a CSP are defined as follows:

42Network Monitoring with Constraint Programming: Preliminary Specification and Analysis

∀i ≥ 0⇒P(i,14) = 1,

P(i,18) = 0,

P(i+1,13) = 1,

(((P(i,2) = P(i+1,2)) ∧ . . . ∧ (P(i,6) = P(i+1,6)))∨
((P(i,2) = P(i+1,6)) ∧ . . . ∧ (P(i,6) = P(i+1,11)))),

((P(i,0) < P(i+1,0)) ∨ ((P(i,0) = P(i+1,0)) ∧ (P(i,1) < P(i+1,1)))),

(((P(i,0) = P(i+1,0)) ∧ (P(i+1,1) − P(i,1) < 500))∨
((P(i+1,0) = P(i,0) + 1) ∧ (1000000− P(i,1) + P(i+1,1) < 500))),

P ∈M

∀i ≥ 2⇒((P(i,0) > P(i−2,0)) ∨ ((P(i,0) = P(i−2,0)) ∧ (P(i,1) > P(i−2,1))))

5 Experimental Results

In this Section we present the execution times obtained on each experiment while
using each of the constraint solver as well as a description of the behaviour of
the performance of each experiment.

The experiments all use the same problem modeling with the same data
set in order to compare the results obtained in each of the constraint solver.
The data sets we have used are composed by a set of packets, each one being
composed by 19 individual values. For each constraint solver we used 4 matrices,
three of them composed by similar values, varying the number of packets in each
matrix, and one composed by smaller values. These were the matrices used in
most of the constraint solvers, except in Gecode/R and on CaSPER for reasons
explained above. With those constraint solvers we used matrices similar to the
ones described above, but transformed in order to contain smaller values, still
respecting the order that existed between all the values on the original matrix.

For each experiment with each matrix, several runs were made with similar
problem modeling but with different number of variables in order to understand
the behaviour of the performance of each constraint solver. For each constraint
solver two experiments are presented, one using two packet sets and another
composed by six packet sets, which allows to analyse the behaviour of the per-
formance of each constraint solver when the number of variables to model the
problem varies.

On each of these runs, we also made several measurements of the execution
time, being measured the time the system takes to build the constraints, and
the time the system needs to solve the problem after it has been initialized.

Pedro Salgueiro and Salvador Abreu 43

This network monitoring concept works with log files, so this initialization of
the constraint solvers can be considered as making part of the process of the log
file reading process.

On the experiments with GNU Prolog and SICStus Prolog were made two
measurements of the total time to solve the problem, one using no heuristics
and another using the first fail [2] heuristic, where the alternative that most
likely leads to a failure is selected.

In Fig. 1 is made a comparison of the time in milliseconds needed to solve the
problem modeled by 6 sets of packets varying the size of matrix between Gecode,
GNU Prolog and SICStus Prolog, the experiments that used the same matrices.
In Fig. 2 is made a comparison of the solve time in milliseconds using the matrix
portscan2 and varying the number of packet sets to model the problem using
the same constraint solvers.

All the experiments were run on a dedicated computer, an HP Proliant DL380
G4 with two Intel(R) Xeon(TM) CPU 3.40GHz and with 4 GB of memory,
running Debian GNU/Linux 4.0 with Linux kernel version 2.6.18-5.

5.1 Using Extensional Constraints

This approach forces a network packet, represented by a tuple of variables, im-
plemented as a list or array of variables to only take values from a set of tuples of
values that represent all the packets on a network log, implemented as a matrix.

Using Gecode When using the extensional constraint on Gecode, the perfor-
mance tend to degrade very much when the values on the matrix range from
very small values to very high values. The performance also tends to degrade
when the number of packet variables are being used to describe the network
situation. The size of the matrix that represents all traffic log doesn’t seem
to affect considerably the performance, since modeling the problem with
the same amount or network packet variables with different matrices with
a different number of packets doesn’t affect its performance. In Table 1 are
presented the execution times of the several runs using GNU Prolog. On this
experiment were made 10 runs, and the times presented are the usertime
average of each run in milliseconds.

Using GNU Prolog with fd relation/2 Using the equivalent extensional
constraint from Gecode on GNU Prolog, fd relation/2, the performance is
very similar to Gecode if the matrix don’t have very big values. Also, similar
to Gecode, the performance is affected badly when the number of packets
used to model the network situation rises. The size of the matrix doesn’t
seem to affect the performance of GNU Prolog, since the times obtained
to the same situation using matrices with different size are practically the

44Network Monitoring with Constraint Programming: Preliminary Specification and Analysis

same. One big difference to Gecode, is that GNU Prolog doesn’t seem to be
affected by matrices that are composed by values that ranges from very low
to very high values, since the same test using matrices of the same size, one
with smaller values and other with much grater values, produces very similar
times. Table 2 presents the execution times of the several runs using GNU
Prolog. On this experiment 100 runs were made, and the times presented are
the usertime average of each run in milliseconds.

Using Gecode/R The performance of using this approach in Gecode/R is very
similar to the performance of Gecode, mean while Gecode/R has a big lim-
itation, as it segfaults when the values of the matrix are too big, so, in
order to make the experiments, we were able to use the values of the matrix
portscan small in order to have some kind of comparison. The other ma-
trices portscan, portscan1 and portscan2 had to be transformed to smaller
values in order to Gecode/R be able to work with them. As expected, the
behaviour of the performance of Gecode/R using the extensional constraint
is quite similar to the behaviour of the performance of Gecode. As the val-
ues of the matrix rises, the performance starts to decay. The performance is
also affected by the size of the matrix but in a small factor. The number of
network packet variables needed to represent the problem has a big influence
in the performance, degrading when the number of variables rise. In Table
3 are presented the execution times of the several runs using Gecode/R. On
this experiment 10 runs were made, and the times presented are the usertime
average of each run in milliseconds.

Using SICStus Prolog Using SICStus Prolog with the extensional constraint
table/2 revealed to be an interesting solution, presenting good execution
times. The performance of SICStus Prolog didn’t seem to be affected by the
size of the values that compose the matrix. On the other hand, and oppo-
site to the other approaches, the performance is quite affected by the size
of the matrix, getting degraded as the its size grows. Similar to all other
approaches, the execution times get worst as the size of the problem grows,
getting slower when more variables are needed to model the situation. In
Table 4 are presented the execution times of several runs using SICStus Pro-
log. On this experiment 100 runs were made, and the times presented are
the usertime average of each run in milliseconds.

Using CaSPER Using the extensional constraint table in CaSPER shows it
doesn’t handle very good matrices composed by high values, degrading the
performance when its values get higher. The performance of CaSPER gets
worst when the number of variables needed to represent the problem rise, just
as with all other constraint solvers experimented. It also degrades in a great

Pedro Salgueiro and Salvador Abreu 45

scale when the size of the matrix rises. CaSPER revealed very sensitive to
the size of the values that compose the matrix, having problems handling big
matrices composed by big values, so, in order to make some experiments, we
transformed the matrices used on other approaches to contain smaller values,
being the same that were used on the experiments with Gecode/R. The
results obtained with CaSPER are presented in Table 5. On this experiment
10 runs were made, and the times presented are the usertime average of each
run in milliseconds.

Matrix No of Packets 2 sets

(setup)

2 sets

(solve)

6 sets

(setup)

6 sets

(solve)

portscan small 20 441 48 1281 135

portscan 20 3735 409 10927 1100

portscan1 40 3754 395 10984 1126

portscan2 60 3748 401 11025 1082

Table 1. Gecode execution times using extensional constraint

Matrix No of Packets 2 sets

(setup)

2 sets

(solve)

2 sets

(solve ff)

6 sets

setup

6 sets

(solve)

6 sets

(solve ff)

portscan small 20 363.3 2.1 2.2 1075.7 226.5 225.1

portscan 20 366.0 3.0 1.3 1078.1 229.8 227.7

portscan1 40 366.9 4.3 1.6 1079.4 261.7 217.5

portscan2 60 370.08 4.5 1.7 1090.1 262.5 220.1

Table 2. GNU Prolog execution times using fd relation extensional constraint

Matrix No of Packets 2 sets

(setup)

2 sets

(solve)

6 sets

(setup)

6 sets

(solve)

portscan small 20 130 492 158 1482

portscan smaller 20 126 453 156 1380

portscan1 smaller 40 130 460 162 1399

portscan2 smaller 60 133 461 190 1395

Table 3. Gecode/R execution times using the extensional constraint

46Network Monitoring with Constraint Programming: Preliminary Specification and Analysis

Matrix No of Packets 2 sets

(setup)

2 sets

(solve)

2 sets

(solve ff)

6 sets

(setup)

6 sets

(solve)

6 sets

(solve ff)

portscan small 20 16.1 0.2 0.2 48.0 1.5 1.6

portscan 20 16.0 0.4 0.3 48.1 1.4 1.6

portscan1 40 33.6 0.4 0.2 100.7 2.7 2.6

portscan2 60 52.3 0.4 0.4 157.4 3.6 3.0

Table 4. SICStus Prolog execution using the extensional constraints

Matrix No of Packets 2 sets

(setup)

2 sets

(solve)

6 sets

(setup)

6 sets

(solve)

portscan small 20 640 52410 1910 123810

portscan smaller 20 570 51670 1750 121420

portscan1 smaller 40 580 106470 1770 264040

portscan2 smaller 60 590 194080 1800 499440

Table 5. CaSPER execution times while using the extensional constraint

5.2 Using Extensional Constraints with Element Constraints

The approach using extensional constraints described in Sect. 5.1 shows that
some of the tested constraint solvers don’t perform very well when using the
extensional constraint with a matrix of possible values composed by values that
ranges from very low to very high values. In order to solve this problem, the
matrix with all possible values was translated into a matrix that contains indexes
to an array that contains all the values of the matrix. This matrix is then used
along with the extensional constraint in order to constraint the network packets
to the values that exist on the matrix. This packet will have values from the
matrix of indexes, so it is needed to create a new packet variable and channel
that variable to the values on the array with the original values, which is done
using the element constraint.

Using Gecode Using this approach in Gecode revealed to be quite good, hav-
ing an excellent performance when compared to the approach that only uses
the extensional constraint. Although this excellent performance, it behaves
much like when using only the extensional constraint, as it degrades as the
number of packet variables needed to model a network situation rises. Also,
the performance of this approach doesn’t seem to be affected by the size of
the matrix, since performing the same test using similar matrices, but with
different size doesn’t change the execution times. One main advantage of
this approach, is that its performance is not affected by the values of the
matrix, having the same results in terms of performance when using a ma-
trix with very big values or using a matrix with smaller values. In Table 6

Pedro Salgueiro and Salvador Abreu 47

are presented the execution times of the several runs using Gecode. On this
experiment 1000 runs were made, and the times presented are the usertime
average of each run in milliseconds.

Using GNU Prolog with fd relation/2 Using such approach in GNU Pro-
log didn’t reveal to be very promising, since the execution times obtained
were actually slower than the version using only the fd relation/2 constraint.
This approach tends to degrade just like the approach that used only the
constraint fd relation/2, not being influenced by the values on the matrix or
by the size of the matrix, degrading only when the number of packet vari-
ables needed to describe a network situation rises. In Table 7 are presented
the execution times of the several runs using GNU Prolog.

Using Gecode/R Using the extensional constraint combined with the element
constraint improved the performance of Gecode/R in a great factor, still, its
not as good as the performance obtained by using the same approach with
Gecode. Such as Gecode, the performance of Gecode/R is affected in a small
factor by the size of the matrix containing all possible values neither by
the size of the values on the matrix, still, more noticeable than when using
Gecode, since the overall performance of Gecode/R is worse than the overall
performance of Gecode. The performance of Gecode/R is affected by the
number of the packet variables needed to represent the network situation,
degrading when the number of variables rises, just as in Gecode and GNU
Prolog. In Table 8 are presented the execution times of the several runs using
Gecode/R.

Using SICStus Prolog Using SICStus Prolog with the combination of the
extensional constraint table/3 and the constraint element relation/3 didn’t
reveal any advantage over the approach that used only the constraint table/3
just as it happened on GNU Prolog. In Table 9 are presented the execution
times of several runs using SICStus Prolog where can be seen the main dif-
ferences between the other approaches. On this experiment 100 runs were
made, and the times presented are the usertime average of each run.

Using CaSPER Using CaSPER with the extensional constraint combined with
the element revealed very good results when compared to the approach using
only the extensional constraint. This fact is due to the use of a translated
matrix that uses much smaller values than the ones on the original values.
The performance of CaSPER tends to degrade when the number of variables
needed to model the problem rises as well as when the size of the matrix rises.
It seems not to be affected by the size of the values on the original matrix.
The execution times of this approach using CaSPER are presented in Table

48Network Monitoring with Constraint Programming: Preliminary Specification and Analysis

10. On this experiment 10 runs were made and the times presented are the
usertime average of each run in milliseconds.

Matrix No of Packets 2 sets

(setup)

2 sets

(solve)

6 sets

(setup)

6 sets

(solve)

portscan small 20 4.36 0.46 7.33 1.15

portscan 20 3.86 0.49 6.14 1.24

portscan1 40 4.77 0.57 8.82 1.20

portscan2 60 5.89 0.79 12.15 1.26

Table 6. Gecode execution times using extensional and element constraints

Matrix No of Packets 2 sets

(setup)

2 sets

(solve)

2 sets

(solve ff)

6 sets

setup

6 sets

(solve)

6 sets

(solve ff)

portscan small 20 379.7 3.2 2.8 1127.1 285.6 282.6

portscan 20 381.5 3.4 3.1 1128.7 284.1 281.3

portscan1 40 381.1 3.2 3.1 1132.5 296.3 283.0

portscan2 60 389.1 3.3 3.1 1148.2 294.0 278.8

Table 7. GNU Prolog execution times using fd relation extensional and element con-

straint

Matrix No of Packets 2 sets

(setup)

2 sets

(solve)

6 sets

(setup)

6 sets

(solve)

portscan small 20 144 88 235 267

portscan 20 148 82 238 262

portscan1 40 158 95 251 333

portscan2 60 155 121 274 382

Table 8. Gecode/R execution times using the extensional and element constraints

6 Conclusions and Future Work

In this work we have tested several implementations of a network monitoring
concept based on constraint programming, using several constraint solver sys-
tems in order to analyze the performance of each one.

Pedro Salgueiro and Salvador Abreu 49

Fig. 1. Solve time comparison in milliseconds, varying the matrix size

Fig. 2. Solve time comparison in milliseconds, varying the number of packets to model

the problem

50Network Monitoring with Constraint Programming: Preliminary Specification and Analysis

Matrix No of Packets 2 sets

(setup)

2 sets

(solve)

2 sets

(solve ff)

6 sets

(setup)

6 sets

(solve)

6 sets

(solve ff)

portscan small 20 57.8 0.5 1.8 167.7 5.5 6.8

portscan 20 58.0 0.2 1.0 167.3 4.1 6.5

portscan1 40 58.1 0.4 0.6 167.4 5.1 6.8

portscan2 60 58.5 0.2 0.6 167.6 6.6 9.0

Table 9. SICStus Prolog execution using extensional and element constraints

Matrix No of Packets 2 sets

(setup)

2 sets

(solve)

6 sets

(setup)

6 sets

(solve)

portscan small 20 13 54 40 157

portscan smaller 20 12 56 40 158

portscan1 smaller 40 18 118 58 343

portscan2 smaller 60 24 221 81 647

Table 10. CaSPER execution times using the extensional and element constraints

The results obtained in some constraint solvers are quite impressive, mainly
when using Gecode with the extensional constraint combined with element con-
straint. With this approach the performance is affected in a very small scale,
either by varying the size of the matrix, the size of the values that compose
the matrix or by number or variables used to model the problem. As expected
Gecode/R is slower that Gecode, as a new layer of modeling is being added on
top of Gecode.

While Gecode and Gecode/R have a huge gain of performance by combining
the Extensional and Element constraint, implementing this concept in GNU Pro-
log or SICStus Prolog actually degrades the performance of the system. An inter-
esting conclusion for the several experiment, is that on such constraint solvers,
the performance is not affected by the values that compose the matrices. Also on
GNU Prolog, an interesting fact is that the number of variables used to model
the problem influences the performance on a very small scale.

The results obtained by Gecode shows that modeling network situations with
constraints in order to perform network monitoring and intrusion detection tasks
can be done in an efficient way by combining extensional and element con-
straints.

This work shows that the performance of each approach varies in a big scale,
ranging from very fast execution times when using Gecode with the combination
of the extensional and element constraints to a much lower performance when
using an extensional constraint with CaSPER. We haven’t yet identified a valid

Pedro Salgueiro and Salvador Abreu 51

explanation for the different performance, as the objective of this work was to ex-
periment different approaches on several constraint solvers. An important future
step will be the study in detail of the reasons that lead to such a performance
difference in order to optimize the performance of this concept.

We are currently implementing new network constraints as well as making
use of new data types in order to allow for the description of more network
situations. As the modeling and performance aspects progress, we will extend
the application domain to include live network monitoring. Another significant
planned addition is the development of a Domain Specific Language (DSL)[10]
that will use these network constraints to conveniently perform network moni-
toring tasks.

Work is also being carried out in our research group, in the development of
a new parallel constraint programming system, focused on solving constraints in
a distributed environment. Naturally we plan on extending the work presented
herein to make use of the new constraint solving library.

References

1. F. Rossi, P. Van Beek, and T. Walsh. Handbook of constraint programming. Elsevier

Science, 2006.

2. K.R. Apt. Principles of constraint programming. Cambridge Univ Pr, 2003.

3. Christian Schulte. Programming Constraint Services, volume 2302 of Lecture Notes

in Artificial Intelligence. Springer-Verlag, 2002.

4. D. Diaz and P. Codognet. Design and implementation of the gnu prolog system.

Journal of Functional and Logic Programming, 6(2001):542, 2001.

5. M. Carlsson, G. Ottosson, and B. Carlson. An open-ended finite domain constraint

solver. Lecture notes in computer science, pages 191–206, 1997.

6. C. Schulte and P.J. Stuckey. Speeding up constraint propagation. Lecture Notes

in Computer Science, 3258:619–633, 2004.

7. Gecode/R Team. Gecode/R: Constraint Programming in Ruby. Available from

http://gecoder.org/.

8. M. Correia and P. Barahona. Overview of the CaSPER* Constraint Solvers. Third

International CSP Solver Competition, page 15, 2008.

9. tcpdump web page at http://www.tcpdump.org/, April, 2009.

10. A. Van Deursen and J. Visser. Domain-specific languages: An annotated bibliog-

raphy. ACM Sigplan Notices, 35(6):26–36, 2000.

52Network Monitoring with Constraint Programming: Preliminary Specification and Analysis

Searching in Protein State Space

Dietmar Seipel
Department of Computer Science

seipel@informatik.uni-wuerzburg.de

Jörg Schultz
Department of Bioinformatics, Biozentrum

joerg.schultz@biozentrum.uni-wuerzburg.de

University of Würzburg, Am Hubland, D–97074 Würzburg, Germany

Abstract. The increasing complexity of protein interaction networks makes their
manual analysis infeasible. Signal transduction processes pose a specific chal-
lenge, as each protein can perform different functions, depending on its state.
Here, we present a PROLOG and XML based system which explores the protein
state space. Starting with state based information about the function of single
proteins, the system searches for all biologically reasonable states that can be
reached from the starting point. As facts of general molecular biology have been
integrated, novel reasonable states, not encoded in the starting set, can be reached.
Furthermore, the influence of modifications like mutations or the addition of fur-
ther proteins can be explored. Thus, the system could direct experiments and
allow to predict their outcome.

1 Introduction

Current large scale projects like the sequencing of genomes and the unravelling of pro-
tein interaction networks produce a wealth of data and give new insights into the molec-
ular architecture of cells. Still, it is a huge step from data generation to the understanding
of the molecular details of cellular networks. One of the primary challenges is the struc-
tured representation of a proteins function, a prerequisite for any computational analy-
sis. Although many protein and nucleotide databases still use mainly human readable
text as annotation, different approaches have been developed to structure this knowl-
edge. These were as straightforward as defining specific keywords or as complicated as
setting up an ontology for different aspects of protein function [Rzhetsky et al., 2000];
probably, the most widely used of the latter approaches is from the Gene Ontology
project [Consortium, 2008].

An additional level of complexity arises when describing not only the function of
single proteins, but their interplay within the cellular network. Here, the function of one
protein has to be seen in the context of its interactions or the pathways it is involved
in. In the case of metabolic networks, methods for the representation of knowledge and
the computation with function have been developed [Keseler et al., 2009,Karp, 2001].
Here, the function of a protein can be seen as more or less constant. This contrasts
typical eukaryotic signaling pathways, where the function of a protein and therefore

Dietmar Seipel and Jörg Schultz 53

its influence on the cellular networks changes for different input signals. This flexibility
in function is usually implemented by describing the state of a protein when performing
specific actions [Duan et al., 2002,Schacherer et al., 2001,Ratsch et al., 2003]. Systems
like the π–calculus have been developed, which allow to encode signaling pathways and
to explore the effects of mutations [Regev et al., 2001]. Still, these approaches as well
as Petri nets [Grafahrend–Belau et al., 2008] represent rigid networks and do not allow
to find states not given to the system. The Biocham system [Fages et al., 2004] offers
automated reasoning tools for querying the temporal properties of interaction networks
under all possible behaviours using Computation Tree Logic (CTL). [Baral, 2004] uses
an action–style, knowledge based approach for supporting various tasks of reasoning
(including planning, hypothetical reasoning, and explanation) about signaling networks
in the presence of incomplete and partial information.

Here, we describe a simulation approach which is based on a logic representation of
protein states. Its goal is to find all possible and biological acceptable pathways which
can be derived from the given starting situation. As the system is aware of general
concepts of molecular biology, it can 1) generate states not known to the system and
2) simulate the outcome of modifications like mutations or addition of inhibitors.

The rest of this paper is organized as follows: In Section 2, we present the concepts
and techniques for manipulating XML structures in PROLOG. Section 3 provides formal
representations of protein function, general biological concepts, and then it describes
the central PROLOG search algorithm for protein networks. Two practical applications
are shown in Section 4. Finally, Section 5 discusses the new approach.

2 Manipulation of XML Structures in PROLOG

The logic programming language PROLOG is very useful for representing, manipulat-
ing and reasoning about complex structures, such as the states obtained during the sim-
ulation of biological processes [Bratko, 2001,Clocksin & Mellish, 2003]. In particular,
search algorithms can be implemented very nicely based on PROLOG’s built–in concept
of backtracking, and the handling and manipulation of the relatively complex interme-
diate data structures obtained during the simulation can be done in a very declarative
way.

XML has been increasingly used for representing various forms of complex, semi–
structured data, and for exchanging these data between different applications. E.g.,
in molecular biology, XML languages like SBML [Hucka et al., 2003], MAGE–ML
[Spellman et al., 2002] and PSI Ml [Hermjakob et al., 2004] have been developed. XML
data are used by many tools in different application domains, and to some extend they
are human–readable.

Thus, we have used XML as the data format for the complex states of our PROLOG
based search algorithm. For querying and manipulating XML elements in PROLOG,
we have developed the XML query, transformation, and update language FNQUERY
[Seipel, 2002]. This combination of XML and PROLOG facilitates knowledge represen-
tation and software engineering drastically. The elegant data access to and update of
XML data by path expressions in connection with the powerful reasoning facilities and
the declarative programming style of PROLOG makes our application compact, flexible,

54 Searching in Protein State Space

and extensible. Another PROLOG based XML query language has, e.g., been proposed
in [Alemendros–Jiménez et al., 2007], without the necessary update functionality, how-
ever. Our approach is also superior to standard XML processing tools such as XQuery
or XSLT, since it is fully interleaved with the declarative – and general purpose – pro-
gramming language PROLOG, and since the update capabilities are better.

2.1 XML Representations and Path Expressions

There exist various ways of representing XML structures in PROLOG. We have devel-
oped a PROLOG term representation for XML elements, which we call field notation,
and a fact representation, which we call graph notation. These internal representations
are described in [Seipel, 2002]; for the purposes of this paper it is sufficient to read
XML data from files and to write them to XML files.

We use path expressions for localizing sub–structures of an XML structure. The
path language FNPATH, which we have developed, is an extension of the well–known
path language XPATH, and XPATH expressions can be mapped to equivalent FNPATH
expressions. Moreover, we can allow for more general path expressions, since we use
PROLOG – including backtracking and unification – for their evaluation. In the follow-
ing we will describe the fragment of FNPATH which we have used in this paper. The
path expressions in this fragment directly correspond to equivalent XPATH expressions.

A path expression π = σ1σ2 . . . σn consists of one or more steps σi for localizing
child elements or attributes of XML elements. E.g., the path expression

/proteins/protein::[@name=Protein]

has two location steps. When this path expression is applied to an XML element Cell,
then the first step σ1 = /proteins selects the child element Ps of Cell with the tag
proteins. Subsequently, the second step σ2 = /protein::[@name=Protein]
of the path expression selects a child element P of Ps with the tag protein, such that
P has an attribute name with the value Protein.

In general, a location step can be of the forms σ = @ ν, σ = /ν, and σ = /ν :: τ,
where ν is a node test and τ is a list of predicates. The second form is a short hand for
the third, if the list τ is empty. The predicate @name=Protein in the example above
also contains a location step @name, which selects the value of the attribute name of
the element P; the predicate succeeds, if this value is Protein.

2.2 The Query Language

The PROLOG based XML query, transformation, and update language FNQUERY is
based on FNPATH, and it has three sublanguages:

– FNSELECT: selection of subelements/attributes,
– FNTRANSFORM: transformations like XSLT,
– FNUPDATE: updates (insertion, deletion) of elements/attributes.

In this paper, we have extensively used FNSELECT and FNUPDATE for computing suc-
cessor states during the simulation process. For this purpose, FNUPDATE has been ex-
tended by insertion and deletion operations, which are very useful here.

Dietmar Seipel and Jörg Schultz 55

Selection of Substructures. If X is an XML element in PROLOG representation and π
is a path expression, then the assignment Y := X π selects a substructure of X and
assigns it to Y. E.g., the following rule selects the location Loc of a state element for
a given protein with the name Protein within a given cell Cell. The path expression
π consists of 5 location steps, which are applied successively to Cell. The predicate
@name=Protein in the second location step assures that the selected child has the
proper value for the attribute name:

get_location(Protein, Cell, Loc) :-
Loc := Cell/proteins/protein::[@name=Protein]

/current_state/state@location.

Modification/Update of Substructures. If X is an XML element in PROLOG represen-
tation and π is a path expression, then the assignment Y := X*[π:v] modifies the
substructure of X that is selected by π to the new value v. E.g., the assignment statement
in the following rule changes the value of the attribute location to Loc.

set_location(Protein, Loc, Cell_1, Cell_2) :-
Cell_2 := Cell_1 * [

/proteins/protein::[@name=Protein]
/current_state/state@location:Loc].

Insertion and Deletion of Substructures. The following PROLOG rules are used for
modifying a given cell Cell_1. The first rule adds a new interaction element with the
attribute value Int for protein within the protein element with the name P. The
second rule deletes such an interaction element.

add_interaction(P, Int, Cell_1, Cell_2) :-
Cell_2 := Cell_1 <+> [

/proteins/protein::[@name=P]
/current_state/state/interactions
/interaction:[protein:Int]:[]].

delete_interaction(P, Int, Cell_1, Cell_2) :-
Cell_2 := Cell_1 <-> [

/proteins/protein::[@name=P]
/current_state/state/interactions
/interaction::[@protein=Int]].

3 Representation and Searching

In the following, we provide formal representations of protein function and general
biological concepts, and then we describe the central PROLOG search algorithm for
protein networks.

56 Searching in Protein State Space

3.1 Formal Representation of Protein Function

It is a fundamental feature of proteins, especially those involved in signal transduction,
that their function is tightly regulated. Depending, for example, on its own phosphory-
lation status, a protein kinase might phosphorylate different target proteins. Therefore,
any representation of a proteins function has to allow different functions for a single
protein, depending on its status. This status can be described by three features, namely
the localisation, modifications, and interactions [Duan et al., 2002,Ratsch et al., 2003].

In our approach, we combine these features with a detailed description of the func-
tion performed within this state. Currently, the localisation mainly describes the or-
ganelle a protein can be found in, for example the cytoplasm or the nucleus. Within the
list of modifications, the type, but also the position in the sequence is stored. Finally,
the interactions describe a list of bound proteins. Depending on the value of these three
features, the protein might perform different functions. These are encoded in a list of
actions. Each action itself consists of the type of the action, the name of the involved
protein and possible parameters.

Type Subtypes Parameters
moving none protein

new location
interaction binding protein1,2

dissociation
modification phosphorylation protein1,2

dephosphorylation position

Table 1. Implemented Actions

Currently, three general types of actions are implemented, where each type can
contain different subtypes and parameters (Table 1). Within this concept it is important
to note that we do not use any descriptions like activation, stimulation or inhibition,
as these are interpretations and depend on the experiment performed. We describe the
molecular details of a function a protein performs when in a given state. This might be
interpreted as an activation to perform a function within a given state.

Having defined the state as the core structure, different states and their actions have
to be put together with additional information to describe a proteins function. First,
there are constant, that is state independent, features which have to be represented. Sec-
ond, as we aim for qualitative simulation, the actual state of a protein has to be stored.
Following, all states which trigger a specific action are listed. Finally, we allow for so
called forbidden states. Especially in molecular biology, the knowledge of a proteins
function frequently contains negative information like the fact that a protein will not be
localised within the nucleus if bound to a defined other protein. By introducing forbid-
den states, we allow the handling of this information. Figure 1 shows the XML structure
describing the function of a single protein.

Dietmar Seipel and Jörg Schultz 57

<protein name="receptor" sequence="MDCQLSILLLLSCSVLD...">
<current_state>

<state location="transmembrane">
<modifications/>
<interactions>

<interaction protein="jak"/> </interactions>
<actions/>

</state>
</current_state>
<action_states>

<state location="transmembrane">
<modifications/>
<interactions mode="identical">

<interaction protein="ligand"/>
<interaction protein="jak"/> </interactions>

<actions>
<action type="interaction" subtype="binding">

<protein name="receptor"/>
<parameter protein="receptor"/>
<status state="todo"/> </action> </actions>

</state>
</action_states>
<forbidden_states>

<state location="transmembrane">
<modifications/>
<interactions>

<interaction protein="Grb2"/> </interactions>
</state>

</forbidden_states>
</protein>

Fig. 1. XML Representation of a Proteins Function – To represent all functions of a protein and
allow simulation, the actual state of a protein (current_state) as well as all states leading to an
action (action_states) have to be known. Furthermore, states not acceptable for the protein can
be stored (forbidden_states). Features invariant to the protein, like the name or its sequence, are
given as parameter to the protein tag.

3.2 Representation of General Biological Concepts

If one aims at qualitatively simulating signal transduction processes, it is of vital im-
portance to take into account general biological concepts which can help to restrain
the search space and keep the derived states consistent as well as biologically correct.
Therefore, we have implemented the following concepts into our system.

Localisation. To describe different cellular localisations, we first have defined a set of
accepted keywords describing localisations. In a second step, we have built, comparably
to the GeneOntology, a hierarchy of these localisations using subclasses/2 facts.

58 Searching in Protein State Space

As we are modelling changes of localisations (moves), we furthermore define between
which compartments direct moves are possible using allowed/2 facts. For example,
although nucleus and mitochondrion are both organelles embedded in the cytoplasm, no
direct transitions between them are possible. A protein is assigned to one localisation
for each state. A special case are transmembrane proteins, which reside in up to three
different localisations, for example extracellular, membrane and cytoplasmic; this is
represented by a contains/2 fact.

localisations([
localisation, intra, extra,
membrane, transmembrane,
cytoplasma, nucleus, ...]).

subclasses(localisation, [
intra, extra, membrane]).

subclasses(transmembrane, [membrane]).

allowed(intra, extra).
allowed(cytoplasma, nucleus).
allowed(X, X).

contains(transmembrane, [
extra, membrane, cytoplasma]).

...

Interaction. As protein interactions build the backbone of any signal transduction pro-
cess, a substantial amount of rules was generated to assure, that the modelled interac-
tions are biologically sound. First, only proteins not already interacting (unbound/2)
are allowed to start a new interaction and only interacting proteins can dissociate.
Second, the predicate matching_location_/3 assures that both interacting pro-
teins reside in the same localisation; the values of the localisations do not have to
be identical. Third, reciprocity of binding as well as dissociation events is assured by
add_interaction/3. If one of multiple interacting proteins is moving, that is its
localisation changes, all interacting proteins have to move. This assures consistency of
localisation information; furthermore a translocation will not happen if any of the in-
teracting proteins is not allowed within the new localisation. E.g., the PROLOG module
interaction contains the following rule for bindings:

binding(S1, Action, S2) :-
P1 := Action/protein@name,
P2 := Action/parameter@protein,
Proteins = [P1, P2],
unbound(S1, Proteins),

Dietmar Seipel and Jörg Schultz 59

matching_location_(S1, Proteins, SA),
add_interaction(SA, Proteins, SB),
!,
\+ forbidden_state(Proteins, SB),
add(SB, Action, Proteins, S2).

Based on the facts implemented for localisation, we can handle cases where the
information about the localisation of one protein is more specific than the other. In an
example scenario, it might be known for protein A, that it is localised within the cyto-
plasm whereas protein B is only known to be somewhere within the cell (intracellular).
Our system does not only allow this interaction, as the cytoplasm is a specification of
intracellular, it updates the localisation information for protein B. This is also done it-
eratively for all interacting proteins in the case of complexes. Thereby, the system can
improve on current knowledge.

Modification. Currently, the only implemented modification is phosphorylation. Here,
our rules assure that within the phosphorylated position resides a correct amino acid,
S, T or Y. Furthermore, it is assured, that the side which becomes phosphorylated is
not already phosphorylated. Complementarily, only phosphorylated sites can become
de–phosphorylated. In both cases, a modification includes the interaction (predicate
interaction:unbound/2 and first call of predicate interaction/4), the ac-
tual modification (predicate phosphorylation_/3) and a dissociation (second call
of predicate interaction/4). Therefore, only proteins which are able to interact
can be involved in a phosphorylation or de–phosphorylation reaction.

phosphorylation(S1, Action, S2) :-
Protein_1 := Action/protein@name,
Protein_2 := Action/parameter@protein,
Proteins = [Protein_1, Protein_2],
interaction:unbound(S1, Proteins),
interaction(S1, Proteins, binding, SA),
phosphorylation_(SA, Action, SB),
interaction(SB, Proteins, dissociate, S2).

3.3 Searching Through Protein States

Thus far, we have described a static system for the representation of protein function
based on states and some general rules concerning biological concepts. As it is the aim
of the system to search through protein state space and to allow for qualitative simu-
lations, the function of each protein has to be connected to and depend on the state of
other proteins. This has been implemented for example by LiveDIP [Duan et al., 2002]
and the Molecule Pages database [Saunders et al., 2008] by linking states with state
transitions. Here, no state transitions are encoded. That is, no information like protein

60 Searching in Protein State Space

A gets transferred from state 1 to state 2 when interacting with protein C has to be pro-
vided. Rather, we perform actions on proteins and let the protein itself decide whether
its new state might trigger further actions. Thereby, we allow each protein to reach
states, which are not explicitly encoded in its state list and are able to unravel novel
pathways intrinsic to the analyzed protein interaction network.

Comparing States. A fundamental concept of the presented approach is the ability to
compare different states. This is, for example, of importance for deciding, whether the
current state of a protein matches a state which is connected to a new action. Obviously,
the most straightforward approach would be to check for identity within all features
of the state (localisation, interactions and modifications). This would lead to the same
results as explicitly coding state transitions and would not allow to detect states not
encoded within the system. To allow for a more explorative searching, we have defined
a subsumption relationship for states.

subsumes_localisation(S, G) :-
SLoc := S@location,
GLoc := G@location,
localisation:specifies(SLoc, GLoc).

subsumes_interactions(S, G) :-
identical := G/interactions@mode,
!,
get_interactions(S, SInt),
get_interactions(G, GInt),
subset(GInt, SInt),
subset(SInt, GInt).

subsumes_modifications(S, G) :-
identical := G/modifications@mode,
!,
get_modifications(S, SMod),
get_modifications(G, GMod),
subset(GMod, SMod), subset(SMod, GMod).

In the case of localisations, the subsuming state needs to have a localisation which
is either identical to or more specific than the general state. For example, a state with
a cytoplasmic localisation will subsume a state with a intracellular localisation. Here,
the general biological knowledge about the compartments of the cell is substantial. For
the interactions and modifications, the general state has to be a subset of the subsuming
state. To allow more restrictive comparisons, both interaction and modification can be
set to identical, which enforces identity between the general and the subsuming state.
These rules allow to decide whether a protein is in a state, which can trigger a specified
action.

Dietmar Seipel and Jörg Schultz 61

Search Algorithm and Implementation. Having defined a subsumption relationship
between states and actions associated with given states, which are called soups below,
the system can now be used to search through protein state space. To start the search
process, an action as well as the starting states of all proteins are needed. In the first
step, the system tries to perform the action, taking into account the biological back-
ground given above. If the action can be performed, at least one protein will be in
a novel state. The system now compares the current state of all proteins with all ac-
tion states of the protein. If no current state is found which subsumes an action state
(soup_node_subsumes/2), then the system tries to perform the action. If success-
ful, a new round of search is initiated (find_next_soup/4). In each step, applica-
tions of the general biological concepts assure, that only correct states are reached. For
example, a protein A might be in a state triggering an action to bind to protein B. This
action will fail, if protein B in its current state is located in a different cellular compart-
ment than protein A. The search process iterates until no protein is in a state triggering
a new action. Here, the first solution of the search process has been found.

protein_state_search(S, _, S).
protein_state_search(S1, Actions_1, S3) :-

M := S1@id, not(soup_node_subsumes(_, M)),
find_next_soup(S1, Actions_1, S2, Actions),
find_candidate_actions(S2, Actions, Cs),
add_candidate_actions(Cs, Actions, Actions_2).
protein_state_search(S2, Actions_2, S3).

find_next_soup(S1, As1, S2, As2) :-
A := As1/action::[@id=Id, /status@state=todo],
[Type, SubType] := A-[@type, @subtype],
once(apply(Type:SubType, [S1, A, S])),
As2 := As1 * [

/action::[@id=Id]/status@state:done],
remember_search_edge(S1, S, S2).

Natural numbers are assigned as identificators to Soups, and the edges between two
soups are asserted in the PROLOG database:

remember_search_edge(S1, S, S2) :-
M := S1@id,
soup_to_number_(S, N),
S2 := S * [@id:N],
assert(soup_edge(M, N)),
!.

The system finds all solutions using PROLOG’s backtracking mechanism. In each
intermediate step, the system checks, whether another action than the one already per-
formed might be triggered. If so, another search process is started, leading to further

62 Searching in Protein State Space

solutions of the system. Thus, a depth first search through the space of all possible
protein states is performed.

Within the search process, care is taken to detect possible cycles which would lead
to infinite searches. Therefore, the search is stopped if an action already performed is
triggered.

find_candidate_actions(Soup, Actions, Candidates) :-
findall(Action,

(Protein := Soup/proteins/protein,
check_action(Protein, Action),
\+ performed(Action, Soup),
\+ action_already_found(Actions, Action)),

Candidates_2),
sort(Candidates_2, Candidates).

check_action(Protein, Action) :-
C_State := Protein/current_state/state,
A_State := Protein/action_states/state,
protein_state_subsumes(C_State, A_State),
Action := A_State/actions/action.

performed(Action, Soup) :-
Test_Action := Soup/pathway/step/action,
action:identical(Action, Test_Action).

action_already_found(Actions, Action) :-
Action_2 := Action * [@id:_],
Action_2 := Actions/action.

Interface / Visualization. Already in comparatively small biological systems, many
end states can be reached. Obviously, any two of these end states can be identical, as
each can be reached by different combinations of actions. To allow for the evaluation
of the results and decrease the redundancy, we have developed a visualization in SWI–
PROLOG [Wielemaker, 2009], cf. Figures 2 and 3. Here, each combination of protein
states, which can be reached is represented by a circle. If two states are identical, then
the nodes representing these states are combined leading to a collapse of the original
search tree.

For each node, not only the state of all proteins, but also all pathways leading to the
node are given. As the representation is based on the same XML structure as the input,
it might be used as input for other programs, e.g. visualizing the pathways in a more
detailed way.

Dietmar Seipel and Jörg Schultz 63

4 Applications

To show, that the proposed system is indeed able to represent signaling pathways, we
evaluate two test cases, the Jak–Stat and the MAP kinase pathway. In addition to finding
novel states, it was a fundamental goal of the presented system to allow for qualitative
simulations of modifications of the signal transduction pathways; here, the implemented
general biological concepts are of major importance.

4.1 Jak–Stat Pathway

The Jak–Stat signalling pathway provides one of the fastest routes from a cell surface
receptor to the nucleus [O’Shea et al., 2002]. Still, all major principles of signalling
pathways, dimerization, phosphorylation and translocation are implemented within this
short pathway. The involved proteins are the receptor, a ligand, the Jak protein kinases
and the Stats. For each of the proteins we have defined a starting state as well as states
which lead to further actions. An example is the rule that a phosphorylated Stat can
homodimerize. The state searching procedure was started with an interaction of the
ligand with the receptor.

Fig. 2. Representation of the Jak–Stat Pathway

64 Searching in Protein State Space

Figure 2 shows all soups (combinations of proteins states) which have been reached
from this initial condition. Most interestingly, there are two ways how node 7 can be
reached. Inspection of this node reveals, that the difference between the two pathways
is the order in which the dissociation of Stat from the receptor and the dimerization of
two Stats are handled.

– With the knowledge given to system, two pathways have been found leading to
node 7. Whereas in the first (via node 6), the phosphorylated Stat dissociates from
the receptor before dimerization with another phosphorylated Stat, the pathway via
node 9 reverses these steps.

– The detailed information underlying nodes 3 and 4 is selected and shown in an
HTML table. The annotation is automatically improved. After binding to the recep-
tor, the localisation of Stat is specified from intracellular to cytoplasmic (shown in
grey).

It is an important feature of our system, that states which are not explicitly given in the
knowledge base can be generated. This happens for example at node 9, which describes
a protein complex of the ligand, a dimerized receptor, Jak and Stat. Additionally, Stat
itself is a dimer. The existence of such a protein complex was not given within any state
described in the knowledge base.

In addition to the generation of novel states, the system can also help in refining
current knowledge. At the beginning of the search process, Stats location is annotated
as intracellular. Within node 4, Stat binds to the receptor, which is annotated as trans-
membrane protein. As in the current implementation transmembrane proteins consist of
an extracellular, a transmembrane and a cytoplasmic region, the system deduces, that
Stat has to be cytoplasmic, if it binds as an intracellular protein to a transmembrane
protein.

This example illustrates, that information about important states is not only suf-
ficient to reconstruct pathways, also novel states as well as improvements of current
knowledge can be automatically generated.

4.2 MAP Kinase Pathway

The MAPK pathway represents one of the oldest signalling cascades conserved between
yeast and human [Bardwell, 2005,Wang & Dohlman, 2004]. Its core is a cascade of
phosphorylation of protein kinases.

In total, 167 possible soups (combinations of protein states) were found. As the
integration of these states and the pathways leading to them shows (Figure 3), there are
many different pathways leading to identical combinations of protein states. Directed by
this analysis, experimental research might unravel which of these pathways are actually
implemented by the yeast cell.

5 Discussion

Unraveling the molecular details of signal transduction processes is an important step
towards understanding the regulation of cellular networks. Although it is the ultimate

Dietmar Seipel and Jörg Schultz 65

Fig. 3. Representation of the Yeast Mating Pheromone Response Pathway

goal of systems biology to quantitatively model the whole cell, especially in signal
transduction we are still far from the enumeration of all involved molecular reactions.
The identification of these reaction as well as the delineation of possible pathways is
therefore a crucial prerequisite.

We have described a PROLOG system which, given a defined set of proteins and their
functions, searches for all possible states encoded within a system and thereby finds all
possible pathways using backtracking. The fundamental concept of the approach is the
state of a protein, which is defined by its location, modifications and interactions. The
whole system consists of three components: first an XML encoded state based repre-
sentation of protein function. Second, a rule based representation of general biological
concepts and third, a search algorithm implemented in PROLOG. The resulting system
is not only able to search through protein state space, but furthermore to simulate the
outcome of manipulations to the proteins. Declarative logic programming in PROLOG
greatly simplified the system despite the complex logic behind the search algorithm and
the complexity of the underlying data structures.

Contrasting other approaches [Saunders et al., 2008,Zheng et al., 2008], we do not
encode any explicit state transitions. Instead, the protein knows about states which trig-
ger further actions. If the protein is in a state that subsumes one of these states, an
action is started, which might transform other proteins, leading to further actions. Thus,
proteins can reach states, which have not been given to the system beforehand. These
novel deduced states might be a good starting point for further experimental exploration
of signal transduction networks.

66 Searching in Protein State Space

A critical point within the approach is the collection of the functions of the involved
proteins. Although manual knowledge acquisition will assure the highest quality, it is
comparably slow. One might overcome this hindrance by adding automated function
prediction for the involved proteins based for example on sequence analysis.

So far, the system has been tested only on smaller signal transduction networks. One
possible challenge might be the increasing computational resources needed for larger
system. To date, we rather see the collection of biological knowledge in the level of
detail needed for the system as the limitation. More on the users point of view, the huge
amount of detail might become hard to digest in the current representation. Thus, a
more graphical, possibly animated interface, which might even allow to interfere with
the system, would be the long term goal.

References

[Alemendros–Jiménez et al., 2007] Almendros–Jiménez, J.M., Becerra–Terón, A., Enciso–
Baños, F.J. (2007) Integrating XQUERY and Logic Programming. Proc. 17th International
Conference on Applications of Declarative Programming and Knowledge Management (INAP
2007) and 21st Workshop on (Constraint) Logic Programming (WLP 2007), 136–147.

[Baral, 2004] Baral, C., Chancellor, K., Tran, N., Tran, N.L., Joy, A., Berens, M. (2004) A
knowledge based approach for representing and reasoning about signaling networks, Bioin-
formatics, 20 (Suppl. 1), i15–i22.

[Bardwell, 2005] Bardwell, L. (2005) A walk–through of the yeast mating pheromone response
pathway. Peptides, 26 (2), 339–350.

[Bratko, 2001] Bratko, I. (2001) PROLOG– Programming for Artificial Intelligence, 3rd Edition,
Addison–Wesley, 2001.

[Clocksin & Mellish, 2003] Clocksin, W. F., Mellish, C. S. (2003) Programming in PROLOG.
5th Edition, Springer, 2003.

[Consortium, 2008] Consortium, G. O. (2008) The Gene Ontology project in 2008. Nucleic
Acids Res., 36, D440–444.

[Duan et al., 2002] Duan, X. J., Xenarios, I. & Eisenberg, D. (2002) Describing biological pro-
tein interactions in terms of protein states and state transitions: the LiveDIP database. Mol Cell
Proteomics, 1 (2), 104–116.

[Fages et al., 2004] Fages, F., Soliman, S., Chabrier, N. (2004) Modelling and querying interac-
tion networks in the biochemical abstract machine BIOCHAM, Journal of Biological Physics
and Chemistry, 4, 64–73.

[Grafahrend–Belau et al., 2008] Grafahrend–Belau, E., Schreiber, F., Heiner, M., Sackmann, A.,
Junker, B. H., Grunwald, S., Speer, A., Winder, K. & Koch, I. (2008) Modularization of bio-
chemical networks based on classification of Petri net t–invariants. BMC Bioinformatics, 9,
90.

[Hermjakob et al., 2004] Hermjakob, H., Montecchi–Palazzi, L., Bader, G., Wojcik, J., Salwin-
ski, L., Ceol, A., Moore, S., Orchard, S., Sarkans, U., von Mering, C., Roechert, B., Poux, S.,
Jung, E., Mersch, H., Kersey, P., Lappe, M., Li, Y., Zeng, R., Rana, D., Nikolski, M., Husi, H.,
Brun, C., Shanker, K., Grant, S. G. N., Sander, C., Bork, P., Zhu, W., Pandey, A., Brazma, A.,
Jacq, B., Vidal, M., Sherman, D., Legrain, P., Cesareni, G., Xenarios, I., Eisenberg, D., Steipe,
B., Hogue, C. & Apweiler, R. (2004) The HUPO PSI’s molecular interaction format – a com-
munity standard for the representation of protein interaction data. Nat. Biotechnology, 22 (2),
177–183.

Dietmar Seipel and Jörg Schultz 67

[Hucka et al., 2003] Hucka, M., Finney, A., Sauro, H., Bolouri, H., Doyle, J., Kitano, H., Arkin,
A., Bornstein, B., Bray, D., Cornish–Bowden, A., Cuellar, A., Dronov, S., Gilles, E., Ginkel, M.,
Gor, V., Goryanin, I., Hedley, W., Hodgman, T., Hofmeyr, J.–H., Hunter, P., Juty, N., Kasberger,
J., Kremling, A., Kummer, U., NovÃĺre, N. L., Loew, L., Lucio, D., Mendes, P., Minch, E.,
Mjolsness, E., Nakayama, Y., Nelson, M., Nielsen, P., Sakurada, T., Schaff, J., Shapiro, B.,
Shimizu, T., Spence, H., Stelling, J., Takahashi, K., Tomita, M., Wagner, J., Wang, J. & Forum,
S. (2003) The systems biology markup language (SBML): a medium for representation and
exchange of biochemical network models. Bioinformatics, 19 (4), 524–531.

[Karp, 2001] Karp, P. (2001) Pathway databases: a case study in computational symbolic theo-
ries. Science, 293 (5537), 2040–2044.

[Keseler et al., 2009] Keseler, I. M., Bonavides–Martínez, C., Collado–Vides, J., Gama–Castro,
S., Gunsalus, R. P., Johnson, D. A., Krummenacker, M., Nolan, L. M., Paley, S., Paulsen, I. T.,
Peralta–Gil, M., Santos–Zavaleta, A., Shearer, A. G. & Karp, P. D. (2009) EcoCyc: a compre-
hensive view of Escherichia coli biology. Nucleic Acids Research, 37, D464–470.

[O’Shea et al., 2002] O’Shea, J. J., Gadina, M. & Schreiber, R. D. (2002) Cytokine signaling in
2002: new surprises in the Jak/Stat pathway. Cell, 109 Suppl., S121–131.

[Ratsch et al., 2003] Ratsch, E., Schultz, J., Saric, J., Lavin, P., Wittig, U., Reyle, U. & Rojas, I.
(2003) Developing a protein–interactions ontology. Comparative and Functional Genomics, 4,
85–89.

[Regev et al., 2001] Regev, A., Silverman, W. & Shapiro, E. (2001) Representation and simula-
tion of biochemical processes using the π–calculus process algebra. In Pacific Symposium on
Biocomputing, 459–470.

[Rzhetsky et al., 2000] Rzhetsky, A., Koike, T., Kalachikov, S., Gomez, S., Krauthammer, M.,
Kaplan, S., Kra, P., Russo, J. & Friedman, C. (2000) A knowledge model for analysis and
simulation of regulatory networks. Bioinformatics, 16 (12), 1120–1128.

[Saunders et al., 2008] Saunders, B., Lyon, S., Day, M., Riley, B., Chenette, E., Subramaniam,
S. & Vadivelu, I. (2008) The Molecule Pages database. Nucleic Acids Research, 36, D700–706.

[Schacherer et al., 2001] Schacherer, F., Choi, C., Götze, U., Krull, M., Pistor, S. & Wingender,
E. (2001) The TRANSPATH signal transduction database: a knowledge base on signal trans-
duction networks. Bioinformatics, 17 (11), 1053–1057.

[Seipel, 2002] Seipel, D. (2002) Processing XML–documents in PROLOG. In Proc. 17th Work-
shop on Logic Programming (WLP 2002).

[Spellman et al., 2002] Spellman, P. T., Miller, M., Stewart, J., Troup, C., Sarkans, U., Chervitz,
S., Bernhart, D., Sherlock, G., Ball, C., Lepage, M., Swiatek, M., Marks, W., Goncalves, J.,
Markel, S., Iordan, D., Shojatalab, M., Pizarro, A., White, J., Hubley, R., Deutsch, E., Senger,
M., Aronow, B. J., Robinson, A., Bassett, D., Stoeckert, C. J. & Brazma, A. (2002) Design
and implementation of microarray gene expression markup language (MAGE–ML). Genome
Biology, 3 (9), RESEARCH0046.

[Wang & Dohlman, 2004] Wang, Y. & Dohlman, H. G. (2004) Pheromone signaling mecha-
nisms in yeast: a prototypical sex machine. Science, 306 (5701), 1508–1509.

[Wielemaker, 2009] Wielemaker, J. (2009) SWI–PROLOG 5.0 Reference Manual and
Wielemaker, J., Anjewierden, A. (2009) Programming in XPCE/PROLOG,
http://www.swi-prolog.org/

[Zheng et al., 2008] Zheng, S., Sheng, J., Wang, C., Wang, X., Yu, Y., Li, Y., Michie, A., Dai,
J., Zhong, Y., Hao, P., Liu, L. & Li, Y. (2008) MPSQ: a web tool for protein–state searching.
Bioinformatics, 24, 2412–2413.

68 Searching in Protein State Space

The Contact-Center Business Analyzer: a case
for Persistent Contextual Logic Programming

Claudio Fernandes1, Nuno Lopes?2, Manuel Monteiro3, and Salvador
Abreu1

1 Universidade de Évora and CENTRIA, Portugal
{cff,spa}@di.uevora.pt

2 Digital Enterprise Research Institute, National University of Ireland, Galway
nuno.lopes@deri.org

3 xseed, Lda., Portugal
manuel.monteiro@xseed.pt

Abstract. This article presents CC/BA, an integrated performance an-
alyzer for contact centers, which has been designed and implemented
using Persistent Contextual Logic Programming methods and tools. We
describe the system’s architecture, place it in perspective of the exist-
ing technology and argue that it provides interesting possibilities in an
application area in which timely and accurate performance analysis is
critical.

1 Introduction

The problem: The majority of the current contact center solutions pro-
vide extensive reporting, and some of them already provide even more
sophisticated business intelligence solutions, allowing their users to ana-
lyze thoroughly the operational aspects of the contact center activity [6].
Performance indicators [5] normally made available are those related with
how efficient the automatic call distributors (ACDs) are in distributing
the calls (waiting times, abandoned calls, etc.) and how efficient the agents
are in handling them (e.g. handled calls, call duration).

As there is normally little or even no integration with the surrounding
business systems and applications, and there is no integration with the
business data related with the various interactions processed by the con-
tact center, these solutions can not correlate the operational data with
the business data in order to provide more business oriented key perfor-
mance indicators, like costs, profits and related ratios (operation margins,
segment or customer value, ...).

? This author has been funded in part by Science Foundation Ireland under Grant
No. SFI/08/CE/I1380 (Lion-2).

Cláudio Fernandes, Nuno Lopes, Manuel Monteiro and Salvador Abreu 69

Our purpose in developing CC-BA, the Business Analyzer tool, is to
overcome the identified lack of systems integration and to allow to model
and integrate business data with the existing operational data. Systems
that might need to be integrated are workforce management tools, CRM
and ERP tools.

Contexts: The idea of Contextual Logic Programming (CxLP) was in-
troduced in the late 1980s by Monteiro and Porto [8] in the ALPES II
project, and is related to similar efforts such as Miller’s λProlog module
system, described in [7].

The purpose of Contextual Logic Programming (CxLP) was initially
to deal with Prolog’s traditionally flat predicate namespace, a feature
which seriously hindered the language’s usability in larger scale projects.
The impact of these extensions has mostly failed to make it back into the
mainstream language, as the most widely distributed implementations
only provide a simple, SICStus-like module mechanism, if any.

A more recent proposal [2] rehabilitates the ideas of Contextual Logic
Programming by viewing contexts not only as shorthands for a modular
theory but also as the means of providing dynamic attributes which affect
that theory: we are referring to unit arguments, as described in Abreu
and Diaz’s work. It is particularly relevant for our purposes to stress the
context-as-an-implicit-computation aspect of CxLP, which views a context
as a first-class Prolog entity – a term, which behaves similarly to objects
in OOP languages.
Persistence: Having persistence in a Logic Programming language is a
required feature if one is to use it to construct actual information sys-
tems; this could conceivably be provided by Prolog’s internal database
but is quite adequately accounted for by software designed to handle
large quantities of factual information efficiently, as is the case in rela-
tional database management systems. The semantic proximity between
relational database query languages and logic programming have made
the former privileged candidates to provide Prolog with persistence, and
this has long been recognized.

ISCO [1] is a proposal for Prolog persistence which includes support
for multiple heterogeneous databases and which access to technology be-
yond relational databases, such as LDAP directory services or DNS. ISCO
has been successfully used in a variety of real-world situations, ranging
from the development of a university information system to text retrieval
or business intelligence analysis tools.

ISCO’s approach for interfacing to DBMSs involves providing Prolog
declarations for the database relations, which are equivalent to defin-

70The Contact-Center Business Analyzer: a case for Persistent Contextual Logic Programming

ing a corresponding predicate, which is then used as if it were originally
defined as a set of Prolog facts. While this approach is convenient, its
main weakness resides in its present inability to relate distinct database
goals, effectively performing joins at the Prolog level. While this may be
perceived as a performance-impairing feature, in practice it is not the
show-stopper it would seem to be because the instantiations made by the
early database goals turn out as restrictions on subsequent goals, thereby
avoiding the filter-over-cartesian-product syndrome.

Contexts and persistence: Considering that it is useful to retain the reg-
ular Prolog notation for persistent relations which is an ISCO character-
istic, we would like to explore the ways in which contexts can be taken
advantage of, when layered on top of the persistence mechanisms pro-
vided by ISCO. In particular we shall be interested in the aspects of
common database operations which would benefit from the increase in
expressiveness that results from combining Prolog’s declarativeness and
the program-structuring mechanisms of Contextual Logic Programming.

We shall illustrate the usefulness of this approach to Contextual Logic
Programming by providing examples taken from a large scale applica-
tion, written in GNU Prolog/CX, our implementation of a Contextual
Constraint Logic Programming language. More synthetic situations are
presented where the constructs associated with a renewed specification of
Contextual Logic Programming are brought forward to solve a variety of
programming problems, namely those which address compatibility issues
with other Prolog program-structuring approches, such as existing module
systems. We also claim that the proposed language and implementation
mechanisms can form the basis of a reasonably efficient development and
production system.

The remainder of this article is structured as follows: section 2 intro-
duces ISCO and Contextual Logic Programming as application develop-
ment tools, proposing a unified language featuring both persistence and
contexts. Section 3 addresses design issues for a performance analysis tool
and introduces CC-BA. The impact of some design issues and environmen-
tal requirements is further explored in section 4, where some experimental
results are presented. Finally, section 5 draws some conclusions and points
at interesting directions for future work.

2 Persistent Contextual Logic Programming

Logic Programming and in particular the Plug language has long been
recognized as a powerful tool for declaratively expressing both data and

Cláudio Fernandes, Nuno Lopes, Manuel Monteiro and Salvador Abreu 71

processes, mostly as a result of two characteristics: the logic variable with
unification and nondeterminism as a result of the built-in bactracking
search mechanism.

While the Prolog is a consensual and relatively simple language, it is
lacking in a few aspects relevant to larger-scale application development;
some of these include:

– The lack of sophistication of its program structuring mechanisms: the
ISO modules [4] proposal is representative of what has been done to
take Prolog beyond the flat predicate space. The standard adds di-
rectives for managing sets of clauses and predicates, which become
designated as modules. There are several areas where modules com-
plicate matters w.r.t. regular Prolog: an example is the metacall issue,
in which predicate arguments are subsequently treated as goals inside
a module.

– The handling of persistent evolving data: one of Prolog’s most em-
blematic characteristics is the way in which programs could easily be
manipulated in runtime, by use of the assert and retract built-ins.
These can be used to alter the program database, by adding or re-
moving clauses to existing predicates. There are several issues with
these, namely how do these interact with goals which have an active
choice-point on a predicate being modified.
One interesting feature provided by traditional Prolog implementa-
tions is the possibility of asserting non-factual clauses, which effec-
tively endows the language with a very powerful self-modification
mechanism. Nevertheless, the most common uses for clause-level pred-
icate modification primitives deal with factual information only, this is
true both for predicates which represent state information (which are
typically updated in a way which preserves the number of clauses) and
for database predicates, which will typically have a growing number
of clauses.

Both of these aspects are addressed by the ISCO programming system,
when deployed over GNU Prolog/CX, which compiles Prolog to native
code. This implementation platform is discussed in [3] and briefly sum-
marized in the rest of the present section.

2.1 Modularity with GNU Prolog/CX

Contextual Logic Programming was initially introduced with the inten-
tion of addressing the modularity issue. At present and in the GNU Pro-
log/CX implementation, CxLP provides an object-oriented framework for

72The Contact-Center Business Analyzer: a case for Persistent Contextual Logic Programming

the development of Logic programs; this is achieved through the integra-
tion of a passive, stateful part (the context) with a dynamic computation
(a Prolog goal). The context is made up of instances of units which are
similar to objects with state in other languages.

The current implementation has support for dynamic loading and
unloading of units, which are implemented as OS-level shared libraries,
or DLLs.

2.2 Persistence and large Database Predicates

Relational Database Management Systems provide efficient implementa-
tions for data storage, tailored to certain ways of accessing the informa-
tion. The access is done via the SQL query language and the efficiency
comes partly as a consequence of the availability of certain optimization
features, such as multiple indexes on database relations. Prolog systems
have long incorporated similar optimizations which map onto abstract
machine-level features, such as clause indexing. Most prolog systems im-
plement forms of indexing which are less general than the possible coun-
terparts in an RDBMS.

Maintaining multiple indices – i.e. indexing predicates based on the
analysis of anything other than the first argument – is intrinsically ex-
pensive and implies a significant runtime overhead to decide which index
to use for a given call. As a consequence, very few Prolog systems in-
corporate any form of multi-argument indexing, usually requiring special
annotations to indicate the fact.

Moreover, the combination of indices with dynamic predicates requires
a dynamic rebuild of those indices, in particular one which does not sur-
vive the process in which it occurred. This means that, even if a Prolog
database was appropriate for representing a given fact base, its use incurs
the overhead of rebuilding the index each time:

– the predicate is updated (via assert or retract),
– the Prolog program is started

3 Application Design

The Contact Center Business Analyser is a web based application to
analyse and control the performances of the numerous operations real-
ized through managing a call center. Relying in data fetched from the
company clients, it builds detailed financial scopes to be used by different
management positions at the center.

Cláudio Fernandes, Nuno Lopes, Manuel Monteiro and Salvador Abreu 73

A call center is a company department which purpose is to materialize
personal communication between a company commercial campaign and
their clients. The talking, realized by phone calls, is the job of the various
agents working at the center, although mail and faxes are used sometimes.

The CC-BA software presents different levels of usage, divided in two
groups: one for the administrator and the other for the end-users of the
application. As expected, running a contact center requires many “eyes”
over the operations, each pair monitoring different subjects. CC-BA maps
that concept by providing several kinds of analysis, each one oriented for
a particular profile. Each profile can then obtain different views of the
data, grouped as several KPIs - key performance indicators.

Every analysis has a time window. This time period can take two
forms: an interval period between two days, weeks or months, and a fixed
hour schedule, also included in a time period.

3.1 Architecture

The CC-BA structure is similar to the traditional three layer web based
applications, but with some slight differences. As shown in figure 1 (see
page 7), we have a local database, an ISCO + GNU Prolog/CX Logi-
cal layer, and finally a small PHP layer responsible for the Prolog and
Browser communication. When comparing to the traditional three layer
approach, the ISCO + GNU Prolog/CX layer implements both the Logic
and Presentation Layers. The Data layer is provided by a PostgreSQL
database, which is populated in the ETL [9] process.

The data used by the application must be fetched from the database
of the call center. However, only a small fraction of that data is relevant,
and before it is loaded some transformations are needed to be done over
it. This process must be done periodically and is called ETL (Extraction,
Transformation and Loading).

The internal database is compact compared with the ones where the
data originated from, however it is a very important component of the
application and it must be extremely well tuned to perform the best it can
over the queries. The tables are created through the definition of ISCO
classes. Those classes, when compiled, will generate Prolog predicates that
access the data as if they were regular clauses in a Logic Programming
environment.

The core of the application are the available outputs formed by groups
of key performance indicators. With the goal of achieving a modular sys-
tem, the implementation of those outputs were designed in a way that
adding new outputs formed by any aggregation of KPIs is a linear task.

74The Contact-Center Business Analyzer: a case for Persistent Contextual Logic Programming

Fig. 1. CC-BA Architecture

Each KPI and output are coded in specific and different contextual Pro-
log units, such that to create a new output one only has to aggregate the
KPIs desired into the new output unit. Any needed input parameters are
pushed in through the GNU Prolog/CX context mechanism.

3.2 Example

Figure 2 (on page 8) depicts the unit that implements one use-case: the
Database Information output. Just to name a few, we have the Database
Length that is just the length of the contact list of a campaign, the “Suc-
cessful Contacts”, “Reschedules” and “ Unsuccessful Contacts” that are
based on the “Contact Numbers”, switching the input parameter as it
needed (lines 13, 16 and 19). The context mechanism of GNU Prolog/CX
can also be used to specify unit parameters. In the example, the unit
param/3 is used to specify the arguments passed by, accordingly to what
comes instantiated. In this case, a Client, a Campaign or an Agent.

Of all the parameters passed by context, there is one which requires
special attention: the dates. Every analysis falls in a window period, and
therefore all queries have time boundaries. Since the system had strict

Cláudio Fernandes, Nuno Lopes, Manuel Monteiro and Salvador Abreu 75

1 :- unit(trat_bd).

2

3 output(Output):-

4 var(’campaign’, CP),

5 campaign@(code=CP, list_size=Total),

6 format(d, Total):format(Total_DB),

7

8 param(_,CP,_).proc_regs:value(Regs),

9 format(d, Regs):format(ProcRegs),

10

11 rate(Regs, Total):value(ProcRate),

12

13 param(_,CP,_).contact_numbers([successful]):value(Succ),

14 format(d, Succ):format(SuccCont),

15

16 param(_,CP,_).contact_numbers([reschedule]):value(Resc),

17 format(d, Resc).format(RescCont),

18

19 param(_,CP,_).contact_numbers([unsuccessful]):value(Unsucc),

20 format(d, Unsucc):format(UnsuccCont),

21

22 Use is Succ + Unsucc,

23 format(d, Use):format(UseContact),

24

25 rate(Use, Total):value(PenetRate),

26 rate(Succ, Use):value(SuccRate),

Fig. 2. Unit “trat bd”

performance requirements, we had to explore alternative representations
for some information. In this case, every date is mapped to an integer
value, over which it is possible to set finite-domain constraints in GNU
Prolog/CX.

3.3 ETL

The ETL (Extraction, Transform and Load) process consists of loading
the database with the information provided about the Contact Center
operations. This is an “offline” process, i.e. it can be performed at any
time, without human intervention.

The extracted data is to be provided to the system in a predefined
format, which can be outputed by the operational system of the Contact
Center.

76The Contact-Center Business Analyzer: a case for Persistent Contextual Logic Programming

In the transformation process, the extracted data is converted into
data that can be directly loaded into CC-BA. This process starts by check-
ing the date of the last valid ETL and proceeds to loading the interactions
performed on a later date. This will include:

– loading new campaigns and agents
– delete older data from the tables “interaction” and “agentWork”
– manage the agents and campaign states

The existence of new campaigns or agents impose the input of data
from the system administrator, such as the income of the agent and the
costs of each interaction of a campaign. This will leave those agents and
campaigns in an unprocessed state until such information can be en-
tered, once the required information is defined the calculations can be
performed. The ETL process can also recognize new interactions in an
inactive campaign or agent and automatically active the campaign or
agent.

4 Performance Evaluation

One of the most sensitive facts about the CCBA is its efficiency. It was
necessary to guarantee that all the available analysis were computed in
a reasonable time. An initially identified problem involved some of the
analysis having a large search space. Several relations in the data model
will contain, at some point and for the time intervals being considered,
tens of millions of records. This fact makes it necessary to ensure that all
queries are made in a quick and efficient way.

Since the results of the raw data model were not satisfactory, we
had to find other approaches to improve performance. Also, due to some
technological restrictions (described later) it was necessary to reduce the
number of joins in the low-level (SQL) queries. We opted for the use
of data accumulation together with some pre-processing; the following
sections provide more detail on this.

4.1 Data Accumulation

With the exception of one output, all queries have a minimal granularity
of one day. This observation allows us to make daily accumulated values
of the records in the database, thereby obtaining very significant perfor-
mance gains w.r.t. the raw data. To achieve this, the following relations
were created, along with the system data model:

Cláudio Fernandes, Nuno Lopes, Manuel Monteiro and Salvador Abreu 77

agentWork daily: This relation consists of the daily accumulates of a
agent’s work, i.e. the number of minutes an agent works per day and
per campaign as well as the cost associated with that work.

interaction daily: Here we collect the daily cumulates of all the in-
formation pertaining to the interactions made by the agents, grouped
by the outcome of the interaction, the number of interactions of that
type, the total duration of the calls and the total invoicing value.

interaction daily results: This relation is similar to the previous one
but, here, we do not include the agent information. This allows for a
smaller search space to be used in queries that do not need agent
information, for example searching by campaigns or clients.

4.2 Data Pre-processing

Data pre-processing is the action of inserting the correct data in the ac-
cumulator tables. This action needs to be done in two separate situations:

– After the ETL phase (see section 3.3);
– After the manager changes the values of a given campaign, or new

entities are configured.

As a consequence of the changes made by the manager to the invoice
model of a campaign or to the costs of the agents, the accumulator tables
have to be updated. Since all changes affect all the data in the database
(not only after the change is made), all data in the accumulator tables
has to be invalidated and recomputed. This process is transparent to the
user.

4.3 Computations using Pre-Processed Data

We present a few representative computations and discuss how they are
implemented using cumulative data tables.

Agent, Campaign and Client Costs. Using the pre-processed data,
the cost of an agent, campaign or client over a time period can be com-
puted resorting to the agentWork daily table, where the total value of
the cost is the sum of each day within the time period.

Total Work Time by Agent. The amount of time an Agent worked
over a specified time period can be computed using the pre-processed
information in the agentWork daily table.

78The Contact-Center Business Analyzer: a case for Persistent Contextual Logic Programming

Contact duration. Using the daily pre-processed information inter-
action daily, computing the average duration of the contacts of a cer-
tain type, performed by an agent, becomes more efficient than the pre-
vious implementation. Should it be necessary to request the contact du-
ration for a certain campaign, this information is available in the table
interaction daily results.

Invoice of an agent or campaign. Using the table interaction daily,
the calculation of the invoicing total for an agent within a time period
can be done with the sum of each day in the period, taking the value
stored in the invoice field. In the same way, the invoice for a campaign
can be calculated using the table interaction daily results.

Total talk-time. The total talk-time (in minutes) for an agent or cam-
paign, within a time period, can be computed using the tables inter-
action daily and interaction daily result.

Answered contacts and total number of contacts. The number of
daily answered contacts in a campaign can be calculated more efficiently
using the table interaction daily results, which is also used, together
with interactions daily, to obtain the total number of contacts per-
formed by an agent.

4.4 Views

With the correct use of indexes in the database fields and the cumulative
tables in place, almost all queries were completed in a satisfactory time,
given the desired operating conditions.1 Nevertheless, some situations re-
mained where the performance goals were not being achieved, namely in
computing the number of contacts made by an agent and the total costs
of the contact center.

In these situations, we chose to implement an SQL view for each
one which is then mapped to an ISCO class. This allows the fields of
the query to represent the desired result, while avoiding most further
processing of the tuple data at the ISCO/application level. Each view is
a filter for a larger table (possibly performing some computations), so

1 In the range of 1-3 million events to treat, over a period of one month. The compu-
tational resources are very limited, our goal being that a simple workstation-style
PC sould be enough to support CC-BA.

Cláudio Fernandes, Nuno Lopes, Manuel Monteiro and Salvador Abreu 79

that the result is computed by the DBMS instead of retrieving all the
records and performing the filter in the application.

To achieve this goal, the view is designed to be similar to the table
it applies to, replacing all non relevant fields by similarly named fields
with a fixed value of the appropriate range and type (for instance the
minimum value in the records). All the fields needed to perform the query
are left unbound. An additional field with the result of the computation
is introduced, in general this is an aggregator such as sum or count.

The definition of these views in ISCO is made in the same manner as
for a regular database table. It extends the table it applies to by adding
the computed field. The ISCO Prolog access predicates are limited to the
“lookup” ones, i.e. a class which maps to a view is considered static.

The following are examples of situations which we dealt with by defin-
ing views at the database level:

Number of contacts performed by an agent in a hour: This query
cannot be computed by using the accumulator tables since its granularity
is smaller than one day (the granularity of the daily accumulator tables.)
As it was not feasible to use the simple table interaction to perform
this query, a view was created to perform the computation at the DBMS
level.

Processed Records: The total number of processed records of a cam-
paign in a given time interval consists, in SQL terms, in a count(dis-
tinct *) from the contacts present in the interaction table. However,
we know that interaction is the largest table present in the database
with well above one million records per month of activity for a medium
sized contact center, and computing this query cannot be directly done
over it and remain computationally reasonable.

The introduction of a view decreased the execution time required for
answering the query: in our first approach, this query was one of the
slowest in the entire application, due to the amount of data that needed
to be processed by ISCO. The use of the defined view, which left all the
computations in the SQL side improved this situation dramatically.

The SQL code used of this view is shown in figure 3 and the definition
of the view in ISCO is presented in figure 4. The ISCO side consists of
extending the already defined class “interaction” with a new subclass
which adds a “regs” field that is calculated in the view SQL code. Note
that the SQL view must reproduce the fields which exist in the parent
ISCO class.

80The Contact-Center Business Analyzer: a case for Persistent Contextual Logic Programming

1 CREATE VIEW "interaction_proc_regs" as

2 select

3 0 as oid,

4 campaign,

5 min(agent) as agent,

6 min(contact) as contact,

7 datetime,

8 min(duration) as duration,

9 min(result) as result,

10 count(distinct contact) as regs

11 from

12 interaction

13 group by campaign, datetime;

Fig. 3. Definition of “interaction proc regs” view

1 class interaction_proc_regs: interaction.

2 regs: int.

Fig. 4. ISCO definition of “interaction proc regs” view

When processing the records for 1.000.000 interactions, the times pre-
sented are for the first approach (all the calculations done in Prolog) are
approximately 10 times higher than when using the defined view and
cumlative data.

5 Conclusions and Directions for Future Work

Achieving the kind of data integration which CC-BA provides, coupled
with the optimization capabilities to process these potentially very large
amounts of data, results in great benefits for the call center management,
meaning that the business oriented key performance indicators can be
made available promptly, allowing the different manager roles to fine tune
the systems to better reach their business goals, not only the operational
ones.

One aspect of ISCO that turned out very useful is the ability to work
with multiple indexes for database-stored data. For the quantities of data
involved this turned out to be a critical aspect, as the same (factual)
predicates are being accessed with different instantiation patterns.

Cláudio Fernandes, Nuno Lopes, Manuel Monteiro and Salvador Abreu 81

We found out the hard way that the ETL process still requires a lot
of manual effort and tuning. It would be worthwile to investigate the
automation of the process and the design of the internal database, pay-
ing particular attention to the unification of several heterogeneous data
sources, to the selection of the hierarchical cumulative sums, as well as
to the generation of the internal database schema. Some of these aspects
are already being worked on, in particular the design of declarative tools
to achieve a measure of automation of the ETL process is the object of
ongoing work.

On a finishing note, it is worth mentioning that our implementation
of CC-BA is able to adequately function inside a virtual machine running
Debian Linux with very low resource requirements: a simple Pentium-M
based laptop was enough to account for tracking a medium-sized contact
center.

References

1. Salvador Abreu. Isco: A practical language for heterogeneous information system
construction. In Proceedings of INAP’01, Tokyo, Japan, October 2001. Prolog As-
sociation of Japan.

2. Salvador Abreu and Daniel Diaz. Objective: in Minimum Context. In Catuscia
Palamidessi, editor, Logic Programming, 19th International Conference, ICLP 2003,
Mumbai, India, December 9-13, 2003, Proceedings, volume 2916 of Lecture Notes in
Computer Science, pages 128–147. Springer-Verlag, 2003. ISBN 3-540-20642-6.

3. Salvador Abreu and Vitor Nogueira. Using a Logic Programming Language with
Persistence and Contexts. In Osamu Takata, Masanobu Umeda, Isao Nagasawa,
Naoyuki Tamura, Armin Wolf, and Gunnar Schrader, editors, Declarative Program-
ming for Knowledge Management, 16th International Conference on Applications
of Declarative Programming and Knowledge Management, INAP 2005, Fukuoka,
Japan, October 22-24, 2005. Revised Selected Papers., volume 4369 of Lecture Notes
in Computer Science, pages 38–47. Springer, 2006.

4. ISO/IEC JTC1/SC22/WG17. Information technology – Programming languages –
Prolog – Part 2: Modules. Technical Report DIS 13211, ISO, 2000.

5. Ger Koole. Performance analysis and optimization in customer contact centers. In
QEST, pages 2–5. IEEE Computer Society, 2004.

6. Pierre L’Ecuyer. Modeling and optimization problems in contact centers. In QEST,
pages 145–156. IEEE Computer Society, 2006.

7. Dale Miller. A logical analysis of modules in logic programming. The Journal of
Logic Programming, 6(1 and 2):79–108, January/March 1989.

8. L. Monteiro and A Porto. Contextual logic programming. In Giorgio Levi and
Maurizio Martelli, editors, Proceedings of the Sixth International Conference on
Logic Programming, pages 284–299, Lisbon, 1989. The MIT Press.

9. Panos Vassiliadis, Alkis Simitsis, and Spiros Skiadopoulos. Conceptual modeling for
etl processes. In DOLAP ’02: Proceedings of the 5th ACM international workshop
on Data Warehousing and OLAP, pages 14–21, New York, NY, USA, 2002. ACM.

82The Contact-Center Business Analyzer: a case for Persistent Contextual Logic Programming

An Efficient Logic Programming Approach to
Sub-Graph Isomorphic Queries?

Hasan Jamil

Department of Computer Science
Wayne State University, USA

jamil@cs.wayne.edu

Abstract. In emerging applications such as biological networks and
evolving social networks, computing sub-graph isomorphism is a nec-
essary artifact for answering many interesting questions. Efficient com-
putation of sub-graph isomorphism, however, has remained a difficult
problem in artificial intelligence and databases. In logic programming,
isomorphic sub-graph search has met with limited success mainly due to
representation hurdles, large memory needs and lack of a suitable proce-
dure. In this paper, we demonstrate that a simple representation of undi-
rected graphs enables logic based computation of isomorphic sub-graphs
very efficiently. We also present a graph and query rewriting technique to
compute such queries using logic programming languages such as XSB
or Prolog. The space and memory requirement for this framework is
extremely low even for very large networks due to the representation
technique, and the manner in which the procedure functions.

1 Introduction

Graph and graph isomorphism is an extensively studied subject in mathematics
and many areas of computer science. Graphs model powerful concepts in artificial
intelligence, business, science and the social sciences that cannot be captured
easily using traditional data representation models such as relational models.
Although data models such as XML come close to graph representations, they
do not necessarily support graphs as the primary object. Recent applications in
Life Sciences such as in [6, 10, 11], in Social Networks such as in [12, 5], and XML
Data Management [15, 2, 16] inspired researchers to take a fresh look at the graph
data model. In this paper, we propose a new graph representation model, and
using this model, we show that efficient computing of sub-graph isomorphism
for generalized undirected graphs using logic programming is possible.

Sub-graph isomorphism involves finding a mapping µ from the nodes of a
given query graph Q to the nodes in the target graph T such that the set of edges
in Q and µ(T) are identical, where µ(T) denotes the set of all edges of T under
the mapping1 µ. While there have been many algorithms for computing shortest
? Research supported in part by National Science Foundation grants CNS 0521454

and IIS 0612203.
1 Here the assumption is that the vertices in the two graphs are disjoint.

Hasan Jamil 83

paths using Dijkstra’s algorithm, graph coloring, and so on in logic programming,
sub-graph isomorphism has not been addressed adequately. Representation and
large memory needs seem to be the primary bottlenecks. Traditionally, graphs in
logic programming have been represented using lists in two major forms: as a pair
of vertices and edges, and as a pair of vertices and their neighbors, in addition
to the naive representation of edges as just a set of binary predicates. However,
none of these representations make it easy to process isomorphic graph queries.
Our attempt to address sub-graph isomorphism in logic programming appears
to be the very first since no reference could be found in electronic literature
databases that address the issue of sub-graph isomorphism in logic.

Although unification provided a great opportunity for the mapping function
µ needed, we believe the reason for not having a successful logic programming
solution to sub-graph isomorphism is that the three traditional graph representa-
tions did not lend themselves to a procedure capable of isolating the structural
similarities of the pattern or query graph, and the target graph. In all three
representations, their simplicity did not capture enough information to reason
about their structures or to identify the structural pieces needed to reconstruct
the target sub-graph. In this paper, we present three novel ideas: represent each
vertex as the smallest structural unit of the graph it is a member of, a procedure
requiring a necessary and sufficient condition to reconstruct any target graph
from these unit structures, and finally, a procedure to generate a query from the
query graph such that the unification mechanism acts directly as the mapping
function µ.

1.1 Related Research

The use of graphs and graph searching remains an active area of research in
artificial intelligence, and in many application areas as discussed earlier despite
being a difficult problem to address. However, most known graph morphism
problems are at least NP-Complete, Graph homomorphism is the most general
graph morphism problem and is NP-Complete. The graph isomorphism problem
on the other hand is not known to be NP-Complete, or in P. Although there
is no polynomial time algorithm, most of the instances can be solved efficiently
with state-of-the-art software for graph iso-morphism such as Nauty [8].

Subgraph isomorphism is NP-Complete but is tractable for some special
classes of graphs, such as trees [14], planar graphs [4], and bounded valence
graphs [7]. Two algorithms based on backtracking are well known for sub-graph
isomorphism – Ullmann’s algorithm [13] and Vflib [3, 14] – and outperform al-
most all other known algorithms in the literature. In terms of space and time
requirements, Vflib appears to be more attractive than Ullmann’s algorithm.
However, despite the existence of these competing algorithms, there seems to be
an absence of logic programming approaches to sub-graph isomorphism prob-
lem2, and hence the primary aim of this paper.

2 In fact, no logic programming implementation of any subgraph isomorphism proce-
dure could be found in the literature. It is said that attempts were made to implement

84 An Efficient Logic Programming Approach to Sub-Graph Isomorphic Queries

In relation to the existing works in the literature, the contributions of this
paper can be summarized as follows. We propose a new knowledge representation
method to model graphs as a set of node descriptions that essentially is a set
of neighbors and the number of minimum structures (triangles) the node is
involved in. We then propose the notion of structural unification as an extension
of traditional unification in logic programming that makes it possible to compute
isomorphic subgraphs as a conjunctive query, which was not possible before. It
turns out that this approach is also quite fast and beats Vflib (and thus implicitly,
Ullmann’s algorithm) by a number of order of magnitudes in benchmark data
sets [1] as discussed in section 4.2.

2 A Conceptual Graph Data Model

The conceptual model proposed exploits newly discovered general properties
most graphs in Biology, Science, Social Science and Business networks share.
For example, patterns in a graph are not entirely random, and most graphs
form sub-networks of clusters and hubs. In our data model, we use structural
properties of nodes as opposed to the adjacency of nodes alone, and thus, rep-
resent each node in terms of its neighbors, and the minimum closed structures
they form. We treat a triangle as the minimum closed structure, and an edge as
a minimum open structure. The idea is that once a node is described in terms
of its neighbors and closed structures, it is possible to reconstruct the graph by
tracing back the connectivity of the nodes regardless of the interaction graph
size, type and form. As we will show, this representation also greatly facilitates
the exploration of the graph in a piecewise manner to find isomorphic patterns
by novel application of the structural constraints. As we will see in the next few
sections, this piecewise representation of the vertices in terms of its closed and
open structures makes it possible to capture each vertex separately, yet contain
all the structural information we need to use it exactly like a block of a jigsaw
puzzle. To proceed, we need a few definitions to keep our discussion focused and
to the point.

First, we need to formally define the notion of pure graphs and databases in
which we do not allow any dangling edge or node. Since we are also interested
in finding isomorphic sub-graphs, we then define a sub-graph, based on which
we define sub-graph isomorphism in our framework.

Definition 21 (Pure Graphs) Let N be a set of labeled vertices, and edge
be a distinguished predicate. Then edge is a relation or graph over N such that
edge⊆ N × N . edge is pure if whenever < n, n′ >∈ edge ⇒< n′, n >∈ edge,
and ∀n, n′(< n,m >,< n′,m′ >∈ edge ⇒< n, n′ >∈ edget) where edget is the
transitive closure of edge.

Vflib in Prolog at first (ref: As per communication with Professor Larry Holder, CS
Department, Washington State University). But the implementation was either too
slow, memory intensive or difficult, and finally the version in distribution was imple-
mented in C/C++. The Vflib authors did not respond to an attempt by this author
to obtain the said Prolog code (if exists).

Hasan Jamil 85

Definition 22 (Sub-Graphs) Let edge and query be two pure graphs over a
set of vertices N , and let Ne ⊆ N and Nq ⊆ N respectively denote their set of
vertices. We say query is a sub-graph of edge, i.e., query ⊆ edge, iff Nq ⊆ Ne

and ∀n1, n2 ∈ Nq, < n1, n2 >∈ edge ⇔< n1, n2 >∈ query. edge and query are
equal, i.e., edge=query, if Ne = Nq, and query ⊆ edge.

e

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

1 2

43

5

6 7

8 9

10 a

b c

d
e

f

h p

r

a

b
d

c

e a

b
c

e

q
a

b
d

p

c

a

d c

e

f

a

d

c

e

f

h a/3

b/1 c/4

d/2

a/3

c/2

e/1

f/4

a/3

b/1

d/2

a b c

d

Fig. 1. Example Graphs.

Consider undirected pattern graphs, or a query graph, Q1 and Q2, and a
target graph, or a database graph, D as shown in figures 1(a) through (c) re-
spectively. All these graphs are pure, because all the nodes are connected, i.e.,
there is a path from any node in the graph to all other nodes. Now according to
definition 22, the graph in figure D1 in 1(d) is a subgraph of D, but none of the
graphs D2 (figure 1(e)) or D3 (figure 1(f)) are subgraphs of D. Because all the
nodes and edges in D1 are a pairwise subset of D, and both D2 and D3 have
an edge or a node (respectively the edge (d, q) and node q, and the edge (d, p))
that D does not have.

2.1 Node Properties

Mathematically, graphs are denoted as G = 〈N,E〉 where N is the set of ver-
tices, and E is the set of edges. When E is symmetric, the graph is consid-
ered unordered, it is ordered otherwise. For every node n ∈ N in any graph
G = 〈N,E〉, the fan out φ of n is defined as the cardinality of the set En ⊆ E,
i.e., φn = |En|, such that ∀e(e =< n1, n2 >∈ E ∧ ((n1 = n) ∨ (n2 = n)) ⇔
e ∈ En). For every node n ∈ N , and all edges e ∈ E of the form < n, ni >

the set %n = ∪φn

i=1{ni} is called the neighborhood of n, and ∀e, e ∈ E such that
e =< n1, n2 >,∃e1, e2, (e1 =< n, n1 >, e2 =< n, n2 >,n 6= n1 6= n2) is called the
boundary set of n, denoted βn. The cardinality of the boundary set is called the
triangle count, or t-count, of n, denoted τn, i.e., τn = |βn|.

In figure 1(c), for node d, φd = 4, %d = {a, b, c, e}, βd = {(a, b), (b, c), (c, e)}
and τd = 3. Similarly for node f , φf = 3, %f = {c, h, r}, βf = {(h, r)} and
τf = 1.

86 An Efficient Logic Programming Approach to Sub-Graph Isomorphic Queries

2.2 Sub-Graph Isomorphism

Following the classical definitions of graph and sub-graph isomorphisms, we
adapt our definition for these two terms in our model as follows. Two graphs, say
Q and G, are isomorphic if there is a one-to-one correspondence, or mapping,
between their vertices, and there is an edge between two vertices of one graph if,
and only if, there is an edge between the two corresponding vertices in the other
graph. On the other hand, a graph Q is sub-graph isomorphic to another graph
G, denoted Q E G, if there is a one-to-one mapping between the vertices of Q
and a subset of vertices of G, and there is an edge between two vertices of Q if,
and only if, there is an edge between the two corresponding vertices in graph G.

According to this definition, the graph in figure 1(a) (shown with substitu-
tions in figure 1(i)) is subgraph isomorphic to graph D, i.e., QED holds for the
substitution S1 = {a/3, b/1, d/2, c/4}. There, however, are several other such
mappings that make it so, but for figures 1(j) and (k), QED does not hold be-
cause for substitutions S2 = {(e/1), (c/2), (a/3), (f/4)} and S3 = {(b/1), (d/2),
(a/3)} do not result in a similar structure that is a pure graph.

3 Vertex Structures and Vertex Reduced Databases

The computational approach to sub-graph isomorphism requires representation
of graphs in a textual form that is amenable to clever manipulation. In our
proposed representation, a graph is viewed as a set of node or vertex descriptions
in which their relationships with other vertices are localized and decoupled from
the entire graph in a more elaborate way than Ullmann’s adjacency matrices
[13]. Consequently, each vertex becomes a self sufficient sub-structure of a large
graph, similar to a piece of a huge complex jigsaw puzzle. The idea is that
if we pick the right assembling sequence from this collection of vertices, we
should be able to put together the whole original graph, or a specific part of
it. This is based on an assumption that for a given set of vertices and their
associated sub-structures (nodes and edges), there is only one possible graph
that can be built and it is always the intended (sub)graph. Intuitively, given
a graph G = 〈N = {a, b, c, d, e}, E = {(a, b), (b, c), (d, a), (b, d), (c, e)}〉, for any
given set of edges S ⊆ E, there is only one graph we can build which is always
a subgraph of G (figure 1(l)).

It is important to understand the whole search and assembling process on
intuitive grounds before we delve into a formal treatment. Let us represent the
graph G in the following format.

〈a, 2, {b, d}, 1, {(b, d)}〉, 〈b, 3, {a, c, d}, 1, {(a, d)}〉, 〈c, 2, {b, e}, 0, {}〉,
〈d, 2, {a, b}, 1, {(a, b)}〉, 〈e, 1, {c}, 0, {}〉

In the above representation, the expression 〈a, 2, {b, d}, 1, {(b, d)}〉 captures
everything structural we know about node a as discussed in section 2.1. As such,
the description of a is the tuple 〈a, 2, {b, d}, 1, {(b, d)}〉 where n = a, φa = 2,
%a = {b, d}, τa = 1 and βa = {(b, d)}. Thus, for a given graph G = 〈N,E〉, the

Hasan Jamil 87

description of a node n ∈ N , denoted δn, in general is a quintuple of the form
〈n, φn, %n, τn, βn〉. The set of all node descriptors, δn, for all n ∈ G, is called a
vertex reduced database, denoted Dϕ, where ϕ is the transformation function
that reduces D to Dϕ.

Suppose now we are looking to find a structure Q = 〈{1, 2, 3}, {(1, 2), (2, 3),
(3, 1)}〉. Then if we represent the query graph also in the following form

〈X, 2, {Y, Z}, 1, {(Y, Z)}〉, 〈Y, 2, {X, Z}, 1, {(X, Z)}〉, 〈Z, 2, {X, Y }, 1, {X, Y }〉

by replacing node names with unique variable names, it is now possible to match
the node description in Q with description for G, in a way similar to unifica-
tion in logic programming. Notice that several optimizations are possible. For
example, it turns out that the three descriptions of Q are logically and struc-
turally identical, and if one of these descriptions unify with any description of
G, the rest will too. So, we can only retain one. Finally, since all the Q terms
are looking for a node that has two neighbors and one boundary set, they will
never unify with node descriptions such as e (has φe = 1, and τe = 0), or c
(although φc = 2, but τ c = 0). It should be clear now, that finding any of the
nodes a, b or d structurally similar to any of the query node descriptions, say for
X, will actually find the isomorphic sub-graph of Q in G above once we recall
the mapping X = 1, Y = 2, and Z = 1. The algorithm below makes sure that
we only retain the necessary and sufficient set of node descriptions in our vertex
reduced query graphs for processing.

Procedure Query Graph
Input: Query Graph Q.
Output: Vertex Reduced Query Graph ρ(Q).
begin
1 Obtain vertex reduced graph V = ϕ(Q)
2 using definition for vertex structure.
3 Re-label all nodes in all descriptors δn ∈ V
4 with unique variable names.
5 Sort the node descriptors δX ∈ V in descending order
6 of φX and then of τX to obtain Vs.
7 For every descriptor δX ∈ Vs in sorted order
8 of the form 〈X, φX , %X , τX , βX〉 such that
9 X is not marked dead
10 Mark X dead.
11 For every node Yi ∈ %X not already marked dead

with descriptor δYi

12 Remove all dead nodes from %Yi to obtain νYi .
13 If νYi ⊆ %X

14 Mark Yi dead.
15 Remove δYi from Vs.
16 Return Vs.
end

Since graphs are fundamentally structures involving relationships among ver-
tices, to be able to compute isomorphic sub-graphs, we define the notion of

88 An Efficient Logic Programming Approach to Sub-Graph Isomorphic Queries

structural similarity. This definition will help us identify potential candidates
for assembling, and help us put together an assembling sequence that is efficient
and focused, as opposed to random or naive. Since a structural unit may be
similar to a larger unit because it shares structural properties (a sub-structure),
we define sub-vertex structure as follows.

Definition 31 (Sub-vertex Structures) Let δn = 〈n, φn, %n, τn, βn〉 be a
node descriptor. Then the node descriptor 〈n, φn

s , %
n
s , τ

n
s , β

n
s 〉 derived from δn by

choosing %n
s ⊆ %n, βn

s ⊆ βn, φn
s ≤ φn, and τn

s ≤ τn such that |%n
s | = φn

s , and
|βn

s | = τn
s , is a sub-structure of δn, denoted δn

s ¹ δn.

The structural similarity of two vertex structures can be determined using an
extended definition of unification in logic programming. The goal of structural
unification is to find a complete set of substitutions that make the two node
descriptors such that both are ground, and the relationship ¹ holds between
them. Since in our model, all data node descriptors are ground and all query
node descriptors have place holders or variables for node names, we just need
to focus on computing the query node descriptors as sub-vertices of data node
descriptors in the database. Consequently, we try to find an instantiation of the
query node descriptors for which they will become a sub-vertex of some data
node descriptors.

That goal, unfortunately, raises some challenges. For example, for a query
node descriptor δX , any data node descriptor δn will offer multiple possible sub-
stitutions when φX < φn. Higher the difference, the larger is the set of possible
substitutions. The same comments apply to τX . Consequently, the most general
unifier in the case of structural unification is a distinct set of possible substitu-
tions. These substitutions will produce a set of ground data node descriptors,
one for each substitution. In this algorithm, we do not present the actual match-
ing process of how the substitution θ is computed. Interested readers may refer
to [9] for an in depth discussion on most general unifiers, algorithms to compute
most general unifiers, and related issues.

Procedure Structural Unification
Input: ϕ(G), and ϕ(Q).
Output: ΞG.
begin
1 Set ΞG = ∅.
2 For every descriptor δnq ∈ ϕ(Q)
3 For every descriptor δng ∈ ϕ(G)
4 if φng ≥ φnq and τng ≥ τnq

5 For every φng
Cφnq subsets s of φng

6 Let θ = mgu(s ∪ {ng}, %nq ∪ {nq}).
7 If (βnq)[θ] ⊆ βng 3

8 ΞG = ΞG ∪ δnq [θ].
9 Return ΞG.
end

Hasan Jamil 89

It is always the case that if the conditions in line 4 are met, there will always
be a successful unification because δnq is totally non-ground, and δng is always
ground. But, having a substitution θ does not always guarantee structural simi-
larity as boundary instances βnq [θ] under substitutions may not match because
of the differences in topology. Hence, the additional test in line 7 is required.
Furthermore, the For qualifier φng

Cφnq subsets s of φng in line 5 picks exactly
the number of neighbors in %ng such that the cardinality matches with %nq . Con-
sequently, larger the difference φng − φnq , the larger is the size of the possible
sets of substitutions. Since all substitutions are unique, all topologies selected
are also unique. For example, the boundary (1, 2) and (2, 1) are identical, and
hence both will never be selected. The same observation applies for neighborhood
selection, i.e., neighbors {1, 2} and {2, 1} are identical.

4 An Interpreter for Sub-Graph Isomorphism

In this section, we develop a logical interpreter I, that given a graph G and a
query graph Q, finds a mapping µ from the vertices of Q to the vertices of G
such that µ(Q) is a sub-graph of G as defined in definition 22. We introduce
the interpreter I in reference to the logic program in section 4.1 below. The
interpreter is based on the idea of program transformation where a logic program
P = 〈G,Q〉 is rewritten as PT = 〈ϕ(G), ρ(Q), A〉, and ρ(Q) is computed against
ϕ(G) ∪ A using a traditional logic engine such as Prolog or XSB. Here ϕ is the
graph reduction function discussed in section 3, and ρ and A are respectively
the query graph reduction function discussed in algorithm Query Graph and a
set of axioms that captures the spirit of the structural unification introduced in
algorithm Structural Unification discussed in the same section. Our example
database below was computed using an online Prolog interpreter JIProlog version
v.3.0.3-1 at http://www.ugosweb.com/.

4.1 Example Logic Program

1. :- dynamic node/5, arc/2.

% Input Graph

2. edge(a,d). 3. edge(a,b). 4. edge(b,d). 5. edge(b,c). 6. edge(c,d).

7. edge(c,e). 8. edge(c,f). 9. edge(d,e). 10. edge(f,h). 11. edge(f,r).

12. edge(h,p). 13. edge(h,r). 14. edge(p,r).

15. arc(X,Y) :- edge(X,Y).

16. arc(X,Y) :- edge(Y,X).

% Graph Transformation Engine

3 In this expression, {(1, 2)} ⊆ {(2, 1), (2, 3)} will test positively in our setup. In other
words, (1, 2) ≡ (2, 1), i.e., the order is immaterial. Also, notice that for any given θ,
δX [θ] is always ground, and all δn are ground by definition.

90 An Efficient Logic Programming Approach to Sub-Graph Isomorphic Queries

17. setof(X,Goal,Bag) :- post_it(X,Goal), gather([],Bag).

18. post_it(X,Goal) :- call(Goal), asserta(data999(X)), fail.

19. post_it(_,_).

20. gather(B,Bag) :- data999(X), retract(data999(X)), gather([X|B],Bag),

distinct(Bag), !.

21. gather(S,S).

22. dist(X,[]).

23. dist(X,L) :- not member(X,L).

24. distinct([]).

25. distinct([X|L]) :- dist(X,L), distinct(L).

26. neigh(X,C,L) :- setof(Y,arc(X,Y),S), vrm_dupl(S, L), length(L,C).

27. bound(X,e(N1,N2)) :- neigh(X,Nc,Nb), Nc>1, member(N1,Nb),

member(N2,Nb), not N1=N2, arc(N1,N2).

28. node(X,Nc,Nb,Ts,Bs) :- setof(e(N1,N2), bound(X,e(N1,N2)),TBs),

neigh(X,Nc,Nb), rm_dupl(TBs,Bs), length(Bs,Ts).

29. rm_dupl([],[]).

30. rm_dupl([X|T],L2) :- symmem(X,T), rm_dupl(T,L2).

31. rm_dupl([X|T],[X|T1]) :- \+ symmem(X,T), rm_dupl(T,T1).

32. symmem(X,S) :- member(X,S).

33. symmem(e(X,Y),S) :- member(e(Y,X),S).

34. vrm_dupl([],[]).

35. vrm_dupl([X|T],L2) :- member(X,T), vrm_dupl(T,L2).

36. vrm_dupl([X|T],[X|T1]) :- \+ member(X,T), vrm_dupl(T,T1).

37. vertices(L) :- setof(X,arc(X,Y),S), vrm_dupl(S,L), !.

38. recurse([H|R]) :- recurse(R), node(H,Nc,Nb,Ts,Bs),

write(node(H,Nc,Nb,Ts,Bs)), write(’.\n’).

39. recurse([]).

40. transform :- vertices(R), recurse(R).

% Transformed Graph Representation in Minimum

% Structural Units

41. JIP:-transform.

Yes

42. node(d,4,[c,b,a,e],3,[e(b,c),e(a,b),e(e,c)]).

43. node(b,3,[a,c,d],2,[e(d,a),e(d,c)]).

44. node(c,4,[b,f,e,d],2,[e(d,b),e(d,e)]).

Hasan Jamil 91

45. node(e,2,[d,c],1,[e(c,d)]).

46. node(f,3,[c,r,h],1,[e(h,r)]).

47. node(h,3,[f,r,p],2,[e(r,f),e(p,r)]).

48. node(r,3,[p,h,f],2,[e(h,p),e(f,h)]).

49. node(p,2,[h,r],1,[e(r,h)]).

50. node(a,2,[b,d],1,[e(d,b)]).

% Structural Unifier: Generic Interpreter for

% Sub-Graph Isomorphism

51. qry(V,Qneighcnt,Qneigh,Qtset,Qbounset):-

node(V,Neighcnt,Neigh,Tset,Bounset), Neighcnt >= Qneighcnt,

Tset >= Qtset, subset(Qneigh,Neigh), subset(Qbounset,Bounset).

52. subset([],_).

53. subset([X|R],S) :- symmem(X,S), subset(R,S).

% Input Query Graph

54. query(5,6). 55. query(5,7). 56. query(6,7). 57. query(7,8).

58. query(7,9). 59. query(8,9). 60. query(9,10).

% Transformed and Optimized Sub-graph

% Isomorphic Query

61. JIP:-qry(C,4,[A,B,E,F],2,[e(A,B),e(E,F)]),

qry(F,3,[H,C,E],1,[e(C,E)]),

distinct([A,B,C,E,F,H]).

Yes

62. C = d 63. A = a 64. B = b 65. E = e 66. F = c 67. H = f

4.2 Structure of the Interpreter I

The interpreter essentially consists of a set of axioms, and an external rewriting
function to convert a query graph to a conjunction of subgoals, evaluation of
which will provide the vertex mappings expected. Formally, the interpreter I
is a tuple of the form 〈Aϕ, ρ, Aψ〉 such that Aϕ are the axioms that convert G
to ϕ(G), ρ is the external function4 for the transformation of query graph Q
to ρ(ϕ(Q)), and the set of axioms Aψ is the unifier that implements structural
unification using classical unifier in the host system.

Graph Transformation Function ϕ The set of 24 rules in 17 through 40
implement the transformation function ϕ as axioms Aϕ. The functionality of
4 For the sake of simplicity and brevity we chose to use an external function for the

current presentation. It, however, is readily possible to develop a meta-interpreter
to transform the query graph Q to the conjunctive goals as presented, and is left as
an exercise.

92 An Efficient Logic Programming Approach to Sub-Graph Isomorphic Queries

these rules can be described as follows. Please recall that a vertex is represented
as a tuple of the form 〈n, φn, %n, τn, βn〉. The predicate neigh in rule 26 of Aϕ

computes φn and %n for a given vertex n. It does so by collecting every edge
from the arc rules in 15 and 16 (which actually guarantee that the graph G
represented in edge is symmetric) using Prolog’s setof or findall like feature.
We added our own version of setof rules because many Prolog interpreters
do not include this feature, including the JIProlog we used. It then sanitizes
the collected list of neighbors of n by removing duplicates and computes the
cardinality of the set (of neighbors). Notice that for the setof rule to work,
we need to make the argument X ground by supplying the name of the vertex.
Rule 37 collects all the vertex names in a similar fashion into the list L. Rule
40, in turn, supplies these vertices to rule 38 (as well as to rules 28 and 26) as
adornments. Rule 27 computes the set of all boundaries for a given vertex, and
using 26 and 27, rule 28 computes the ultimate vertex representation for all the
vertices in a manner similar to rule 26. Finally, rule 40 fires the transformation
process by first generating all the vertices in list, and then for each member of
the list, firing rule 28. Lines 42 through 50 show the transformed graph G. This is
the representation we proposed that we use for sub-graph isomorphism queries.
Notice that, rule 38 needs to be edited to replace the write subgoals with assert
before these transformed vertex representation can be used for computation, or
these predicates will need to be added manually to the program.

Query Graph Reduction using ρ The query graph Q is shown in lines
54 through 60 corresponding to the graph Q1 in figure 1(b). To develop the
query in rule 61, we use the external function ρ, and first reduce Q to its vertex
reduced form using the axioms Aϕ. Then we use the algorithm Query Graph
in section 3 to obtain only the sufficient and necessary set of vertex reduced
general query graph (a graph is called general when all its node names are
replaced with variable names). Since we require that these variables in all the
vertex structures bind to distinct nodes, we form a conjunctive query using all
the vertex structures returned by algorithm Query Graph and make sure that
they bind to unique nodes by adding another subgoal distinct([L]) (used in
query 61, and implemented in rules 22 through 25), where L is the list of all
variable names in all the vertex structures in ρ(ϕ(Q)). Finally, we let unification
of the host language find the mapping.

Structural Unification Axiom Aψ The structural unification now actually
needs to account for matching nCk candidates in a given set of neighbors or
boundary set in the target vertex with the pattern vertex. For that to be success-
ful, rules 51, and 52 and 53 are enough to capture the spirit of algorithm Struc-
tural Unification. To be structurally unifiable, we need to query all nodes facts
using qry rule that succeeds only when the required subset of the neighbors and
boundary sets unify with the corresponding pattern neighbors and boundary set.
Unification takes care of the rest. Notice here the application of subset rules 52
and 53 that succeeds for symmetric edges as discussed.

Hasan Jamil 93

Execution and the Bindings The results for sub-graph isomorphic query
for graph Q1 against the database D is given in lines 62 through 67 from an
actual run in JIProlog. In this example, the mappings are then {5 → A/a, 6 →
B/b, 7→ C/d, 8→ E/e, 9→ F/c, 10→ H/f}5.

Experimental Evaluations The main objective for the experimental evalu-
ation carried out as part of this study was to establish a relative performance
comparison with Vflib, arguably the best known subgraph isomorphism algo-
rithm in the literature to date. The Dell Desktop we used to run these two
procedures have a Pentium Dual Core processor with 4GB memory and 6MB
cache. We have used the identical benchmark data sets as the developers of Vflib
did in their paper [3] and have supplied online for the comparison. The graphs
in figure 2 show how our algorithm significantly outperforms Vflib. In these fig-
ures, we have used two different kinds of graphs – called the random graphs and
mesh graphs. A random graph has no basic protocol of constructing except that
there is a parameter called η that reflects the probability that two nodes will
have an edge between them. The mesh graphs on the other hand are constructed
differently to assure a more tighter connection. All mesh graphs are first created
as a ladder graph, and then a probability ρ is used to add more edges between
nodes. The result is a more tightly connected and dense graph.

In general, more edges a node has, the more it costs to compute its iso-
morphic counterparts. So, we can expect higher computational costs, and thus
performance difference between these two algorithms, in case of mesh graphs,
as shown in figures 2(a) through 2(e) . In these graphs, we keep the number of
data nodes fixed and vary query nodes. It can be observed that as the number
of query nodes, or the mesh density increases, our algorithm outperforms Vflib
more and more, which is expected. Figure 2(f) through 2(j) show similar graphs,
but this time we keep the query nodes fixed, and vary the number of data nodes
in the target graphs. Here too, the algorithms behave similarly6.

5 Conclusion

It should be evident that the core of our framework is in the way the nodes in
a graph are represented, and how the concept of structural unification makes it
possible to find and “fit” the pieces together in a structurally consistent way.
The number of rules needed for graph reduction is only 27, and for structural
unification only 2 (qry and subset). It is also interesting to note that subgoal
evaluation needed is linearly proportional to the number of reduced vertices
5 In this representation, 9 → F/c meant that node 9 in query graph Q1 was first

replaced by variable F by the function ρ after reduction by ϕ, and then was unified
with the node c of the database D by Aψ.

6 However, we did not have the opportunity to test the algorithms for hight number
of nodes in query and target graphs at this time because the data generation tool
at [1] did not compile. Once we are able to fix this bug, we plan to conduct a more
elaborate comparison in the future.

94 An Efficient Logic Programming Approach to Sub-Graph Isomorphic Queries

(a) 120 node mesh data
graph (ρ = 0.1)

(b) 200 node mesh data
graph (ρ = 0.1)

(c) 200 node mesh data
graph (ρ = 0.3)

(d) 120 node random data
graph (η = 0.3)

(e) 200 node random data
graph (η = 0.1)

(f) 40 node mesh query
graph (ρ = 0.3)

(g) 80 node mesh query
graph (ρ = 0.3)

(h) 200 node mesh query
graph (ρ = 0.1)

(i) 80 node random query
graph (η = 0.1)

(j) 80 node random query
graph (η = 0.3)

Fig. 2. Performance comparison of our procedure with Vflib (lower curve in each graph
reflects our procedure). (a), (b) and (c) - on mesh graphs, (d) and (e) - on random
graphs. In each of these graphs, performance is plotted as the number of query graph
nodes are varied. Figures (f) through (j) show the performance when the number of
data graph nodes are varied keeping query graph nodes fixed.

Hasan Jamil 95

of query graph ρ(ϕ(Q)), and the solution space depends upon the number of
solutions possible. The conditions such as Neighcnt >= Qneighcnt, Tset >=
Qtset in Aψ guarantee that only the potential candidates are tried, not all
possible vertices. More optimization in the direction of query optimization in
deductive databases using query rewriting and indexing is possible and remains
our future research goals.

References

1. Graph Benchmark Database. http://amalfi.dis.unina.it/graph/.
2. L. Chen and S. Bhowmick. In the search of nectars from evolutionary trees. In

DASFAA, pages 714–729, 2009.
3. L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. An improved algorithm for

matching large graphs. In 3rd IAPR-TC15 Workshop on Graph-based Representa-
tions in Pattern Recognition, pages 149–159, Cuen, 2001.

4. J. E. Hopcroft and J. K. Wong. Linear time algorithm for isomorphism of planar
graphs. In ACM Symposium on Theory of Computing, pages 172–184, 1974.

5. Y. Jia, J. Hoberock, M. Garland, and J. C. Hart. On the visualization of social
and other scale-free networks. IEEE Trans. Vis. Comput. Graph., 14(6):1285–1292,
2008.

6. M. Koyuturk, Y. Kim, S. Subramanium, W. Szpankowski, and A. Grama. De-
tecting conserved interaction patterns in biological networks. JCB, 3(7):12991322,
2006.

7. E. M. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial
time. In IEEE FOCS, pages 42–49, 1980.

8. B. D. McKay. Practical graph isomorphism. Congressus Numerantium, 30:45–87,
1981.

9. E. Rich and K. Knight, editors. Artificial Intelligence. McGraw Hill Higher Edu-
cation; 2nd edition, 1991.

10. S. Saito, S. Aburatani, and K. Horimoto. Network evaluation from the consistency
of the graph structure with the measured data. BMC Systems Biology, 2(84),
October 2008.

11. J. Scott, T. Ideker, R. M. Karp, and R. Sharan. Efficient algorithms for detecting
signaling pathways in protein interaction networks. J Comput Biol, 13(2):133–144,
March 2006.

12. N. Shrivastava, A. Majumder, and R. Rastogi. Mining (social) network graphs to
detect random link attacks. In ICDE, pages 486–495, 2008.

13. J. R. Ullmann. An algorithm for subgraph isomorphism. Journal of ACM,
23(1):31–42, 1976.

14. G. Valiente. Algorithms on Trees and Graphs. Springer-Verlag, Berlin, 2002.
15. H. Wang, J. Li, J. Luo, and H. Gao. Hash-based subgraph query processing method

for graph-structured xml documents. PVLDB, 1(1):478–489, 2008.
16. H. Wang, J. Li, W. Wang, and X. Lin. Coding-based join algorithms for structural

queries on graph-structured xml document. World Wide Web, 11(4):485–510, 2008.

96 An Efficient Logic Programming Approach to Sub-Graph Isomorphic Queries

NL Database Dialogue Question-Answering as a
Constraint Satisfaction Problem

Irene Pimenta Rodrigues, Ligia Ferreira, Luis Quintano

ipr@di.uevora.pt, lsf@di.uevora.pt, ljcq@di.uevora.pt
Departamento de Informática

Universidade de Évora, Évora, Portugal

Abstract. This paper presents a system for database question-answering
that is able to cooperatively answer the user. The system may provide
justifications to answers that are not what the user intended and will
also introduce clarification dialogues to disambiguate the user questions
when it is relevant to do so, for instance when we have more than one
interpretation for a user question.
Our prototype is implemented using declarative tools using GNU Pro-
log/CX and the ISCO framework which provides access to relational
databases as prolog predicates.
In our systems sentences pragmatic are represented as a constraint satis-
faction problem where the discourse entities are quantified finite domain
variables constraint to the database relations.
This sentence representation enables the reasoning necessary for answer-
ing questions using generalized quantifiers such as: All, How Many, at
least, what-more, etc. That allow the user to build factoids and list ques-
tions. We are not yet able to deal with definition, Why or How questions.

1 Introduction

This paper presents a system for database question answering that is able to
cooperatively answer the user. The system may justify some answers which might
otherwise appear as unexpected to the user. The system also inserts clarification
dialogues to disambiguate the user’s questions whenever relevant, namely when
there are different possible answers to a user question. The types of dialogue we
support in a QA system are Clarification and Justification:

Clarification - applies when we have more than one answer for a question. For
example the query:

Does John teach Databases?
Requires clarification if, for instance, there are 3 teachers called John in our
data or 4 courses with the word “Databases” in their name.
– If the answer is the same for all teachers called John and courses with

“Databases” in their name, there is no need to clarify. It can be argued
that, if the system requires the user to clarify the teacher and course in
that situation, is not being cooperative.

Irene Rodrigues, Luis Quintano and Ĺıgia Silva Ferreira 97

– If, for some teachers called John and Database courses, the answer is
yes and for others the answer is no then the system must ask the user to
clarify which teacher and course that are meant. To be deemed cooper-
ative, the system must choose the best question, i.e. the one that leads
the user to an answer in the least number of steps.
But to be cooperative, the system must also take the user knowledge
into account. For example, if the user had already said that John name
is called John Smith, presenting the all 3 teachers’ full name may not
be a cooperative attitude, it may be best to disambiguate on another
propriety of John, such as the Department he works in.

Justification - This sort of dialogue is relevant when the answer is not what
the user expects. Consider the question:

Are all students enrolled?
If the answer is No because only some of the students are enrolled, the
system could relax the query by changing the discourse entities quantifiers,
i.e. it could rewrite All(X) into something like HowMany(X).

Our prototype is implemented in GNU Prolog/CX [8,2] using the ISCO per-
sistence framework [3] which provides access to relational databases as prolog
predicates.

In our system, the pragmatics of a sentence is represented as a Constraint
Satisfaction Problem (CSP) where the discourse entities are quantified finite do-
main variables, constrained to the values which occur in the database relations.
This builds on our previous work, reported in [18,19], extending it as follows:
(1) questions may now be represented with generalized quantifiers and (2) in-
terpretation is now formalized as a CSP. This sentence representation enables
the reasoning necessary to answer questions using generalized quantifiers such
as: All, HowMany, AtLeast, etc. which allow the user to build factoids and list
questions. We are not yet able to deal with definitions, Why or How questions.

Current question answering systems may be divided into two classes (see, for
example, [21,6,10,15]):

– Databases – or restricted domain. Most of these systems, (e.g. Masque/SQL [5],
Precise [16], Wom [11]), and [6] directly generates SQL queries from the user
question, to access a relational database.

– Repository of documents in a corpus or even in the web – Most current QA
systems in open domain documents compute their answers by [13,12,6,21]:
1. analysing the question in order to build a representation of the question;

inferring the type of question: factoid, list, definition.
2. identifying the documents fragments needed to extract the information

that may match the answer representation;
3. ranking the document fragments to choose the best answer that may

either be exact or approximate.

QA systems on open domain such as Start [13] or on restricted domains
such as Precise [16] or Masque/SQL [4] do not consider clarification dialogues to

98 Database NL Dialogues question answering as a Constraint Satisfaction Problem

disambiguate user questions. In Precise the importance of a clarification dialog
is discussed but the feature is not implemented.

Other QA system such as those described in [9,7,14,17] try to disambiguate
through a clarification dialogue but this is done regardless of it being relevant
or not.

The Wow system [11], is a multilingual QA (Hungarian and English) which
translates written genitive relations to SQL as per the V(ISA) algorithm: dis-
ambiguation is only necessary if more than one SQL query is generated. The
clarification dialogue will decide which SQL query should be used to compute
the answer.

Likewise, HITIQA [20] also uses clarification dialogues to disambiguate in
order to compute the answer to the question. HITIQA is a frame-based QA sys-
tem that computes answers in open domains. This system deals with definitions
and why and how questions.

In the next Section, we describe the architecture of our proposal. In section 3
we discuss answer computation as well as the clarification and the justification
processes. In section 4 we briefly assess the system and finally in section 5 we
summarize our main achievements and discuss future work.

2 Dialogue Question Answering System Arquitecture

The system is composed of five distinct modules connected through well specified
APIs, sketched in figure 1. A brief discussion of the various components follows:

Sintatic
Module

Semantic
Module

Pragmatic
Module

Evaluation
Module

Dialog
Manager

Fig. 1. System Architecture

Irene Rodrigues, Luis Quintano and Ĺıgia Silva Ferreira 99

The syntactic parser is chunk-based [1], imposing no strong restrictions on
the query sentence structure and leaving all possible interpretation analysis
and filtering to the semantic/pragmatic parser.1

Semantic interpretation is built using First-Order Predicate Logic extended
with generalized quantifiers. We take special care with the discourse entities
in order to have the appropriate quantifier introduced by the determinant
interpretation.

Pragmatic interpretation is responsible of transforming the predicates in the
semantic representation into ISCO queries.

the Evaluation transforms the pragmatic representation into a constraint set
of variables annotated with the generalized quantifiers, i.e. a set of discourse
entities constrained by predicates extension.

the Dialogue Manager deals with the set of discourse entities and is able to
compute the question answer, do decide when to relax the question in order
to justify the answer and to decide when to clarify a question and how to
clarify.

2.1 Example

Consider the question What teachers teach all students?

Syntactic analysis transforms the question into a set of syntactic structures.
A sentence may have more then one syntactic structure.

Semantic Interpretation transforms the set of syntactic structures into a set
of Discourse Structures with the determiners linked to the discourse en-
tities. The semantics of a question is then represented by the quadruple
(DU , DQ, PP , PM), where:
DU is a list of Discourse entities that must be unique e.g. entities referred

by a name such as John or Mary or by an anaphoric term such as the
teacher, he, etc.

DQ is a list of Discourse entities with a quantifier, these quantifiers are in-
troduced by the interpretation of noun determiners.

PP is a logic term representing the question presupposition.
PM is the sentence main predication.
In the example at hand, we end up with:

([], [what-Y, all-X], (student(X), teacher(Y)), teaches(Y,X))

Pragmatic Interpretation rewrites the predicates in the semantic represen-
tations as ISCO goals, i.e. in our example the teaches relation applies to
different types of arguments and must be rewritten:

([], [what-Y, all-X], (student(id=X), teacher(id=Y)),
(teaches(teacher=Y, course=Z),
enrolled(student=X, course=Z)))

1 The number of possible interpretations is directly influenced by the number of at-
tached propositional phrases (PPs).

100 Database NL Dialogues question answering as a Constraint Satisfaction Problem

Pragmatic Evaluation transforms the above representation into a constraint
satisfaction problem, as ([], [what-Y, all-X], [Y, X], [Y1, X1]), where:

(X,Y) are bound by an extensional constraint onto the tuples resulting from
student(id=X), teacher(id=Y).

(Y1,X1) are constrained to the extension of
student(id=X1), teacher(id=Y1),
teaches(teacher=Y1, course=Z), enroll(student=X1, course=Z),

The Dialogue Manager receives a set of representations with all variables
properly constrained and will decide whether to:
– Answer the question directly.
– Answer the question and justify the answer by answering the relaxed

question.
– Intiate a dialogue with user in order to clarify the question.

2.2 Porting of our Dialogue QA system

The domain-dependent component of our QA system is adaptable to different
domains. In order to do so:

– We need the schema of the target database.
– Each database individual must have a unique identifier allowing us to infer

its class from the identifier alone. For instance, in the academic services
domain, suppose id 123 is used in table person in the record (123, John
Smith). It cannot be used by any other individual of any type. Therefore,
when we see id 123, we know that it is a person with the name “John Smith.”

3 Interpreting natural language questions

Consider the question What teachers teach all students? and a possible repre-
sentation in first order logic:

{y|∀x[Student(x)→ Teaches(y, x)]}
The representation proposed by A. Badia [6] in his Query Language with Gen-
eralized Quantifiers would be:

{y|all{x|Student(x)}, {x|Teaches(y, x)}}
Lastly, the SQL translation of the same query:

SELECT pid FROM Teaches T
WHERE NOT EXISTS (SELECT sid FROM Student

WHERE sid NOT IN
(SELECT sid FROM Teaches WHERE pid = T.pid))

Even if this query captures the correct answer, we think that our approach is
preferrable because ours can be built and computed automatically, while this
one was built manually.

Irene Rodrigues, Luis Quintano and Ĺıgia Silva Ferreira 101

Dealing with Ambiguous Questions

Our representation for this question is (U, DrefQuant, Lref, Lref1) (see sec-
tion 2.1). Once we have this, the system is able to answer the user whenever there
is a unique solution or to start a dialogue in order to ask for a clarification when
there is more then one solution.

if U is empty there are no ambiguities in this representation.
if U is non-empty it means that there ambiguities in the question representa-

tion, so we must compute all possible answers. The dialogue manager will
interact with the user roughly along these lines:

dialogueManager(U, Refs, Lref, Lref1, Ans).
% find all answers (AnsL)
% factorize answers (AnsL into AnsL1)
clarify(U, Refs, Lref, Lref1, AnsL, M))).

The factorize predicate groups similar answers in order to count them.
This above step computes all possible answers, when there are ambiguities
such as the names that may identify more then one individual, e.g. the name
John may be that of a student that is not aware that there more then one
teacher named John. Another source of ambiguity is that sentence syntactic
analysis and pragmatic interpretation that may give rise to more then one
sentence representation.
AnsL is the set of all question answers. If all the answers in AnsL are equal,
then the system may answer the question, otherwise it must initiate a clari-
fication dialogue with the user.

Answering a Non-Ambiguous Question

To do so is to interpret the question representation, taking into account the
discourse referent quantifiers (DRQ). To compute an answer we define a predicate
answer(DRQ, Lref, Lref1, Ans), which we now proceed to illustrate:

1. Interpreting Who, What, When, . . .:

answer([WH-X|R], Lref, Lref1, Ans):-
memberIg(X, Lref, Lref1, X1), X #= X1,
findall(X, (fd_labelingff(X),

answerYes(R,Lref,Lref1,_)), Ans).

The first line requires that the finite domain variable quantified with WH must
be the same in the presupposition and in the main predication, giving the
right meaning to the quantifier WH (X=X1). The last goal collects all values in
the domain of X that satisfy the rest of quantified variables.2

2 The predicate answerYes is the same as answer exept that it fails when the answer
is No.

102 Database NL Dialogues question answering as a Constraint Satisfaction Problem

2. Interpreting How Many:

answer([howmany-X|R], Lref, Lref1, N):-
...
sort(..., L), length(L, N).

This definition is identical to the previous one, except that in the end we
bind the result with a count of the distinct values of X.

3. Interpreting All :

answer([all-X|R], Lref, Lref1, yes):-
memberIg(X,Lref,Lref1,X1),
\+ (fd_labelingff(X), \+ X#=X1),
answerYes(R,Lref,Lref1,_).

The interpretation of all X will give rise to an Yes or No. The condition to
be satisfied is that all the Xs in presupposition are in the X1 of the main
predication and the rest of the quantified variables succeed.

4. Interpreting Exists:

answer([ex-X|R], Lref, Lref1, yes):-
memberIg(X,Lref,Lref1,X1),
X#=X1, fd_labeling(X),
answerN(R,Lref,Lref1,_).

To interpret exists X it is enough that one value of X in the presupposition
be equal to a value of X1 in the main predication.

5. When nothing succeeds the answer is No.

answer(_Refs,_Lref,_Lref1,no).

Computing the Justification

When the Dialogue Manager detects that the answer to the question is No it
will resort to a set of rules for relaxing the query and to compute the question
justification.

Computing the clarification question

When a question has more then one different answer, the dialogue manager looks
for a “good” question to ask the user, in order to obtain more information about
the Discourse entities. In our framework this can be done in a quite straightfor-
ward way:

clarify(U, Refs, Lref, Lref1, AnsL, NumAns, Ans) :-
choose(AnsL, Cquestion, N),
askUser(Cquestion, U),
dialogueManager(U, Refs, Lref, Lref1, Ans).

Irene Rodrigues, Luis Quintano and Ĺıgia Silva Ferreira 103

To choose a question means picking a property of a Discourse referent in U
whose domain size is greater then 1, that will reduce the number of answers.
After choosing the property, the system asks the user about the value of the
property for that discourse entity. The answer will then constrain the entity, so
the dialogue manager will go on with questioning the user, only with a more
constrained search space.

The procedure for choosing an entity property is requires access to the
database schema and is described in [19,18]. We are using a very simple method
which gives surprisingly good results. If the user cannot answer the question this
procedure will, in backtracking, give the next best choice.

4 Evaluation of the Question Answering Dialogue System

In order to evaluate our system we take into account:

Correctness of the computed answer – we distinguish three situations:
1. The system directly answers the question. We can use the recall and pre-

cisionmeasures to evaluate the system accuracy. In a question-answering
system we should enhance the precision measure since the user is not in-
terested in having wrong answers. We have tested our system with a set
of 200 questions and obtained a 90% precision (% of correct answers).
The cases where we obtained wrong answers were due to the construc-
tion of a bad question representation. We obtained a 80% recall (% of
questions that were answered) mainly due to failures in the pragmatic
interpretation, there were words (verbs, nouns, etc) for which we could
not assign a database relation.

2. The systems must relax the question in order to be cooperative. It answers
the question and tries to justify it. For this case the above measures
(recall and precision) are not enough. We must take into account the
user satisfaction. We still do not have a proper evaluation of this aspect
of our system.

3. The system must clarify the user question. When a question is to be
clarified, the system must pose a pertinent question to the user in or-
der disambiguate the user question. The problem is that for some user
questions, one system question is not enough.

Time taken to compute an answer – with our database, the answers never
take longer than 10 seconds,3 when the discourse entities have a large do-
main. The heavier tasks may take from 0.1 ms to up to a few seconds,
depending on the data size necessary for representing the question (not the
data size in the database). The steps are:
– Syntactic and semantic analyses: these are very fast, under 10 ms, and

are essentially independent from the question.
– Pragmatic analysis: takes up to 1 second depending on the question.

3 All times presented in this section are measured on a Linux VMware virtual machine,
running on an Intel Core2 2GHz processor, which also hosts the relational database.

104 Database NL Dialogues question answering as a Constraint Satisfaction Problem

– Data retrieval: this is done using ISCO with a relational database back-
end.

– Constraining of the discourse variables to the extension of the retrieved
relations. This is done with the GNU Prolog predicate fd_relation.

– Evaluation of the generalized quantifiers: All, How many, more than,
at least, etc. The interpretation of some generalized quantifiers has non
polynomial time complexity.

From our experimental assessment with this database, the times are ac-
ceptable for an interactive question-answering system. The quality of the
interaction clearly exceeds that of comparable systems,4 mostly as a conse-
quence of our reasoning over the entire set of solutions which allows us to
make pertinent decisions when asking the user to disambiguate.

Consider the question:5

U: All teachers teach at least one course?
C: No, only 1311 of the 1502 teachers.

The database has 1502 teachers, 1837 courses and 11541 tuples in relation teaches
for the academic year 2008/2009; this database has the actual data from the
academic services of Universidade de Évora.

The time taken for the interpretation of the question representation breaks
down as follows: 1532 ms for the presupposition, 2396 ms for the main predica-
tion, 951 ms for the generalized quantifiers question representation interpretation
and 1357 ms for relaxing the question (All is transformed into How many) and
the interpretation of the new question representation. The systems takes a total
of 6 seconds to answer the user cooperatively.

U: How many teachers from the mathematics department
- teach exactly one course?
C: 15

For this query, the times taken are 35 ms for the presupposition, 142 ms for the
main predication, 37 ms for the generalized quantifiers question representation
interpretation. This shows that a question where the universe is restricted is
much faster: constraining teachers to the math department (56 people) dramat-
ically reduces the computation time.

U: What teacher teaches more courses?
C: José Silva

In this case, we have 1332 ms for the presupposition, 3396 ms for the main
predication and 2351 ms for the generalized quantifiers question representation

4 Recall that Badia’s system [6] has no working implementation.
5 User input is annotated with U: while system output is labeled C: and continuations
are marked with a “-”.

Irene Rodrigues, Luis Quintano and Ĺıgia Silva Ferreira 105

interpretation. This question is answered in 7 seconds, an acceptable time for an
interactive user.

Consider the following interaction, which includes a clarification dialogue:6

U: Does Vitor teach Databases?
C: Teacher has Department?
- 1. Chemistry Department
- 2. Biophysical and Landscape Planning Department
- 3. Pedagogy and Education Department
- 4. Informatics Department
U: 4
C: Course has Program?
- 1. Informatics Engineering
- 2. Information Science and Documentation
- 3. Chemistry
- 4. Philosophy
U: 4
C: yes

This dialogue could have had different flows depending on the user’s answers.
If we precompute all possible answers, the average number of questions will be
1 because there is only one Vitor that teaches Databases in the Informatics
Department. The remaining alternatives are still presented because the answer
may be a “No”.

5 Conclusions and Future Work

We presented a Dialogue Question Answering System for databases that is able
to cooperatively dialogue with a user. The system may justify some answers that
are not what the user intended and it may introduce clarification dialogues to
disambiguate the user’s questions when it is relevant to do so.

We are able to automatically generate a question representation using gen-
eralized quantifiers and to correctly compute the answer; the prototype was
implemented within a declarative framework using GNU Prolog/CX and ISCO
to access databases as Prolog predicates.

We represent the pragmatics of a sentence as a constraint satisfaction prob-
lem, where the discourse entities are quantified finite domain variables con-
strained to the extent of database queries. This sentence modeling and represen-
tation enables the reasoning required for answering questions using generalized
quantifiers such as: All, How Many, at least, etc. This allows the user to build
factoids and list questions.

Compared with our previous work, presented in [19,18], the inclusion of Gen-
eralized Quantifiers allowed us to achieve much better results w.r.t. having cor-
rect interpretations for short and pertinent dialogues.
6 Note that there are 5 teachers named Vitor and 7 courses with “Databases” in their
name.

106 Database NL Dialogues question answering as a Constraint Satisfaction Problem

We are not yet able to deal with definition, Why or How questions. We are
presently working:

– To improve the quality of our tools for syntactic, semantic and pragmatic
interpretation, aiming at enhancing recall and precision.

– To improve performance: we are pursuing different approaches, namely dis-
tribution of the query answering.

– To built and use an Interpretation Context. We intend to explore the use
of contextual logic programming to represent and use the discourse context,
namely to interpret a question’s tense and aspect.

References

1. S. P. Abney. Parsing by chunks. In Robert C. Berwick, Steven P. Abney, and Carol
Tenny, editors, Principle-Based Parsing: Computation and Psycholinguistics, pages
257–278. Kluwer, Dordrecht, 1991. 2

2. Salvador Abreu and Daniel Diaz. Objective: In minimum context. In Catuscia
Palamidessi, editor, ICLP, volume 2916 of Lecture Notes in Computer Science,
pages 128–147. Springer, 2003. 1

3. Salvador Abreu and Vitor Nogueira. Using a Logic Programming Language with
Persistence and Conte xts. In Osamu Takata, Masanobu Umeda, Isao Nagasawa,
Naoyuki Tamura, Armin Wolf, and Gunnar Schrader, editors, Declarative Program-
ming for Knowledge Management, 16th Internatio nal Conference on Applications
of Declarative Programming and Knowledge Manageme nt, INAP 2005, Fukuoka,
Japan, October 22-24, 2005. Revised Selected Papers., volume 4369 of Lecture Notes
in Computer Science, pages 38–47. Springer, 2006. 1

4. I. Androutsopoulos, G. Ritchie, and P. Thanisch. Masque/sql: An efficient and
portable natural language query interface for relational databases. In Proc. of
the Sixth International Conference on Industrial and Engineering Applications of
Artificial Intelligence and Expert Systems IEA/AIE-93, pages 327–330, Edinburgh,
Scotland, 1993. Gordon and Breach. 1

5. Ion Androutsopoulos and Graeme Ritchie. Database interfaces. In R. Dale,
H. Moisl, and H. Somers, editors, Handbook of Natural Language Processing, pages
209–240. Marcel Dekker Inc., 2000. 1

6. Antonio Badia. Question answering and database querying: Bridging the gap with
generalized quantification. J. Applied Logic, 5(1):3–19, 2007. 1, 3, 4

7. Marco De Boni. An analysis of clarification dialogue for question answering, 2003.
1

8. D. Diaz. http://www.gnu.org/software/prolog, 1999. 1
9. J. Ginzburg. Clarifying utterances, 1998. 1

10. Haiqing Hu, Fuji Ren, Shingo Kuroiwa, and Shuwu Zhang. A question answer-
ing system on special domain and the implementation of speech interface. In
Alexander F. Gelbukh, editor, CICLing, volume 3878 of Lecture Notes in Com-
puter Science, pages 458–469. Springer, 2006. 1

11. Zsolt Tivadar Kardkovács. On the transformation of sentences with genitive re-
lations to sql queries. In Andrés Montoyo, Rafael Muñoz, and Elisabeth Métais,
editors, NLDB, volume 3513 of Lecture Notes in Computer Science, pages 10–20.
Springer, 2005. 1, 1

Irene Rodrigues, Luis Quintano and Ĺıgia Silva Ferreira 107

12. B. Katz, S. Felshin, D. Yuret, A. Ibrahim, J. Lin, G. Marton, A. McFarland, and
B. Temelkuran. Omnibase: Uniform access to heterogeneous data for question
answering, 2002. 1

13. Boris Katz and Jimmy J. Lin. Start and beyond, 2002. 1, 1
14. Michael F. McTear. Spoken dialogue technology: enabling the conversational user

interface. ACM Comput. Surv., 34(1):90–169, 2002. 1
15. Diego Mollá and José Luis Vicedo. Question answering in restricted domains: An

overview. Comput. Linguist., 33(1):41–61, 2007. 1
16. H. Kautz O. Etzioni and A. Popescu. Towards a theory of natural language inter-

faces to databases. In Intelligent User Interfaces (IUI), 2003. 1, 1
17. Matthew Purver, Jonathan Ginzburg, and Patrick Healey. On the means for clar-

ification in dialogue. In R. Smith and J. van Kuppevelt, editors, Current and New
Directions in Discourse and Dialogue, volume 22 of Text, Speech and Language
Technology, pages 235–255. Kluwer Academic Publishers, 2003. 1

18. Luis Quintano and Irene Pimenta Rodrigues. Using a logic programming frame-
work to control database query dialogues in natural language. In Sandro Etalle and
Miroslaw Truszczynski, editors, ICLP, volume 4079 of Lecture Notes in Computer
Science, pages 406–420. Springer, 2006. 1, 3, 5

19. Luis Quintano and Irene Pimenta Rodrigues. Question/answering clarification
dialogues. In Alexander F. Gelbukh and Eduardo F. Morales, editors, MICAI,
volume 5317 of Lecture Notes in Computer Science, pages 155–164. Springer, 2008.
1, 3, 5

20. Sharon Small, Nobuyuki Shimizu, Tomek Strzalkowski, and Ting Liu. Hitiqa: A
data driven approach to interactive question answering: A preliminary report. In
Mark T. Maybury, editor, New Directions in Question Answering, pages 94–104.
AAAI Press, 2003. 1

21. Ellen M. Voorhees and Lori P. Buckland, editors. Proceedings of The Seventeenth
Text REtrieval Conference, TREC 2008, Gaithersburg, Maryland, USA, November
18-21, 2008, volume Special Publication 500-277. National Institute of Standards
and Technology (NIST), 2008. 1

108 Database NL Dialogues question answering as a Constraint Satisfaction Problem

Extending XQuery for Semantic Web Reasoning?

Jesús M. Almendros-Jiménez

University of Almeŕıa, Spain. Email: jalmen@ual.es

Abstract. In this paper we investigate an extension of the XQuery lan-
guage for querying and reasoning with OWL-style ontologies. The pro-
posed extension incorporates new primitives (i.e. boolean operators) in
XQuery for the querying and reasoning with OWL-style triples in such a
way that XQuery can be used as query language for the Semantic Web.
In addition, we propose a Prolog-based implementation of the extension.

1 Introduction

XQuery [36, 11] is a typed functional language devoted to express queries against
XML documents. It contains XPath 2.0 [35] as a sublanguage. XPath 2.0 sup-
ports navigation, selection and extraction of fragments from XML documents.
XQuery also includes expressions to construct new XML documents and to join
multiple documents.

Web Ontology Language (OWL) [37] is a proposal of the W3C consortium1

for ontology modeling. OWL is an ontology language based on the so-called
Description Logic (DL) [10]. OWL is syntactically layered on the Resource De-
scription Framework (RDF) [34], whose underlying model is based on triples.
The RDF Schema (RDFS) [33] is also an ontology language, enriching RDF
with meta-data, however, OWL offers more complex relationships than RDF(S).
OWL includes, among others, means to infer that items with various proper-
ties are members of a particular class, means to define complex vocabularies:
equivalence and inclusion between entities, symmetric, inverse and transitive
properties, cardinality restrictions on properties, etc.

In this paper we present an extension of XQuery for querying and reasoning
with OWL-style ontologies. Such extension incorporates to XQuery mechanisms
for the traversal and reasoning with OWL statements. The main features of our
proposal can be summarized as follows:

– XQuery has been developed for querying XML documents, however, Web
data can be also represented by means of RDF(S) and OWL. Therefore,
XQuery should support the simultaneous querying of XML data by both
its structure and by its associated meta-data given in form of OWL-style
ontologies. The proposed extension allows to query XML/RDF(S)/OWL
documents and to obtain as output the same kind of documents.

? This work has been partially supported by the Spanish MICINN under grant
TIN2008-06622-C03-03.

1 http://www.w3.org.

Jesus Manuel Almendros-Jimenez 109

– In his current form, XQuery can be used for querying RDF(S) and OWL as-
suming a XML representation of RDF(S) and OWL. The extension proposed
in this paper is independent of the XML encoding of ontologies, working di-
rectly on the conceptual RDF(S) (and OWL) data model: triples.

– RDF(S) and OWL querying should be combined with reasoning. The pro-
posed extension is able to use semantic information inferred from RDF(S)
and OWL resources.

In addition, we will propose an implementation of the extension in Prolog.
Now, we will review the existing proposals of query languages for the Semantic
Web and we will present the advantages of our proposal.

A great effort has been made for defining query languages for RDF(S)/OWL
documents (see [6, 18] for surveys about this topic). The proposals mainly fall
on extensions of SQL-style syntax for handling the triple-based RDF structure.
In this line the most representative languages are SquishQL [25], SPARQL [14]
and RQL [20]. However, they are designed for RDF(S) and OWL querying in the
following sense. The syntax of the previous languages resemble SQL extensions
for expressing queries in which the database contains RDF triples. The answers to
such queries resemble to SQL answers (i.e. tables). In our proposal, the extension
of XQuery can express answers as XML documents, and, in particular, as RDF
documents, and therefore XML/RDF(S)/OWL documents work as input and as
output of the XQuery extension. It does not mean that the existing proposals
of RDF(S)/OWL query languages cannot produce XML documents as output
but they require the use of ad-hoc languages for formatting the output. This
is the case, for instance, of SPARQL which incorporates to the queries the so-
called SPARQL Results Document which defines the XML format of the queries.
In our case, we take advantage of the XQuery mechanisms for obtaining XML
documents as output.

There exist in the literature some proposals of extensions of XPath, XSLT
and XQuery languages for the handling of RDF(S) and OWL. XPath, XSLT were
also designed for XML, and therefore the proposals are XML-based approaches.
In this line the most representative languages are XQuery for RDF (‘the Syntac-
tic Web Approach”) [26], RDF Twig [38], RDFPath [30], RDFT [12] and XsRQL
[21]. Such languages assume the serialization (i.e. encoding, representation) of
RDF(S) and OWL in XML. However, such serialization is not standard. Our
proposal aims to amalgamate the SPARQL (SquishQL and RQL) design with
the XML-based approaches in the following sense. In our proposed extension of
XQuery we do not assume a fixed serialization of RDF(S) and OWL in XML,
rather than, we extend the XQuery syntax in order to admit the traversal of
RDF triples similarly to SPARQL-style query languages. However, we retain
the XQuery capability to generate XML documents as output. In addition, our
proposal extends the syntax of XQuery but XQuery can be still used for express-
ing queries against XML documents.Therefore, with our extension XQuery can
be used for expressing queries which combine input resources which can have
XML/RDF(S)/OWL format, any of them. As far as we know, our proposal is
the first one in which heterogeneous resources can be combined in a query.

110 Extending XQuery for Semantic Web Reasoning

Finally, there are some proposals of logic-based query languages for the Se-
mantic Web. This is the case of TRIPLE [28], N3QL [7] and XCerpt [27, 15].
They have their own syntax similar to deductive logic languages, and handle
RDF(S)/OWL (in the case of TRIPLE and N3QL) and XML/RDF (in the case
of XCerpt). Our proposal rather than defining a new query language (i.e. syntax
and semantics), aims to define an extension of an standarized query language
like XQuery. However, our work is close to logic-based query languages in the
following sense. We will propose a logic-based implementation of XQuery using
Prolog as host language.

The question now is, why Prolog? The existing XQuery implementations
either use functional programming (with Objective Caml as host language) or
Relational Database Management Systems (RDBMS). In the first case, the Galax
implementation [24] encodes XQuery into Objective Caml, in particular, encodes
XPath. Since XQuery is a functional language (with some extensions) the main
encoding is related with the type system for allowing XML documents and XPath
expressions to occur in a functional expression. With this aim an specific type
system for handling XML tags, the hierarchical structure of XML, and sequences
of XML items is required. In addition, XPath expressions can implemented from
this representation. In the second case, XQuery has been implemented by using
a RDBMS. It evolves in most of cases the encoding of XML documents by
means of relational tables and the encoding of XPath and XQuery. The most
relevant contribution in this research line is MonetDB/XQuery [8]. It consists of
the Pathfinder XQuery compiler [9] on top of the MonetDB RDBMS, although
Pathfinder can be deployed on top of any RDBMS. MonetDB/XQuery encodes
the XML tree structure in a relational table following a pre/post order traversal
of the tree (with some variant). XPath can be implemented from such table-based
representation. XQuery can be implemented by encoding flwor expressions into
the relational algebra, extended with the so-called loop-lifted staircase join.

The motivation for using a logic-based language for implementing XQuery
is that our extension of XQuery has to handle OWL-style ontologies. However,
RDF(S) and OWL should be handled not only as a database of triples, but rea-
soning with RDF(S) and OWL should be incorporated. The underlying model
of RDF(S) and OWL is suitable for reasoning about data and metadata. For
instance, class and property (i.e. concepts and roles) hierarchies can define com-
plex models in which a given individual can belong to more than one complex
class. Inferencing and reasoning is then required. Logic programming (and in
particular, Prolog) is a suitable framework for inferencing and reasoning. It has
been already noted by some authors. OWL has been combined and extended
with logic rules in some works. The closest to our approach aims to study the
intersection of OWL and logic programming, in other words, which fragment of
OWL can be expressed in logic programming. In this research line, some au-
thors [16, 32] have defined the so-called Description Logic Programming, which
is the intersection of logic programming and description logic. Such intersec-
tion can be defined by encoding OWL into logic programming. With this aim,
firstly, the corresponding fragment of OWL is represented by means of descrip-

Jesus Manuel Almendros-Jimenez 111

tion logic, after such fragment of the description logic can be encoded into a
fragment of First Order Logic (FOL); finally, the fragment of FOL can be en-
coded into logic programming. Several fragments of OWL/DL can be encoded
into logic programming, in particular, Volz [32] has encoded OWL subsets into
Datalog, Datalog(=), Datalog(=,IC) and Prolog(=,IC); where “=” means “with
equality”, and “IC” means “with Integrity constraints”. Some recent propos-
als have encoded description logic fragments into disjunctive Datalog [19], into
Datalog(IC,6=,not) (for OWL-Flight) [13], where “not” means “with negation”,
and into Prolog [23]. The most relevant implementations of OWL reasoners fully
based on logic programming are KAON2 [19, 22] and DLog [23]. Some other ap-
proaches are based on tableaux procedures (for instance, Racer [17], FaCT++
[31], Pellet [29], among others).

Using Prolog as host language for a XQuery implementation we will have
a fully logic based implementation in which accommodate the Semantic Web
extension. In previous works [4, 5] we have proposed a Prolog based implemen-
tation of the XQuery (and XPath) languages. In such proposal, XML documents
are translated into a Prolog program by means of facts and rules. Then, XQuery
query is executed by automatically encoding the query by means of Prolog rules,
and an specific goal is used for obtaining the answer. The rules of the encoding
of the query specializes the Prolog program representing the input XML docu-
ment. From the Prolog computed answers we are able to rebuild the output XML
document. Now, both XQuery constructs and RDF(S)/OWL reasoning can be
expressed by means of rules and therefore a Prolog based implementation of the
extension of XQuery can be easily defined.

With respect to the implementation of RDF(S) and OWL reasoning in Pro-
log, we have followed the quoted works about the intersection of logic program-
ming and description logic. However, we restrict our framework to the case of
a simple kind of OWL ontology, which can be encoded in Datalog [32], and
therefore possible to encode into Prolog. Therefore the handling of OWL in our
framework is restricted to the same conditions as in [32] for the encoding into
Datalog programs, and therefore decidability and complexity aspects of our ap-
proach are based on it. Since the main aim of our approach is to exhibit the
combination of querying of XML, RDF and OWL, the restriction to a simple
kind of ontology makes our work easier. However, it does not affect substantially
to the relevance of the approach once interesting examples can be handled in our
query language. We believe that more complex ontologies which can be encoded
into extensions of Datalog could be also integrated in our approach following the
same ideas presented here. Such extensions are considered as future work.

We would like to remark that our work also continues a previous work about
XQuery. In [1], we have studied how to define an extension of XQuery for query-
ing RDF documents. Similarly to the current proposal, such extension allows to
query XML and RDF resources with XQuery, and queries can take as input XML
and RDF documents, producing also as output both kind of documents. The pro-
posed RDF extension of XQuery uses the for construction of XQuery for travers-
ing RDF triples. In addition, our RDF extension of XQuery is equipped with

112 Extending XQuery for Semantic Web Reasoning

Fig. 1. TBox and ABox Formulas (see [32])

C v D (rdfs:subClassOf) E ≡ F (owl:equivalentClass)
P v Q (rdfs:subPropertyOf) P ≡ Q (owl:equivalentProperty)

P ≡ Q− (owl:inverseOf) P ≡ P− (owl:SymmetricProperty)

P+ v P (owl:TransitiveProperty) > v ∀P−.D (rdfs:domain)
> v ∀P.D (rdfs:range) P (a, b) (property fillers)
D(a) (individual assertions)

built-in boolean operators for RDF/RDFS properties like rdf:type, rdfs:domain,
rdfs:range, rdfs:subClassOf, rdfs:subPropertyOf, and so on. Such built-in boolean
operators can be used for reasoning about RDF, that is, for using the RDFS en-
tailment relationship in the queries. In addition, we have studied a Prolog based
implementation of this extension.

Finally, we have tested the proposal of this paper by means of a prototype
implemented in SWI-Prolog. The prototype consists of a XQuery implementa-
tion and a RDF(S)/OWL reasoning module. The XQuery implementation is
described in [2] and the RDF(S)/OWL reasoning module is described in [3].
The proposal of this paper amalgamates both implementations in a XQuery/
RDF(S)/ OWL querying/reasoning tool. The XQuery implementation can be
downloaded from http://indalog.ual.es/XQuery and the RDF(S)/OWL mod-
ule from http://indalog.ual.es/OProlog.

The structure of the paper is as follows. Section 2 will present the kind of
ontologies we consider in our framework. Section 3 will describe the extension
of XQuery for RDF(S)/OWL. Section 4 will show the implementation in Prolog
and, finally, Section 5 will conclude and present future work.

2 Ontology Representation

In this section we will show which kind of ontologies will be handled in our
framework. We will restrict ourselves to the case of a subset of DL expressible
in Datalog [32], and therefore in Prolog. Such kind of DL ontologies contains
a TBox and a ABox of axioms whose syntax is shown in Figure 1. In Figure
1, E, F are class descriptions of type E (see Figure 2), C is a class description
of left-hand side type (type L, see Figure 2), and D is a class description of
right-hand side type (type R, see Figure 2), P , Q are property names and a, b
are individual names.

Basically, the proposed subset of DL restricts the form of class descriptions
in right and left hand sides of subclass and class equivalence axioms, and in
individual assertions. Such restriction is required to be encoded by means of
Datalog rules. Roughly speaking, the universal quantification is only allowed in
the right hand side of DL formulas, which corresponds in the encoding to the
occurrences of the same quantifier in the left hand side (i.e. head) of rules. The
same kind of reasoning can be used for explaining why existential quantifiers
can only occur in left hand sides of DL formulas. Union formulas are required to
appear in left hand sides which corresponds with the definition of two or more
rules in the encoding. The details about the encoding can be found in Section
4.1. Let us see now an example of a such DL ontology (see Figure 3).

The ontology of Figure 3 describes, in the TBox, meta-data in which the
elements of Person are elements of Man or elements of Woman (cases (1) and

Jesus Manuel Almendros-Jimenez 113

Fig. 2. Allowed Types (see [32])

type E
A | atomic class
E1 u E2 | owl:intersectionOf
∃P.{o} | owl:hasValue

type L
A | atomic class
C1 u C2 | owl:intersectionOf
∃P.{o} | owl:hasValue
C1 t C2 | owl:unionOf
∃P.C | owl:someValuesFrom

type R
A | atomic class
D1 uD2 | owl:intersectionOf
∃P.{o} | owl:hasValue
∀P.D | owl:allValuesFrom

Fig. 3. An Example of Ontology
TBox
(1) Man v Person (2) Woman v Person
(3) Person u ∃author of.Manuscript v Writer (4) Paper t Book v Manuscript
(5) Book u ∃topic.{“XML”} v XMLbook (6) Manuscript u ∃reviewed by.Person v Reviewed
(7) Manuscript v ∀rating.Score (8) Manuscript v ∀topic.Topic
(9) author of ≡ writes (10) average rating v rating

(11) authored by ≡ author of− (12) > v ∀ author of.Manuscript

(13) > v ∀ author of−.Person (14) > v ∀ reviewed by.Person

(15) > v ∀ reviewed by−.Manuscript
ABox
(1) Man(“Abiteboul”)
(2) Man(“Buneman”) (3) Man(“Suciu”)
(4) Book(“Data on the Web”) (5) Book(“XML in Scottland”)
(6) Paper(“Growing XQuery”) (7) Person(“Anonymous”)
(8) author of(“Abiteboul”,“Data on the Web”) (9) authored by(“Data on the Web”,“Buneman”)
(10) author of(“Suciu”,“Data on the Web”) (11) author of(“Buneman”,“XML in Scottland”)
(12) writes(“Simeon”,“Growing XQuery”) (13) reviewed by(“Data on the Web”,“Anonymous”)
(14) reviewed by(“Growing”,“Almendros”) (15) average rating(“Data on the Web”,“good”)
(16) rating(“XML in Scottland”,“excellent”) (17) average rating(“Growing XQuery”,“good”)
(18) topic(“Data on the Web”,“XML”) (19) topic(“Data on the Web”,“Web”)
(20) topic(“XML in Scottland”,“XML”)

(2)); and the elements of Paper and Book are elements of Manuscript (case (4)).
In addition, a Writer is a Person who is the author of a Manuscript (case (3)),
and the class Reviewed contains the elements of Manuscript reviewed by a Person
(case (6)). Moreover, the XMLBook class contains the elements of Manuscript
which have as topic the value “XML” (case (5)). The classes Score and Topic
contain, respectively, the values of the properties rating and topic associated to
Manuscript (cases (7) and (8)). The property average rating is a subproperty of
rating (case (10)). The property writes is equivalent to author of (case (9)), and
authored by is the inverse property of author of (case (11)). Finally, the property
author of, and conversely, reviewed by, has as domain a Person and as range a
Manuscript (cases (12)-(15)).

The ABox describes data about two elements of Book: “Data on the Web”
and “XML in Scottland” and a Paper: “Growing XQuery”. It describes the
author of and authored by relationships for the elements of Book and the writes
relation for the elements of Paper. In addition, the elements of Book and Paper
have been reviewed and rated, and they are described by means of a topic.

3 Extended XQuery

Now, we would like to show how to query an OWL-style ontology by means of
XQuery. The grammar of the extended XQuery for querying XML, RDF(S) and
OWL is described in Figure 4, where “name : resource” assigns name spaces to
URL resources; “value” can be URLs / URIs, strings, numbers or XML trees;
“tag” elements are XML labels; “att” elements are attribute names; “doc” ele-
ments are URLs; and finally, Op elements can be selected from the usual binary

114 Extending XQuery for Semantic Web Reasoning

Fig. 4. Extension of the core of XQuery

xquery:= namespace name : resource in xquery | flwr | value
| dexpr | < tag att = vexpr, . . . , att = vexpr >’{’xquery, . . . , xquery’}’< /tag > .

dexpr:= document(doc) ’/’ expr. rdfdoc := rdfdocument(doc).
owldoc := owldocument(doc). tripledoc:= rdfdoc | owldoc.
flwr:= for $var in vexpr [where constraint] return xqvar

| for ($var,$var,$var) in tripledoc [where constraint] return xqvar
| let $var := vexpr [where constraint] return xqvar.

xqvar:= vexpr | < tag att = vexpr, . . . , att = vexpr >’{’xqvar, . . . , xqvar’}’< /tag >
| flwr | value.

vexpr:= $var | $var ’/’ expr | dexpr | value. expr:= text() | @att | tag | tag[expr] | ’/’ expr.
constraint := Op(vexpr, . . . , vexpr) | constraint ’or’ constraint | constraint ’and’ constraint.

operators: <=, >=, <, >, =, =/=, and from OWL/RDF(S) built-in boolean
operators. Basically, the XQuery language has been extended as follows:

– The namespace statement has been added allowing the declaration of URIs.
– A new kind of for expression has been added for traversing triples from a

RDF document whose location is specified by means of the rdfdocument
primitive; analogously, a new kind of for expression has been added for
traversing triples from an OWL document whose location is specified by
means of the owldocument primitive.

– In addition, the where construction includes boolean conditions of the form
Op (vexpr, . . . , vexpr) which can be used for checking RDF(S)/OWL prop-
erties. The boolean operator Op can be one of rdf:type, rdfs:subClassOf,
owl:equivalentClass, etc.

The above XQuery is a typed language in which there are two kinds of variables:
those variables used in XPath expressions, and those used in RDF(S)/OWL
triples. However they can be compared by means of boolean expressions, and
they can be used together for the construction of the answer. We have consid-
ered a subset of the XQuery language in which some other built-in constructions
for XPath can be added, and also it can be enriched with other XQuery con-
structions, following the W3C recommendations [36]. However, with this small
extension of the core of XQuery we are able to express interesting queries against
XML, RDF and OWL documents.

Now, we would like to show an example of query in order to give us an idea
about how the proposed extension of XQuery is suitable for OWL querying and
reasoning. The query we like to show is “Retrieve the authors of manuscripts”.
It can be expressed in our proposed extension of XQuery as follows:

< list > {
for ($Author,$Property,$Manuscript) in owldocument(“ex.owl”) return
for ($Manuscript,$Property2,$Type) in owldocument(“ex.owl”)
where rdfs:subPropertyOf($Property,author of)
and $Property2=rdf:typeOf and rdfs:subClassOf($Type,manuscript) return
<author>{ $Author } </author >
} </ list >

In the example we can see the following elements:

– OWL triples are traversed by means of the new for expression of XQuery.
Each triple is described by means of three variables (prefixed with ’$’ as usual

Jesus Manuel Almendros-Jimenez 115

in XQuery). Given that we have to query two properties, that is, rdf:typeOf
and author of, we have to combine two for expressions.

– The where expression has to check whether the first property, that is, $Prop-
erty, has to be a subproperty of author of, and the second property has to be
rdf:typeOf. Let us remark that we could write $Property=author of instead
of rdfs:subPropertyOf($Property,author of) but in such a case only triples
“author of” would be considered, and not subproperties of “author of”.

– The type of the manuscript should be “Manuscript”, an it is checked by
means of rdfs:subClassOf($Type,manuscript).

– Finally, the output of the query is shown by means of XML in which each
element (i.e. the author) is labeled by means of “author”.

In this case the answer would be:

<list>
<author>Abiteboul</author>
<author>Suciu</author>
<author>Buneman</author>
<author>Buneman</author>
<author>Simeon</author>
</list>

Let us remark that our proposed query language is able to reason with OWL,
that is, it uses that Book and Paper are subclasses of Manuscript and the rela-
tionship author of is equivalent to writes.

4 Prolog Implementation

In this section, we will propose the implementation of the extension of XQuery in
Prolog. Firstly, we will describe the encoding of the subset of OWL into Prolog.
Secondy, we will show the encoding of XQuery in Prolog. The encoding of the
extension of XQuery will use the encoding of XPath studied in [5], and the
encoding of XQuery studied in [4].

4.1 Ontology Encoding
The encoding of the ontologies defined in Section 2 consists of Prolog facts and
rules. Facts are used for representing a given ontology instance. Rules are used
for representing the ontology reasoning.
1. Ontology Instance Encoding: The encoding introduces Prolog facts about
a predicate called triple. There is one fact for each element of the ontology in-
stance. The encoding of DL formulas is as follows. Class and property names are
represented by means of Prolog atoms. Quantified formulas are represented by
means of Prolog terms, that is, ∀P.C, ∃P.C and ∃P.{o} are represented by means
of Prolog term forall(p, c), exists(p, c) and hasvalue(p, o), respectively. Unions
(i.e. CtD) and intersections (i.e. CuD) are also represented as union(c, d) and
inter(c, d), respectively. Inverse and transitivity properties (i.e. P− and P+) are
represented as Prolog terms: inv(P) and trans(P). Finally OWL relationships:
rdfs:subClassOf, rdf:type, etc are represented as atoms in Prolog. In the running
example, we will have the facts of Figure 5.
2. Encoding for OWL Reasoning: Now, the second element of the encod-
ing consists of Prolog rules defining how to reason about OWL properties. Such

116 Extending XQuery for Semantic Web Reasoning

Fig. 5. Representation of Ontology instances
triple(man,rdfs:subClassOf,person).
triple(woman,rdfs:subClassOf,person).
triple(inter(person,exists(author of,manuscript)),rdfs:subClassOf,writer).
triple(union(paper,book),rdfs:subClassOf,manuscript).
triple(inter(book,exists(topic,”XML”)),rdfs:subClassOf,xmlbook).
triple(inter(manuscript,exists(reviewed by,person)),rdfs:subClassOf,reviewed).
triple(manuscript,rdfs:subClassOf,forall(rating,score)).
triple(manuscript,rdfs:subClassOf,forall(topic,topic)).
triple(author of,owl:equivalentProperty,writes).
triple(authored by,owl:equivalentProperty,inv(author of)).
triple(average rating,rdfs:subPropertyOf,rating).
triple(thing,rdfs:subClassOf, forall(author of, manuscript)).
triple(thing,rdfs:subClassOf, forall(inv(author of), person)).
triple(thing, rdfs:subClassOf, forall(reviewed by,person)).
triple(thing, rdfs:subClassOf, forall(inv(reviewed by),manuscript)).
triple(“Abiteboul”,rdf:type,man).
triple(“Buneman”,rdf:type,man).
triple(“Suciu”,rdf:type,man).
triple(“Data on the Web”,rdf:type,book).
triple(“XML in Scottland”,rdf:type,book).
triple(“Growing XQuery”,rdf:type,paper).
triple(“Anonymous”,rdf:type,person).
triple(“Abiteboul”,author of,“Data on the Web”).
triple(“Data on the Web”,authored by,“Buneman”).
...

Fig. 6. Triple-based encoding of DL in FOL

folt(C v D) = ∀x.foltx(C)→ foltx(D)
folt(E ≡ F) = ∀x.foltx(E)↔ foltx(F)
folt(P v Q) = ∀x, y.triple(x, p, y)→ triple(x, q, y)
folt(P ≡ Q) = ∀x, y.triple(x, p, y)↔ triple(x, q, y)

folt(P ≡ Q−) = ∀x, y.triple(x, p, y)↔ triple(y, q, x)

folt(P ≡ P−) = ∀x, y.triple(x, p, y)↔ triple(y, p, x)

folt(P+ v P) = ∀x, y, z.triple(x, p, y) ∧ triple(y, p, z)
→ triple(x, p, z)

folt(> v ∀P.C) = ∀x.foltx(∀P.C)

folt(> v ∀P−.C) = ∀x.foltx(∀P−.C)

foltx(A) = triple(x, rdf : type, A)
foltx(C uD) = foltx(C) ∧ foltx(D)
foltx(C tD) = foltx(C) ∨ foltx(D)
foltx(∃P.C) = ∃y.triple(x, p, y) ∧ folty(C)

foltx(∀P.C) = ∀y.triple(x, p, y)→ folty(C)

foltx(∀P−.C) = ∀y.triple(y, p, x)→ folty(C)

foltx(∃P.{o}) = ∃y.triple(x, p, y) ∧ y = o

rules express the semantic information deduced from a given ontology instance.
Such rules infer new relationships between the data in the form of triples. There-
fore new Prolog terms make true the predicate triple. For instance, new triples
for rdf:type are defined from the rdfs:subClassOf and previously inferred rdf:type
relationships. In order to define the encoding, we have to follow the encoding
of DL into FOL, which is described in Figure 6. Such encoding is based on a
representation by means of triples of the DL formulas. In such encoding, class
and property names are considered as constants in FOL. The encoding of OWL
reasoning by means of rules is shown in Figure 7. The rules from Eq1 to Eq3
handle inference about the reflexive, symmetric and transitive relationship of
equivalence. The rules from Sub1 to Sub14 handle inference about subclasses.
Cases from Sub3 to Sub7 define new subclass relationships from the already
defined subclass relationships and union and intersection operators. Cases from
Sub8 to Sub13 define new subclass relationships for complex formulas. The
rules Type1 to Type8 infer type relationships using subclass and equivalence
relationships. The most relevant are the cases from Type5 to Type7 defining
the meaning of complex formulas with regard to individuals. Finally, the rules
Prop1 to Prop10 infer relationships about roles. The most relevant are the

Jesus Manuel Almendros-Jimenez 117

Fig. 7. Rules for RDF(S)/OWL Reasoning

Rule Name Prolog Rules
(Eq1) triple(E, owl : equivalentClass, E) : −class(E).
(Eq2) triple(E, owl : equivalentClass, G) : −triple(E, owl : equivalentClass, F),

triple(F, owl : equivalentClass, G).
(Eq3) triple(E, owl : equivalentClass, F) : −triple(F, owl : equivalentClass, E).
(Sub1) triple(E, rdfs : subClassOf , F) : −triple(E, owl : equivalentClass, F).
(Sub2) triple(C, rdfs : subClassOf , E) : −triple(C, rdfs : subClassOf , D),

triple(D, rdfs : subClassOf , E).
(Sub3-I) triple(D, rdfs : subClassOf , E) : −triple(union(C, D), rdfs : subClassOf , E).
(Sub3-II) triple(C, rdfs : subClassOf , E) : −triple(union(C, D), rdfs : subClassOf , E).
(Sub4-I) triple(E, rdfs : subClassOf , C) : −triple(E, rdfs : subClassOf , inter(C, D)).
(Sub4-II) triple(E, rdfs : subClassOf , D) : −triple(E, rdfs : subClassOf , inter(C, D)).
(Sub5) triple(inter(E, C2), rdfs : subClassOf , D) : −

triple(inter(C1, C2), rdfs : subClassOf , D),
triple(E, rdfs : subClassOf , C1).

(Sub6) triple(union(E, C2), rdfs : subClassOf , D) : −
triple(union(C1, C2), rdfs : subClassOf , D),
triple(E, rdfs : subClassOf , C1).

(Sub7) triple(C, rdfs : subClassOf , inter(E, D2)) : −
triple(C, rdfs : subClassOf , inter(D1, D2)),
triple(D1, rdfs : subClassOf , E).

(Sub8) triple(hasvalue(Q, O), rdfs : subClassOf , D) : −triple(Q, owl : subPropertyOf , P),
triple(hasvalue(P, O), rdfs : subClassOf , D).

(Sub9) triple(exists(Q, C), rdfs : subClassOf , D) : −triple(Q, owl : subPropertyOf , P),
triple(exists(P, C), rdfs : subClassOf , D).

(Sub10) triple(exists(P, E), rdfs : subClassOf , D) : −triple(E, rdfs : subClassOf , C),
triple(exists(P, C), rdfs : subClassOf , D).

(Sub11) triple(C, rdfs : subClassOf , hasvalue(Q, O)) : −triple(P, owl : subPropertyOf , Q),
triple(C, rdfs : subClassOf , hasvalue(P, O)).

(Sub12) triple(C, rdfs : subClassOf , forall(Q, D)) : −triple(Q, owl : subPropertyOf , P),
triple(C, rdfs : subClassOf , forall(P, D)).

(Sub13) triple(C, rdfs : subClassOf , forall(P, E)) : −triple(D, rdfs : subClassOf , E),
triple(C, rdfs : subClassOf , forall(P, D)).

(Sub14) triple(C, owl : subClassOf , owl : thing) : −class(C).
(Type1) triple(A, rdf : type, D) : −triple(C, rdfs : subClassOf , D), triple(A, rdf : type, C).
(Type2) triple(A, rdf : type, E) : −triple(inter(C, D), rdfs : subClassOf , E),

triple(A, rdf : type, C), triple(A, rdf : type, D).
(Type3) triple(A, rdf : type, E) : −triple(union(C, D), owl : subClassOf , E),

triple(A, rdf : type, C).
(Type4-I) triple(A, rdf : type, C) : −triple(A, rdf : type, inter(C, D)).
(Type4-II) triple(A, rdf : type, D) : −triple(A, rdf : type, inter(C, D)).
(Type5) triple(A, rdf : type, exists(P, C)) : −triple(B, rdf : type, C), triple(A, P, B).
(Type6) triple(A, rdf : type, hasvalue(P, O)) : −triple(A, P, O), individual(O).
(Type7) triple(B, rdf : type, D) : −triple(A, P, B), triple(A, rdf : type, forall(P, D)).
(Type8) triple(A, rdf : type, owl : thing) : −individual(A).
(Prop1) triple(P, owl : equivalentProperty, P) : −property(P).
(Prop2) triple(P, owl : equivalentProperty, R) : −triple(P, owl : equivalentProperty, Q),

triple(Q, owl : equivalentProperty, R).
(Prop3) triple(P, owl : equivalentProperty, Q) : −triple(Q, owl : equivalentProperty, P).
(Prop4) triple(P, rdfs : subPropertyOf , Q) : −triple(P, owl : equivalentProperty, Q).
(Prop5) triple(A, Q, B) : −triple(P, rdfs : subPropertyOf , Q), triple(A, P, B).
(Prop6) triple(B, Q, A) : −triple(P, rdfs : subPropertyOf , inv(Q)),triple(A, P, B).
(Prop7) triple(A, P, C) : −triple(trans(P), rdfs : subPropertyOf , P),

triple(A, P, B), triple(B, P, C).
(Prop7) triple(A, P, O) : −triple(A, rdf : type, hasvalue(P, O)).
(Prop8) triple(P, rdfs : subPropertyOf , inv(R)) : −triple(P, rdfs : subPropertyOf , inv(Q)),

triple(Q, rdfs : subPropertyOf , R).
(Prop9) triple(inv(R), rdfs : subPropertyOf , P) : −triple(inv(Q), rdfs : subPropertyOf , P),

triple(R, rdfs : subPropertyOf , Q).
(Prop10) triple(trans(R), rdfs : subPropertyOf , P) : −triple(trans(Q), rdfs : subPropertyOf , P),

triple(R, rdfs : subPropertyOf , Q).

cases Prop6 about the inverse of a property and the case Prop7 about a tran-
sitive property. The rules of Figure 7 are the basis of the RDF(S)/OWL reason-

118 Extending XQuery for Semantic Web Reasoning

Fig. 8. A Subset of the Core XQuery
xquery:= namespace name : resource in xquery | flwr | value

| < tag att = vexpr, . . . , att = vexpr >’{’xquery, . . . , xquery’}’< /tag >.
owldoc := owldocument(doc). vexpr:= $var | value.
flwr:= for ($var,$var,$var) in owldoc [where constraint] return xqvar.
xqvar:= vexpr | < tag att = vexpr, . . . , att = vexpr >’{’xqvar, . . . , xqvar’}’< /tag >

| flwr | value.
constraint := Op(vexpr, . . . , vexpr) | constraint ’or’ constraint | constraint ’and’ constraint.

ning module which has been implemented in SWI-Prolog and can be downloaded
from http://indalog.ual.es/OProlog.

The proposed encoding allows to use Prolog as inference engine for OWL.
For instance, the triple triple(“Data on the Web”, rdf:type, reviewed) is deduced
from the following facts:

triple(“Data on the Web”,rdf:type,book). triple(book,rdfs:subClassOf,manuscript).
triple(“Data on the Web”,reviewed by,“Anonymous”). triple(“Anonymous”,rdf:type,person).
triple(inter(manuscript,exists(reviewed by,person)), rdfs:subClassOf,reviewed).

and the rules (Type1), (Type2) and (Type5).
Now, we would like to show how the extended XQuery language can be

encoded in Prolog, in such a way that the queries formulated in our proposed
query language can be executed under Prolog. In order to make the paper self-
contained we will restrict to a fragment of the extended XQuery for querying
and reasoning with OWL triples and for generating XML documents as output.
The encoding of the full version of extension of XQuery has to combine in a
uniform way the encoding of [4] for XML querying and the encoding of [1] for
RDF querying and reasoning. Now, the fragment to be encoded will consist in
the grammar of the Figure 8, where Op can be one of the OWL built-in boolean
operators. The reader can check that such fragment has been used in the example
of the previous section. Now, a crucial point is the encoding of XML documents
in Prolog. Such encoding will allow the encoding of the output of the query.
4.2 Encoding of XML Documents
In this section we will show an example of encoding of XML documents. A for-
mal and complete definition can be found in [5]. Let us consider the following
document called “books.xml”:
<books>
<book year=“2003”>

<author>Abiteboul</author>
<author>Buneman</author>
<author>Suciu</author>
<title>Data on the Web</title>

<review>A fine book.</review>
</book>
<book year=“2002”>

<author>Buneman</author>

<title>XML in Scottland</title>
<review>The best ever!</review>

</book> </books>

Now, it can be represented by means of a Prolog program as in Figure 9. In our
XML encoding we can distinguish the so-called schema rules which define the
structure of the XML document, and facts which store the leaves of the XML
tree (and therefore the values of the XML document). Each tag is translated into
a predicate name: books, book , etc. Each predicate has four arguments. The first
one, used for representing the XML document structure, is encapsulated into a
function symbol with the same name as the tag adding the suffix type. Therefore,

Jesus Manuel Almendros-Jimenez 119

Fig. 9. Encoding of XML documents
Rules (Schema):
—————————————
books(bookstype(Book, []), NBooks,1,Doc) :-

book(Book, [NBook|NBooks],2,Doc).
book(booktype(Author, Title, Review,

[year=Year]),NBook ,2,Doc) :-
author(Author, [NAu|NBook],3,Doc),
title(Title, [NTitle|NBook],3,Doc),
review(Review, [NRe|NBook],3,Doc),
year(Year, NBook,3,Doc).

review(reviewtype(Un,Em,[]),NReview,3,Doc):-
unlabeled(Un,[NUn|NReview],4,Doc),
em(Em,[NEm|NReview],4,Doc).

review(reviewtype(Em,[]),NReview,3,Doc):-
em(Em,[NEm|NReview],5,Doc).

em(emtype(Unlabeled,Em,[]),NEms,5,Doc) :-
unlabeled(Unlabeled,[NUn|NEms],6,Doc),
em(Em, [NEm|NEms],6,Doc).

Facts (Document):
——————————————
year(’2003’, [1, 1], 3,“books.xml”).
author(’Abiteboul’, [1, 1, 1], 3,“books.xml”).
author(’Buneman’, [2,1, 1], 3,“books.xml”).
author(’Suciu’, [3,1,1], 3,“books.xml”).
title(’Data on the Web’, [4, 1, 1], 3,“books.xml”).
unlabeled(’A’, [1, 5, 1, 1], 4,“books.xml”).
em(’fine’, [2, 5, 1, 1], 4,“books.xml”).
unlabeled(’book.’, [3, 5, 1, 1], 4,“books.xml”).
year(’2002’, [2, 1], 3,“books.xml”).
author(’Buneman’, [1, 2, 1], 3,“books.xml”).
title(’XML in Scottland’, [2, 2, 1], 3,“books.xml”).
unlabeled(’The’, [1, 1, 3, 2, 1], 6,“books.xml”).
em(’best’, [2, 1, 3, 2, 1], 6,“books.xml”).
unlabeled(’ever!’, [3, 1, 3, 2, 1], 6,“books.xml”).

we have bookstype, booktype, etc. The second argument is used for numbering
each node (a list of natural numbers identifying each node); the third argument of
the predicates is used for numbering each type (a natural number identifying each
type); and the last argument represents the document name. The key element
of our encoding is to be able to recover the original XML document from the
set of rules and facts. The encoding has the following peculiarities. In order to
specify the order of an XML document in a fact based representation, each fact
is numbered (from left to right and by levels in the XML tree). In addition, the
hierarchical structure of the XML records is described by means of the identifier
of each fact: the length of the numbers of the children is larger than the number
of the parent. The type number makes possible to map schema rules with facts.

4.3 Encoding of XQuery

Now, we will show how to encode the proposed extension of XQuery. We can
summarize the encoding as follows. The encoding combines the schema rules of
the output document with rules which call the triple predicates. A new predicate
is defined called join. The join predicate calls to triple predicate in order to make
the join of the triples. Now, let us see an example of query in our proposal and
the corresponding encoding. Let us suppose the query “Retrieve the authors of
manuscripts” which is defined in XQuery as follows:
< list > {
for ($Author,$Property,$Manuscript) in owldocument(“ex.owl”) return
for ($Manuscript,$Property2,$Type) in owldocument(“ex.owl”)
where rdfs:subPropertyOf($Property,author of)
and $Property2=rdf:typeOf and rdfs:subClassOf($Type,manuscript) return
<author>{ $Author } </author >
} </ list >

Now, the encoding is as follows:
(1) list(listtype(Author,[]),NList,1,Doc):-author(Author,[NAuthor|NList],2,Doc).
(2) author(authortype(Author,[]),NAuthor,2,“result.xml”):-join(Author,NAuthor).
(3) join(Author,[NAuthor,[1]]):-triple(Author,Property,Manuscript,NAuthor,“ex.owl”),

triple(Manuscript,Property2,Type, ,“ex.owl”),
triple(Property,rdfs:subPropertyOf,author of, ,“ex.owl”),
eq(Property2,rdf:typeOf),
triple(Type,rdfs:subClassOf,manuscript, ,“ex.owl”).

120 Extending XQuery for Semantic Web Reasoning

The encoding takes into account the following elements.

– The return expression generates an XML document, and therefore the en-
coding includes the schema rules of the output document. In the previous
example, this is the case of rule (1), describing that the list label includes
elements labeled as author.

– The rules (2) and (3) are the main rules of the encoding, in which the
elements of the output document are computed by means of the so-called
join predicate.

– The join predicate is the responsible of the encoding of the for and where
constructs. Each for associated to an OWL triple is encoded by means of a
call to the triple predicate with variables.

– Now, the where expression is encoded as follows. In the case of binary
operators like “=”, “>”, “>=”, etc, they are encoded by means of Prolog
predicates, eq, ge, geq, etc. In the case of built-in boolean operators of the
kind rdf:typeOf, rdfs:subClassOf, etc, a call to the triple predicate is achieved.

– Finally, we have to incorporate to the triple predicate two new arguments in
facts and rules. The first new argument is a list of natural numbers identi-
fying the triple. Each element of the TBox and the ABox is identified by
means of [1], [2], etc. The triples inferred from the TBox and the ABox can
be identified by appending the identifiers of the triples used for the infer-
ence. Therefore, in general, each triple can be identified as a list of natural
numbers (for instance, [1, 4, 5]). Triple identifiers are required for represent-
ing the order of the elements of the output XML document, accordding to
our encoding. The second new argument is the name of the document which
stores the triple.

Now, the Prolog goal ?-author(Author,Node,Type,Doc) has the following ans-
wers:
Author=authortype(”Abiteboul”,[]),Node=[...],Type=2,Doc=“result.xml”
Author=authortype(”Suciu”,[]),Node=[...],Type=2,Doc=“result.xml”
Author=authortype(”Buneman”,[]),Node=[...],Type=2,Doc=“result.xml”
Author=authortype(”Buneman”,[]),Node=[...],Type=2,Doc=“result.xml”
Author=authortype(”Simeon”,[]),Node=[...],Type=2,Doc=“result.xml”

From the schema rule (rule (1)), and these computed answers, we can rebuild
the output XML document:
<list>
<author>Abiteboul</author>
<author>Suciu</author>
<author>Buneman</author>
<author>Buneman</author>
<author>Simeon</author>
</list>

Finally, we would like to show the query “Retrieve the equivalent properties
of the ontology”, in which we can extract from the input ontology some proper-
ties and to represent the output of the query as an ontology:
< owl:Ontology > {
for ($Object1,$Property,$Object2) in owldocument(“ex.owl”)
where $Property=owl:equivalentProperty return
<owl:ObjectProperty rdf:about=$Object1/>

Jesus Manuel Almendros-Jimenez 121

<owl:equivalentProperty rdf:resource=$Object2 />
</owl:ObjectProperty>
} </ owl:Ontology >

Now, the goal is ?− owlObjectProperty(OwlObjectProperty ,Node,Type,Doc),
and it is encoded as follows:
owlOntology(owlOntologytype(OwlObjectProp,[]),Nowl,1,Doc):-

owlObjectProperty(OwlObjectProp,[Nowlp|Nowl],2,Doc).
owlObjectProperty(owlObjectPropertytype(equivalentPropertytype(“”,[rdfresource=Object2]),

[rdfabout=Object1]),Nowlp,2,“result.xml”):-
join(Object1,Object2,Nowlp).

join(OwlOntology,[NTriple,[1]]):-
triple(Object1,Property,Object2,NTriple,“ex.owl”),
eq(Property,owl:equivalentProperty).

5 Conclusions and Future Work
In this paper we have studied an extension of XQuery for the querying and
reasoning with OWL style ontologies. Such extension combines RDF(S)/OWL
and XML documents as input/output documents. By means of built-in boolean
operators XQuery can be equipped with inference mechanism for OWL proper-
ties. We have also studied how to implement/encode such language in Prolog.
We have developed an implementation of the XQuery language and a RDF(S) /
OWL reasoning which can be downloaded from our Web site: http://indalog.
ual.es/XQuery and http://indalog.ual.es/OProlog. In order to avoid the
looping of the rules (for instance, the rule (Sub2) loops in a Prolog interpreter)
a bottom-up interpreter in Prolog has been implemented. In addition, the rules
of Figure 7 satisfies a nice property. Applying the rules in a bottom-up fashion
they compute a finite set of OWL relationships, that is, a finite set of triples.
Therefore, the reasoning in the selected fragment of OWL is finite. It does not
hold in general in description logic. Therefore, the implemented RDF(S)/OWL
reasoner actually can be used for the pre-processing OWL documents in order
to be used in the solving of XQuery queries. It improves the efficience of the
proposed language. The implementation of the XQuery is described in a recent
paper [2], and the implementation of the RDF(S)/OWL reasoner is described in
[1]. As future work, we would like to extend our work with the handling of more
complex ontologies in the line of [13, 19, 32]. In addition, we are now developing
an implementation of the proposed extension of XQuery, but using the available
extension mechanisms of XQuery. We believe that it can be significant for the
widespread acceptance of the approach.

References

1. J. M. Almendros-Jiménez. An RDF Query Language based on Logic Programming.
Electronic Notes in Theoretical Computer Science, 200(3), 2008.

2. J. M. Almendros-Jiménez. An Encoding of XQuery in Prolog. In Proceedings of
the Sixth International XML Database Symposium XSym’09, LNCS 5679, pages
145–155. Springer, 2009.

3. J. M. Almendros-Jiménez. A Query Language for OWL based on Logic Program-
ming. In 5th Int’l Workshop on Automated Specification and Verification of Web
Systems, WWv’09, pages 69–84, 2009.

122 Extending XQuery for Semantic Web Reasoning

4. J. M. Almendros-Jiménez, A. Becerra-Terón, and F. J. Enciso-Baños. Integrating
XQuery and Logic Programming. In Proceedings of INAP-WLP’07, pages 117–135,
Heidelberg, Germany, 2009. Springer LNAI, 5437.

5. J. M. Almendros-Jiménez, A. Becerra-Terón, and Francisco J. Enciso-Baños.
Querying XML documents in logic programming. Journal of Theory and Prac-
tice of Logic Programming, 8(3):323–361, 2008.

6. James Bailey, Franois Bry, Tim Furche, and Sebastian Schaffert. Web and Semantic
Web Query Languages: A Survey. In Proc. of Reasoning Web, First International
Summer School, pages 35–133, Heidelberg, Germany, 2005. Springer LNCS 3564.

7. Tim Berners-Lee. N3QL-RDF Data Query Language. Technical report, Online
only, 2004.

8. P. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittinger, and J. Teubner.
MonetDB/XQuery: a fast XQuery processor powered by a relational engine. In
Proceedings of the 2006 ACM SIGMOD international conference on Management
of data, pages 479–490. ACM New York, NY, USA, 2006.

9. Peter A. Boncz, Torsten Grust, Maurice van Keulen, Stefan Manegold, Jan Rit-
tinger, and Jens Teubner. Pathfinder: XQuery - The Relational Way. In Proc.
of the International Conference on Very Large Databases, pages 1322–1325, New
York, USA, 2005. ACM Press.

10. Alex Borgida. On the relative expressiveness of Description Logics and Predicate
Logics. Artificial Intelligence, 82(1-2):353–367, 1996.

11. D. Chamberlin, Denise Draper, Mary Fernández, Michael Kay, Jonathan Robie,
Michael Rys, Jerome Simeon, Jim Tivy, and Philip Wadler. XQuery from the
Experts. Addison Wesley, Boston, USA, 2004.

12. I. Davis. RDF Template Language 1.0. Technical report, Online only, September
2003.

13. Jos de Bruijn, Rubén Lara, Axel Polleres, and Dieter Fensel. OWL DL vs. OWL
Flight: conceptual modeling and reasoning for the semantic Web. In WWW ’05:
Proceedings of the 14th International Conference on World Wide Web, pages 623–
632, New York, NY, USA, 2005. ACM Press.

14. Cristian Pérez de Laborda and Stefan Conrad. Bringing Relational Data into the
Semantic Web using SPARQL and Relational OWL. In Procs. of ICDEW’06,
page 55, Los Alamitos, CA, USA, 2006. IEEE Computer Society.

15. Tim Furche, François Bry, and Oliver Bolzer. Marriages of Convenience: Triples
and Graphs, RDF and XML in Web Querying. In Proceedings of Third Work-
shop on Principles and Practice of Semantic Web Reasoning, pages 72–84, Heidel-
berg,Germany, 2005. REWERSE, Springer LNCS 3703.

16. Benjamin N. Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker. Description
Logic Programs: Combining Logic Programs with Description Logic. In Proc. of
the International Conference on World Wide Web, pages 48–57, USA, 2003. ACM
Press.

17. Volker Haarslev and Ralf Möller. Racer system description. In IJCAR ’01: Proceed-
ings of the First International Joint Conference on Automated Reasoning, pages
701–706, London, UK, 2001. Springer-Verlag.

18. Peter Haase, Jeen Broekstra, Andreas Eberhart, and Raphael Volz. A Compar-
ison of RDF query languages. In Sheila A. McIlraith, Dimitris Plexousakis, and
Frank van Harmelen, editors, Proceedings of the Third International Semantic Web
Conference, pages 502–517, Heidelberg, Germany, November 2004. Springer LNCS
3298.

19. Ullrich Hustadt, Boris Motik, and Ulrike Sattler. Reasoning in Description Logics
by a Reduction to Disjunctive Datalog. J. Autom. Reasoning, 39(3):351–384, 2007.

Jesus Manuel Almendros-Jimenez 123

20. Gregory Karvounarakis, Sofia Alexaki, Vassilis Christophides, Dimitris Plex-
ousakis, and Michel Scholl. RQL: a declarative query language for RDF. In WWW
’02: Proceedings of the 11th international conference on World Wide Web, pages
592–603, New York, NY, USA, 2002. ACM Press.

21. H. Katz. XsRQL: an XQuery-style Query Language for RDF. Technical report,
Online only, 2004.

22. Markus Krötzsch, Sebastian Rudolph, and Pascal Hitzler. Description Logic Rules.
In Proceedings of the 18th European Conference on Artificial Intelligence (ECAI-
08). IOS Press, 2008.

23. G. Lukacsy, P. Szeredi, and B. Kadar. Prolog Based Description Logic Reasoning.
In Proceedings of the 24th International Conference on Logic Programming, pages
455–469. Springer, 2008.

24. A. Marian and J. Simeon. Projecting XML Documents. In Proc. of International
Conference on Very Large Databases, pages 213–224, Burlington, USA, 2003. Mor-
gan Kaufmann.

25. Libby Miller, Andy Seaborne, and Alberto Reggiori. Three Implementations of
SquishQL, a Simple RDF Query Language. In ISWC ’02: Proceedings of the First
International Semantic Web Conference on The Semantic Web, pages 423–435,
Heidelberg,Germany, 2002. Springer.

26. Jonathan Robie, Lars Marius Garshol, Steve Newcomb, Michel Biezunski, Matthew
Fuchs, Libby Miller, Dan Brickley, Vassilis Christophides, and Gregorius Kar-
vounarakis. The Syntactic Web: Syntax and Semantics on the Web. Markup
Languages: Theory & Practice, 4(3):411–440, 2002.

27. S. Schaffert and F. Bry. A Gentle Introduction to Xcerpt, a Rule-based Query
and Transformation Language for XML. In Proc. of International Workshop on
Rule Markup Languages for Business Rules on the Semantic Web, page 22 pages,
Aachen, Germany, 2002. CEUR Workshop Proceedings 60.

28. Michael Sintek and Stefan Decker. TRIPLE - A Query, Inference, and Transfor-
mation Language for the Semantic Web. In ISWC ’02: Proceedings of the First
International Semantic Web Conference on The Semantic Web, pages 364–378,
Heidelberg, Germany, 2002. Springer.

29. Evren Sirin, Bijan Parsia, Bernardo C. Grau, Aditya Kalyanpur, and Yarden Katz.
Pellet: A practical OWL-DL reasoner. Web Semantics: Science, Services and
Agents on the World Wide Web, 5(2):51–53, June 2007.

30. Adam Souzis. RxPath: a mapping of RDF to the XPath Data Model. In Extreme
Markup Languages, 2006.

31. D. Tsarkov and I. Horrocks. FaCT++ Description Logic Reasoner: System De-
scription. In Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 2006),
pages 292–297, Heidelberg,Germany, 2006. Springer LNAI 4130.

32. Raphael Volz. Web Ontology Reasoning with Logic Databases. PhD thesis, Uni-
versität Fridericiana zu Karlsruhe, 2004.

33. W3C. RDF Vocabulary Description Language 1.0: RDF Schema. Technical report,
www.w3.org, 2004.

34. W3C. Resource Description Framework (RDF). Technical report, www.w3.org,
2004.

35. W3C. XML Path Language (XPath) 2.0. Technical report, www.w3.org, 2007.
36. W3C. XML Query Working Group and XSL Working Group, XQuery 1.0: An

XML Query Language. Technical report, www.w3.org, 2007.
37. W3C. OWL 2 Web Ontology Language. Technical report, www.w3.org, 2008.
38. Norman Walsh. RDF Twig: Accessing RDF Graphs in XSLT. In Proceedings of

Extreme Markup Languages, 2003.

124 Extending XQuery for Semantic Web Reasoning

JSquash: Source Code Analysis of Embedded Database
Applications for Determining SQL Statements

Dietmar Seipel1, Andreas M. Boehm1, and Markus Fröhlich1

University of Würzburg, Department of Computer Science
Am Hubland, D–97074 Würzburg, Germany

seipel@informatik.uni-wuerzburg.de, markusfroehlich1@gmx.de, ab@andiboehm.de

Abstract. In this paper, we analyse Java source code of embedded database ap-
plications by means of static code analysis. If the underlying database schema is
changed due to refactoring or database tuning, then the SQL statements in the em-
bedding Java program need to be adapted correspondingly. This should be done
mostly automatically, since changing software manually is error–prone and time
consuming.
For determining the SQL statements that access the database, we can either look at
the database logfile, an audit file, or at the Java source code itself. Here, we show
how to statically determine even the strings for dynamically built SQL statements
directly from the Java source code. We do this without using a debugger or a
virtual machine technique; instead, we trace the values of variables that contribute
to a query string backwards to predict the values as precisely as possible.
We use PROLOG’s declarative features and its backtracking mechanism for code
analysis, refactoring, and tuning.

1 Introduction

During the software life–cycle, enterprise–class databases undergo a lot of changes in
order to keep up with the ever–changing requirements. The growing space requirements
and complexity of productive databases make the task of maintaining a good perfor-
mance of the database query execution more and more complicated. The performance
is highly dependent on the database schema design [14], and additionally, a complex
database schema is more prone to design errors.

Increasing the performance and the manageability of a database usually requires
analysing and restructuring the database schema and therefore affects the application
code indirectly. The application code highly depends on the database schema, because
the database queries are embedded in the source code. Usually, they are contained in
string variables or, more dynamically, statements are generated step by step by using
control structures and string concatenations.

Nearly any type of database schema modification implies the adaption of the queries
embedded in the application code. Sometimes, the logic of the construction of the query
strings has to be changed, too. Some efforts have been made to prescind the applications
code from the data persistence in the database [11]. The employed methods require a
configuration that tells the database service the mapping between database tables and

Dietmar Seipel, Andreas Böhm and Markus Fröhlich 125

application objects. Moreover, the relationships between the tables must also be in-
cluded in that configuration. Therefore, such approaches are also affected by database
changes and need to be adjusted accordingly.

Recently, we have developed a standardized XML representation of SQL statements
and database schemas named SQUASHML, that was introduced within the PROLOG
based toolset Squash for refactoring and tuning relational database applications [1].
Squash is the first tool that supports the analysis and the refactoring of database appli-
cations with coordinated simultaneous modification of the SQL code and the database
schema definition. Squash also detects inconsistencies and common flaws in SQL state-
ments. It can determine an optimized configuration of indexes as well as of tables, and
propose modifications of the database schema that result in an efficiency gain. The
changes are applied automatically to both the schema and the SQL statements.

In this paper, we develop an extension named JSquash of Squash that analyses a
given Java source code and presents all expressions in the code that influence the con-
struction of the embedded SQL statements. Our approach estimates or even determines
the values of variables in the source code of the databases application by static code
analysis; this is used to predict the embedded database queries that can be generated by
the application.

Related research on source code analysis has mainly focussed on static analysis
providing information about security issues (secure code) [8, 3], model extraction [10],
code smells [7], obvious errors [15, 13], code metrics [6], and flow analysis [5]. Re-
cently published results were mainly about supporting the complex task of understand-
ing the run–time behaviour of legacy and non–legacy software systems [18, 6]. An ex-
tensive amount of research has been dedicated to system analysis by extracting informa-
tion generated during the run–time of a software system [6]. These approaches require
the code being instrumented prior to execution by various techniques, such as wrapping,
logging or extended virtual machines. The output of such an analysis is an execution
trace containing information about the run–time behaviour of the system, such as call
hierarchies of methods and object creation. Such traces of productive software systems
are often very voluminous, and usually the values of interesting variables are missing.

The rest of the paper is organized as follows: Section 2 summarizes the basic con-
cepts of managing source code with PROLOG in the JSquash repository. Section 3 de-
scribes some basic methods of static code analysis supported by JSquash, such as the
calculation of metrics and the detection of code smells. Section 4 presents the strategies
of JSquash used for recursively evaluating the control flow of the source code in order
to determine values of variables at run–time for predicting embedded SQL statements.
Section 5 shows how JSquash can visualise the creation of embedded SQL statements
using HTML 4, CSS, and JavaScript technology, and how Squash can visualise join
conditions of complex SELECT statements. Finally, Section 6 summarizes our work.

2 Management of Java Source Code with PROLOG

In JSquash, Java code is first parsed and transformed into an XML representation called
JAML [9]. Subsequently, a source code repository is built from the XML representa-

2126 JSquash: Source Code Analysis of Embedded Database Applications for Determining SQL
Statements

tion, which suitably represents the constructs of the analysed programming language.
It is essential to choose an adequate format for the repository, such that the analysis
can handle the data efficiently. The analysis is implemented using the declarative logic
programming system SWI–PROLOG [4, 19].

2.1 Representation of Java Source Code in XML

The XML representation JAML completely resembles the Java source code; it even con-
serves the layout of the source code. JAML enables standardised access to the source
code. Generally, XML is a markup language for representing hierarchically structured
data, which is often used for the exchange of data between different applications; as
a particular XML language, JAML is a very good candidate for an intermediate repre-
sentation during the creation of the repository out of the Java source code. It comes
with a plugin that can be installed as an online update in the integrated development
environment Eclipse, that performs the transformation from Java to XML on–the–fly
while programming. For every type of expressions, i.e., variables, statements and con-
trol structures, there is a special XML element in JAML, which holds the hierarchical
design of the program as well as detailed information about the represented Java com-
ponent.

According to the W3C XML 1.1 recommendation, the terseness in XML markup
is of minimal importance, and JAML increases the volume by a factor of about 50. To
meet our requirements, the contained information has to be condensed; e.g., the single
indenting white spaces are of no interest.

For example, the Java variable declaration int a = 5, that additionally includes
an initialisation, is presented in JAML, as shown in the listing below; for clarity, the
representation has been strongly simplified. The Java declaration is represented by a
variable-declaration-statement element in JAML. The included type el-
ement sets the data type of the variable a to integer. The assignment is represented by
the variable-declaration subelement: the identifier of the variable is given by
the identifier element, and the literal expression is given by an expression
element.

<variable-declaration-statement>
<type kind="primitive-type">

<primitive-type> <int>int</int> </primitive-type>
</type>
<whitespace/>
<variable-declaration-list>

<variable-declaration>
<identifier>a</identifier> <whitespace/>
<initializer>

<equal>=</equal> <whitespace/>
<expression>
<literal-expression type-ref="int">

<literal>
<number-literal>5</number-literal>

3Dietmar Seipel, Andreas Böhm and Markus Fröhlich 127

</literal>
</literal-expression>

</expression>
</initializer>

</variable-declaration>
</variable-declaration-list>

</variable-declaration-statement>

For deriving the JSquash repository, the JAML data are represented in field notation
and processed using the XML query, transformation, and update language FNQuery [16,
17]. The query part of the language resembles an extension of the well–known XML
query language XQuery [2]; but FNQuery is implemented in and fully interleaved with
PROLOG. The usual axes of XPath are provided for selection and modification of XML
documents. Moreover, FNQuery embodies transformation features, which go beyond
XSLT, and also update features.

2.2 The JSquash Repository

The JSquash repository stores the relevant elements of the Java code, which are ex-
tracted from the JAML representation, in the form of PROLOG facts. These facts repre-
sent information that at least consists of the type and a description of the location within
the source code including the locations of the surrounding code blocks. Additionally,
necessary parameters can be added, depending on the type.

The construct of a path reflects the hierarchy of the code nesting. A path starts with
the file number of the source code; the further elements of the path are derived from the
position attributes (pos) of the JAML representation.

The JSquash repository supports access to variables, objects, classes as well as
method calls. E.g., a variable declaration is stored in the repository using a fact

jsquash_repository(
Path:’variable-declaration’, Type, Id, P:T).

where Path is the path of the statement, Type is the type and Id is the name of the
variable, and P:T is an optional reference to the in–place initialisation.

For example, the representation of the following fragment of a Java source code,
which starts at position 101 in the Java source file, in the JSquash repository will be
explained in more detail.

1: int a = 5;
2: int b = 10;
3: int c = a + b;
4: int d = c;

Due to surrounding blocks and preceding statements, all paths have the common prefix
”0, 49, 3, 49, 94”, which we abbreviate by ”...”. Since a starts at position
105 and 5 starts at position 109, the declaration int a = 5 in line 1 is represented
by the following two facts:

4128 JSquash: Source Code Analysis of Embedded Database Applications for Determining SQL
Statements

jsquash_repository(
[..., 105]:’variable-declaration’, int, a,
[..., 105, 109]:’literal-expression’).

jsquash_repository(
[..., 105, 109]:’literal-expression’, int, 5).

The type variable-declaration requires two parameters: the type of the vari-
able and its name. In this example, the in–place initialisation with the value 5 is rep-
resented in the repository by the path of that expression as a reference, here [...,
105, 109], together with the fact of the referenced expression. Such expressions are
represented in JSquash by the type literal-expression.

The source code of line 2 is represented by two similar facts, where ”5” is replaced
by ”10”, ”105” is replaced by ”119”, and ”109” is replaced by ”123”.

Line 3 is more complex, because it contains the sum of a and b in the initialisation,
a binary expression that comes in the repository as the type binary-expression.

jsquash_repository(
[..., 134]:’variable-declaration’, int, c,
[..., 134, 138]:’binary-expression’).

jsquash_repository(
[..., 134, 138]:’binary-expression’,
[..., 134, 138, 138]:’variable-access-expression’, +,
[..., 134, 138, 142]:’variable-access-expression’).

jsquash_repository(
[..., 134, 138, 138]:’variable-access-expression’, a).

jsquash_repository(
[..., 134, 138, 142]:’variable-access-expression’, b).

The reference of the declaration fact points to the description of the binary expression,
which holds two references, one for the left and one for the right expression; in our
case, both are accesses to variables.

Line 4 contains an access to a variable instead of a literal expression. This is rep-
resented in the repository by the type variable-access-expression, which
works like literal-expression, but it has no qualifier for local variables – as in
our example.

jsquash_repository(
[..., 152]:’variable-declaration’, int, d,
[..., 152, 156]:’variable-access-expression’).

jsquash_repository(
[..., 152, 156]:’variable-access-expression’, c).

The notation described above has been used for convenience to improve the read-
ability of rules referring to the repository. For efficiency reasons, we store different facts
with the predicate symbols jsquash_repository_/3,4,5 in the repository; then
we can make use of the index on the first argument to search for facts of a given type.
The predicates from above are derived using the following simple rules:

5Dietmar Seipel, Andreas Böhm and Markus Fröhlich 129

jsquash_repository(P1:T1, Type, Id, P2:T2) :-
jsquash_repository_(T1, Type, Id, P2:T2, P1).

jsquash_repository(P1:T1, P2:T2, Op, P3:T3) :-
jsquash_repository_(T1, P2:T2, Op, P3:T3, P1).

jsquash_repository(P:T, Id) :-
jsquash_repository_(T, Id, P).

Using the design of the repository described here, JSquash is able to work efficiently
with application code of any complexity.

3 Static Code Analysis

Source code analysis comprises the manual, tooled or automated verification of source
code regarding errors, coding conventions, programming style, test coverage, etc.

The tool JSquash supports some standard methods of static code analysis, such as
the calculation of metrics and the detection of code smells. In the following, we will
show some examples.

3.1 Local and Global Variables

The following rule determines the classes and identifiers of all local (if Type is given by
’variable-declaration’) or global (if Type is ’field-declaration’)
variables within the source code, respectively:

variables_in_system(Type, Class, Id) :-
jsquash_repository([N]:’java-class’, _, Class),
jsquash_repository([N|_]:Type, _, Id, _).

Note, that the repository facts for Java classes have a path consisting of only one num-
ber. Every variable in a Java class must have this number as the first element of its
path.

3.2 Detection of Flaws and Code Smells

JSquash supports the detection of some types of code flaws, i.e., code sections that
could be sources of potential errors.

The following rule determines the method signatures of all methods having more
than one return statement:

methods_with_several_returns(
Class, Method, Signature) :-

jsquash_repository([N]:’java-class’, _, Class),
jsquash_repository([N|Ns]:’method-declaration’,

Method, Signature, _),
findall(Path,

6130 JSquash: Source Code Analysis of Embedded Database Applications for Determining SQL
Statements

(jsquash_repository(
Path:’return-expression’, _, _),

append([N|Ns], _, Path)),
Paths),

length(Paths, Length),
Length > 1.

The method declarations within a Java class have the position of the class as the first
element in their path. Similarly, the return expressions of a method have the path of the
method as a prefix of their path.

The following rule detects all if conditions that always evaluate to false. It de-
termines the sections of all such if statements within the analysed code. If all possible
evaluations of an if condition are false, then the if statement is unnecessary.

unnecessary_if_statements(If_Path) :-
jsquash_repository(

If_Path:’if-statement’, P:T, _, _),
init_run_time(R),
set_run_time(R, R2, [

searched_expression@path=P,
searched_expression@type=T]),

forall(eval(R2:P:T, Value),
Value = [boolean, false|_]).

After initialising the run–time, which will be explained in the following section, with
init_run_time/1, the path and the type of the searched expression are stored in
the run–time using set_run_time/3.

All of these features make use of the basic code analysis that is supported and in-
tegrated in JSquash. This comprises the detection of the following facts: which code
sections influence the values of variables, which methods are calling other methods
(call dependencies), and which objects are created at which time by which other ob-
jects. The predicate eval/2 for backward tracing the flow of control leading to the
values of variables will be explained in the following section.

4 Backward Tracing of the Control Flow

While looking for actual values of variables, JSquash recursively calls the predicate
eval/2 until the evaluation reaches assignments having concrete literal expressions
on their right hand side. As literal expressions need not to be evaluated, their values
can immediately be used as arguments in complex expressions. After the recursion is
rolled out completely, the calculated values of the partial expressions are returned until
the value of the examined expression is determined.

For example, during the search for the current value of d in line 4 of the code frag-
ment from Section 2.2, first the variable c in the right hand side of the assignment has
to be evaluated. Therefore, JSquash detects the assignment in line 3, where c can be

7Dietmar Seipel, Andreas Böhm and Markus Fröhlich 131

Fig. 1. A code example that uses arrays of strings to construct an SQL statement.

evaluated by determining the current values of a in line 1 and b in line 2 and by return-
ing their sum. Another example using arrays of strings to construct an SQL statement is
shown in Figure 1.

The current state of the analysed program plays an important role for eval/2 ,
because it determines the control flow of the applications’s calculations. The program
state is the set of all variables and their current values that are needed for evaluation of
the control structures involved in the calculation of the value of the examined variable.

4.1 Overview of the Evaluation Strategy

Evaluating a specific variable means accessing it at a specific point of run–time. As
variables always receive their values strictly via assignment expressions, the analysis
component has to find the last assignment before the examined access to the variable.

Therefore, the possible assignments have to be examined. To do so, a simulation of
the control flow has been implemented in JSquash that considers control flow statements
such as loops and if-then-else constructs. This machine recognizes, if a program
block directly or indirectly influences the value of the examined variable.

The search for the current value of a variable has been implemented in the predicate
eval/2 . Given the reference to a variable, it returns the corresponding value, depend-
ing on the current state. On backtracking, it determines all further value assignments
for the given variable. E.g., if statements may lead to alternative value assignments,

8132 JSquash: Source Code Analysis of Embedded Database Applications for Determining SQL
Statements

if the condition cannot be evaluated and the then or else part assigns a value to the
examined variable. But, often there is only one possible value assignment.

eval/2 is always called with the first argument of the form R:P:T. The run–time
object R holds fundamental information for determining the values of variables. It is
represented as an XML object in field notation, which holds the following information:

– the current position of the analysis in the source code,
– the analysed control structure,
– the state of the variables defining the current state and control flow,
– the currently examined variable, and
– the currently examined assignment.

The run–time is needed as a supporting data structure for analysing the lifetime behavior
of loops and other constructs that have nested blocks, including recursive method calls.
In these cases, it is used for holding the distinct states of the blocks passed during the
analysis. The value history of the run–time is used extensively to reflect the construction
and dependencies of each single value of a variable.

P:T references the currently searched expression. Based on the type of the ref-
erenced expressions, JSquash can decide which rule of eval/2 has to be used for
determining the actual value of the given expression. In the case of variable accesses,
the eval/2 rule – which is shown in Section 4.2 – determines the current value of the
referenced variable at the time of the access.

For each type T of control structure, a rule has been developed that simulates its
behaviour and functionality. These rules implement evaluation strategies that yield the
current value for all type primitives. The handling of local and global variables (class
fields) is implemented separately, since the evaluation strategies differ. In the following,
we will show some examples; more complicated cases, such as the handling of Java
loops, cannot be shown due to the inherent complexity of their evaluation.

4.2 Variable Access Expressions

While processing the Java code fragment of Section 2.2, JSquash has at first to resolve
the identifier d. The JSquash repository fact

jsquash_repository(
[..., 152, 156]:’variable-access-expression’, c).

shows that the variable access expression at [..., 152, 156] refers to the vari-
able c. Based on the repository fact

jsquash_repository(
[..., 134]:’variable-declaration’, int, c,
[..., 134, 138]:’binary-expression’).

the predicate next/2 finds out that the most recent assignment defining c was the
binary expression at [..., 134, 138], cf. line 3 of the Java code fragment:

9Dietmar Seipel, Andreas Böhm and Markus Fröhlich 133

eval(R:P:T, Value) :-
T = ’variable-access-expression’,
jsquash_repository(P:T, Id),
set_run_time(R, R2, [

@searched_id=Id,
@search_mode=variable,
@scope=T]),

next(R2:P:T, R3:P3:T3),
eval(R3:P3:T3, V),
handle_postfix(P3:T3, V, Value).

Similarly, the repository fact

jsquash_repository(
[..., 105]:’variable-declaration’, int, a,
[..., 105, 109]:’literal-expression’).

is used later during the computation to find out that the variable a is declared using a
literal expression.

For finding the most recent assignment to the examined variables, the predicate
next/2 has to traverse the JSquash repository facts in inverse code order. This can
be supported by further PROLOG facts in the repository, which link a statement to its
preceding statement in the code order.

4.3 Binary Expressions

The repository fact

jsquash_repository([..., 134, 138]:’binary-expression’,
[..., 134, 138, 138]:’variable-access-expression’, +,
[..., 134, 138, 142]:’variable-access-expression’).

shows that the binary expression for c refers to two variable access expressions. After
evaluating them, the resulting values are combined using the binary operator (in our
case +) indicated by the fact from the repository:

eval(R:P:T, Value) :-
T = ’binary-expression’,
jsquash_repository(P:T, P1:T1, Op, P2:T2),
eval(R:P1:T1, V1),
eval(R:P2:T2, V2),
apply(Op, [V1, V2, Value]).

If we evaluate the following code fragment, then both expressions within the binary
expression in line 2 are evaluated w.r.t. the same runtime R, but with different references
P1:T1 and P2:T2, respectively:

1: int a = 5;
2: int c = a++ + a;

10134 JSquash: Source Code Analysis of Embedded Database Applications for Determining SQL
Statements

The call eval(R:P1:T1, V1) evaluates the left expression a++ to 5; only after-
wards, the value of a is incremented to the new value 6. The call eval(R:P2:T2,
V2) for the right expression a re–evaluates the left expression, since the new value of a
is relevant. Thus, the right expression a correctly evaluates to 6, and finally, c evaluates
to 11, i.e., 5 + 6.

4.4 Literal Expressions

The repository fact

jsquash_repository(
[..., 105, 109]:’literal-expression’, int, 5).

shows that the value of the literal expression at [..., 105, 109] is 5. This type
of expression is evaluated using the following rule:

eval(R:P:T, Value) :-
T = ’literal-expression’,
jsquash_repository(P:T, _, Value).

5 Visualisation of Embedded SQL Statements

The tool JSquash can detect and analyse SQL statements embedded in the Java source
code of database applications.

5.1 SQL Statements Embedded in the Source Code

For presenting the results of the analysis to the user, JSquash includes a generator com-
ponent, that produces an HTML document containing the complete information about
the detected SQL statements, including the full SQL code and the source code that
contributes to each SQL statement. This HTML document comprises a fully functional
graphical user interface (GUI) that can be opened and used with any Web browser. The
GUI is implemented in HTML 4 using cascading style sheets (CSS) and
JavaScript; the JavaScript helps building a dynamic GUI.

The expressions that contribute to the following generated SQL statement have been
detected by JSquash and are automatically highlighted, see Figure 1. JSquash was also
able to build the full SQL statement by only analyzing the source code:

SELECT * FROM training
WHERE a = 1 AND b = 2 AND c = 3
ORDER BY c, d ASCENDING

This statement – which is the second SQL statement in the GUI of Figure 2 – is visu-
alised in Figure 3. The left side in of the GUI shown in Figure 3 displays all the class
files of the source code that contribute to the detected SQL statements. Clicking on the

11Dietmar Seipel, Andreas Böhm and Markus Fröhlich 135

Fig. 2. The GUI of JSquash. No SQL statement is selected.

Fig. 3. All contributing values and variables of the selected second SQL statement are marked.

buttons at the left side of the class name opens (+) or closes (-) the source code, re-
spectively. At the upper right side, all detected SQL statements are shown. Below is the
block of settings, that allow for changing the highlighting colors.

If an SQL statement of the list is selected, then the corresponding code sections and
expressions are automatically highlighted in the listings at the left side, cf. Figure 3.
Thus, the user can easily analyse all code sections that contribute to the selected SQL

12136 JSquash: Source Code Analysis of Embedded Database Applications for Determining SQL
Statements

statement. This feature is implemented in JavaScript and CSS, making extensive use of
the path information from the repository.

5.2 Representation and Visualisation of SQL Statements

Recently, we have developed the tool Squash for analysing, tuning and refactoring re-
lational database applications [1]. It uses an extensible and flexible XML representation
for SQL database schema definitions and queries called SQUASHML, that is designed
for representing schema objects, as well as database queries and data modification state-
ments.

The core of SQUASHML follows the SQL standard, but it also allows for system–
specific constructs of different SQL dialects; for example, some definitions and storage
parameters from the Oracle database management system have been integrated as op-
tional XML elements.

The SQUASHML format allows for easily processing and evaluating the database
schema information. Currently, supported schema objects include table and index def-
initions. Other existing XML representations of databases, such as SQL/XML, usually
focus on representing the database contents, i.e., the table contents, and not the schema
definition itself [12]. SQUASHML was developed specifically to map the database sche-
ma and queries, without the current contents of the database.

The SQL statements detected by JSquash are transformed to SQUASHML, and then
the tool Squash can be used for the visualisation of the single statements. E.g., the fol-
lowing SELECT statement from a biological application joins 9 tables; the table names
have been replaced by aliases A, . . . , I:

SELECT * FROM A, B, C, D, E, F, G, H
WHERE A.ID_DICT_PEPTIDE IN (

SELECT ID_PEPTIDE FROM I
WHERE I.ID_SEARCH = 2025
GROUP BY ID_PEPTIDE
HAVING COUNT(ID_SEARCH_PEPTIDE) >=1)

AND A.ID_SEARCH = 2025
AND c1 AND c2 AND A.FLAG_DELETED = 0
AND c3 AND c6 (+) AND c7 (+) AND c4 AND c5
AND E.LEN >= 6 AND A.NORMALIZED_SCORE >= 1.5
ORDER BY ...

The following 7 join conditions are used:

c1: A.ID_SEARCH_PEPTIDE = B.ID_SEARCH_PEPTIDE
c2: A.ID_SPECTRUM = G.ID_SPECTRUM
c3: A.ID_SEARCH_PEPTIDE = C.ID_PEPTIDE
c4: C.ID_SEQUENCE = D.ID_SEQUENCE
c5: A.ID_SEARCH = H.ID_SEARCH
c6: B.ID_PEPTIDE = E.ID_DICT_PEPTIDE
c7: B.ID_PEPTIDE_MOD = F.ID_DICT_PEPTIDE

13Dietmar Seipel, Andreas Böhm and Markus Fröhlich 137

Fig. 4. Join Conditions in a Query

This query is parsed into the following SQUASHML element; we leave out some open-
ing and closing tags, respectively:

<select>
<subquery id="subquery_1">

<select_list> <expr> <simple_expr>
<object table_view="A" column="ID_SEARCH"/> ...

<from> <table_reference> ...
<simple_query_table_expression

object="A" schema="USER"/> ...
<where> ...
<order_by> ...

</select>

The conditions in the WHERE part (e.g., the join condition c1) look like follows:

<condition>
<simple_comparison_condition operator="=">

<left_expr> <expr> <simple_expr>
<object table_view="A" column="ID_SEARCH_PEPTIDE"/> ...

<right_expr> ...
<object table_view="B" column="ID_SEARCH_PEPTIDE"/> ...

</condition>

Squash provides a number of different visualization methods for the database schema
and the queries. Complex select statements tend to include many tables in join opera-
tions. Therefore, Squash uses a graph representation for query visualization, cf. Fig-
ure 4. If a SELECT statement contains nested subqueries (like the statement shown
above), then these queries can be included in the graphical output if desired.

14138 JSquash: Source Code Analysis of Embedded Database Applications for Determining SQL
Statements

6 Conclusions

We have shown, how to derive the content of application variables in Java programs us-
ing means of static code analysis. Our tool JSquash, which is implemented in PROLOG,
predicts the values of variables as precisely as possible; obviously, some values cannot
be discovered at compile–time, e.g., if a value was obtained through I/O operations.

Now, we are able to analyse embedded SQL statements of a given database appli-
cation, either by analysing audit files of the database connection using the basic tool
Squash [1], or by static source code analysis with the extended tool JSquash. The state-
ments derived from the source code of the database application can be imported into
Squash, which can then generate database modifications for improving the performance
of the application.

Future work will be on developing methods that preserve the linkage between the
detected single SQL statement fragments and their positions as well as each of their
effects in the completed statement. This extension to SQUASHML will then allow for
injecting the changes proposed by Squash into the original source code of the applica-
tion, and it will help conducting the appropriate changes there.

Moreover, we will try to apply similar techniques of static code analysis to PROLOG
programs with embedded SQL statements as well.

References
1. BOEHM, A. M., SEIPEL, D., SICKMANN, A., WETZKA, M.: Squash: A Tool for Analyzing,

Tuning and Refactoring Relational Database Applications. Proc. 17th International Confer-
ence on Declarative Programming and Knowledge Management, INAP 2007, pp. 113–124

2. CHAMBERLIN, D.: XQuery: a Query Language for XML. Proc. ACM International Confer-
ence on Management of Data, SIGMOD 2003. ACM Press, 2003, pp. 682–682

3. CHESS, B., MCGRAW, G.: Static Analysis for Security. IEEE Security & Privacy 2(6). 2004,
pp. 76–79

4. CLOCKSIN, W. F.; MELLISH, C. S.: Programming in PROLOG. 5th Edition, Springer, 2003
5. CORBETT, J. C.; DWYER, M. B.; HATCLIFF, J.; LAUBACH, S.; PASAREANU, C. S.; ZHENG,
R. H.: Bandera: Extracting Finite State Models From Java Source Code. Proc. International
Conference on Software Engineering, ICSE 2000, pp. 439–448

6. DUCASSE, S., LANZA, M., BERTULI, R.: High–Level Polymetric Views of Condensed Run–
Time Information. Proc. 8th European Conference on Software Maintenance and Reengi-
neering, CSMR 2004, pp. 309–318

7. VAN EMDEN, E.; MOONEN, L.: Java Quality Assurance by Detecting Code Smells. Proc.
9th Working Conference on Reverse Engineering, WCRE 2002. IEEE Computer Society,
pp. 97–108

8. EVANS, D., LAROCHELLE, D.: Improving Security Using Extensible Lightweight Static
Analysis. IEEE Software 19(1). 2002, pp. 42–51

9. FISCHER, D.; LUSIARDI, J.: JAML: XML Representation of Java Source Code. Technical
Report, University of Würzburg, Department of Computer Science. 2008

10. HOLZMANN, G. J.; SMITH, M. H.; Extracting Verification Models by Extracting Verification
Models. Proc. Joint International Conference on Formal Description Techniques, FORTE
1999, and Protocol Specification, Testing, and Verification, PSTV 1999, Kluwer, pp. 481–
497

15Dietmar Seipel, Andreas Böhm and Markus Fröhlich 139

11. JBOSS; RED HAT: Hybernate. https://www.hibernate.org/
12. INTERNATIONAL ORGANIZATION FOR STANDARDIZATION: ISO/IEC 9075–14:2003 In-

formation Technology – Database Languages – SQL – Part 14: XML Related Specifications
(SQL/XML). 2003

13. MARINESCU, R.: Detection Strategies: Metrics–Based Rules for Detecting Design Flaws.
Proc. 20th IEEE International Conference on Software Maintenance, ICSM 2004, pp. 350–
359

14. RAMAKRISHNAN, R.; GEHRKE, J.: Database Management Systems. 3rd Edition, McGraw–
Hill, 2003

15. REN, X.; SHAH, F.; TIP, F.; RYDER, B. G.; CHESLEY, O.:Chianti: A Tool for Change Impact
Analysis of Java Programs. ACM SIGPLAN Notices 39(10). 2004, pp. 432–448

16. SEIPEL, D.: Processing XML Documents in PROLOG. Proc. 17th Workshop on Logic Pro-
grammierung, WLP 2002

17. SEIPEL, D.; BAUMEISTER, J.; HOPFNER, M.: Declarative Querying and Visualizing Knowl-
edge Bases in XML. Proc. 15th International Conference on Declarative Programming and
Knowledge Management, INAP 2004, pp. 140–151

18. SYSTÄ, T.; YU, P.; MÜLLER, H.: Analyzing Java Software by Combining Metrics and Pro-
gram Visualization. Proc. 4th European Conference on Software Maintenance and Reengi-
neering, CSMR 2000, IEEE Computer Society, pp. 199–208

19. WIELEMAKER, J.: An Overview of the SWI–PROLOG Programming Environment. Proc. 13th
International Workshop on Logic Programming Environments, WLPE 2003, pp. 1–16

20. WIELEMAKER, J.: SWI–PROLOG. Version: 2007. http://www.swi-prolog.org/

16140 JSquash: Source Code Analysis of Embedded Database Applications for Determining SQL
Statements

Reference Model and Perspective Schemata
Inference for Enterprise Data Integration

Valéria Magalhães Pequeno and João Carlos Moura Pires

CENTRIA, Departamento de Informática,
Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa

2829-516, Caparica, Portugal
vmp@fct.unl.pt, jmp@di.fct.unl.pt

Abstract. We propose a declarative approach based on the creation of
a reference model and perspective schemata to deal with the problem of
integrating data from multiple, possibly heterogeneous and distributed,
databases. The former provides a common semantic, while the latter
connects schemata. This paper focuses on deduction of new perspective
schemata using a proposed inference mechanism. A proof-of-concept pro-
totype, based on Logic Programming, is slightly presented.

1 Introduction

One of the leading issues in database research is to develop flexible mecha-
nisms for providing integrated access to multiple, distributed, heterogeneous
databases and other information sources. A wide range of techniques has been
developed to address this problem, including approaches based on creation of
Data Warehouses (DWs), and Federated Database Systemss (FDBSs). DWs are
highly specialised database systems which contain the unified history of an enter-
prise at a suitable level of detail for decision support. All data is integrated into,
normally, a single repository, with a generalised and global schema. A FDBS
enables a unified virtual view of one or more autonomous sources of information
to hide data heterogeneity from applications and users. Closely coupled FDBSs,
those that occur in DWs, provides a global schema expressed in a common,
“canonical” data model. Unlike a DW, a FDBS leaves data at the source.

One of the main drawbacks of these approaches is the difficulty in developing
a single (global or common) database schema that captures all the nuances of
diverse data types, and expresses a unified view of the enterprise. The designer
usually deal with incompatible data models, characterised by subtle differences in
structure and semantic. He/she should define mappings between the global and
source information schemata. These problems are hardest to deal with because
of the rapid growth of the data volume and the data model complexity (both in
sources and in global schema), which implies the rise of the difficulty of managing
and understanding these models [1].

In order to deal with these problems, it is proposed to take a declarative
approach, based on the creation of a reference model and, perspective schemata.

Valéria Magalhães Pequeno and João Moura Pires 141

A Reference Model (conceptual model, business data model, or enterprise data
model) is an abstract framework that represents the information used in an
enterprise from a business viewpoint. It provides a common semantic that can be
used to guide the development of other models and help with data consistency [1].
Its benefits include: a) reduction of the development risk by ensuring that all
implemented systems correctly reflect the business environment [1]; b) helping
with the project scope definition once the designer can use the reference model
to identify the information that will be addressed by the systems; c) serving as
basis for multiple products such as application systems, DWs, and FDBSs [2, 1],
being a more stable basis for identifying information requirements to the DW
systems than user query requirements, which are unpredictable and subject to
frequent change [3].

A perspective schema describes a data model, part or whole (the target), in
terms of other data models (the base). It represents the mapping between the
base schemata (e.g., the information sources) and the target schema (e.g., the
reference model). In the proposed approach, the relationship between the base
and the target schemata is made explicitly and declaratively through correspon-
dence assertions. By using the perspective schemata the designer has an explicit
and formal representation, with well defined semantic, which allows to: evince
diverse points of views of the (same or different) source information; b) deal with
semantic heterogeneity in a declarative way; and c) reuse (a same perspective
schema can used simultaneously in several (application, DW, FDBS) systems.

An advantage of the proposed approach is that by using the reference model
the designer does not need to map each models. This effort is theoretically re-
duced since schemata (source or global) must only align with the reference model,
rather than with each participating schema. Thus, the designer of the DW system
(or FDBS) only needs to describe the mapping between the DW and the refer-
ence model, and he/she cannot be not involved with the mapping between the
different sources. The designer can describe the global system without concerns
about where the sources are or how they are stored. Furthermore, the mapping
between the global schema and its sources are automatically generated by an
inference mechanism. This paper focuses on the deduction of new perspective
schemata using a proposed inference mechanism.

The remainder of this paper is laid out as follows. Section 2 concisely men-
tions representative works in the data integration area. Section 3 presents an
overview of the reference model-based framework proposed in [4]. Section 4
briefly describes the language to define the perspective schemata. Section 5 de-
tails the process to infer new perspective schemata. The paper ends with Sec-
tion 6, which points out new features of the approach presented here and for
ongoing or planned future work on this topic.

2 Related Work

The database community has been engaged for many years with the problem
of data integration. Research in this area has developed in several important

142 Reference Model and Perspective Schemata Inference for Enterprise Data Integration

directions: schema matching and data quality, to cite a couple (see [5] for a
survey), which covers different architectures (e.g., FDBSs and DWs), represen-
tation of data and involved data models (e.g., relational and non-structured).
Recent research in FDBSs has included: behaviour integration [6], integration
of non-traditional data (e.g., biomedical [7, 8], intelligence data [9], and web
source [10]), interactive integration of data [11, 12], and federated data ware-
house systems [13]. All these approaches use a global schema, but do not deal
with a reference model. Similar to the research of the current paper, [10] uses cor-
respondence assertions (in this case, for specifying the semantics of XML-based
mediators). However, their CAs only deal with part of the semantic correspon-
dence managed here. Furthermore, they assume that there is a universal key to
determine when two distinct objects are the same entity in the real-world, which
is often an unreal supposition.

Researches in DWs have focused on technical aspects such as multidimen-
sional data models (e.g., [14–19]) as well as the materialised view definition and
maintenance (e.g., [20]). In particular, the most conceptual multidimensional
models are extensions to the Entity-Relationship model (e.g., [21–24]) or exten-
sions to UML (e.g., [25–27]).

The work in [28] focuses on an ontology-based approach to determine the
mapping between attributes from the source and the DW schemata, as well as
to identify the transformations required for correctly moving data from source
information to the DW. Their ontology, based on a common vocabulary as well
as a set of data annotations (both provided by the designer), allows formal
and explicit description of the semantic of the sources and the DW schemata.
However, their strategy requires a deep knowledge of all schemata involved in the
DW system, which is usually not the usual case. In our research, it is dispensable,
since each schema (source or DW) needs to be related only to the reference
model. Additionally, we deal with the matching of instances (i.e., the problem
to identify the same instances of the real-world that are differently represented
in the diverse schemata), and the work in [28] does not.

The closest approach to our research is described in [29]. Similar to our
study, their proposal included a reference model (cited as “enterprise model”)
designed using an Enriched Entity-Relationship (EER) model. However, unlike
our research, all their schemata, including the DW, are formed by relational
structures, which are defined as views over the reference model. Their proposal
provides the user with various levels of abstraction: conceptual, logical, and phys-
ical. In their conceptual level, they introduce the notion of intermodel assertions
that precisely capture the structure of an EER schema or allow for the specify-
ing of the relationship between diverse schemata. However, any transformation
(e.g., restructuring of schema and values) or mapping of instances is deferred
for the logical level, unlike the current work. In addition, they did not deal with
complex data, integrity constraints, and path expressions, as our research does.

Valéria Magalhães Pequeno and João Moura Pires 143

3 The Framework

The proposal presented in [4] offers a way to express the existing data models
(source, reference model, and global/integrated schema) and the relationship
between them. The approach is based on Schema language (LS) and Perspective
schema language (LPS).

The language LS is used to describe the actual data models (source, refer-
ence model, and global/integrated schema). The formal framework focuses on
an object-relational paradigm, which includes definitions adopted by the main
concepts of object and relational models as they are widely accepted(̃[30, 31]).

The language LPS is used to describe perspective schemata. A perspective
schema is a special kind of model that describes a data model (part or whole)
(the target) in terms of other data models (the base). In Fig. 1, for instance,
Ps′1|RM , Ps′2|RM , Ps4|RM , ..., Psn|RM are perspective schemata that map the
reference model (RM) in terms of the sources (S′1, S′2, S4, ..., Sn). LPS mainly ex-
tends LS with two components: Correspondence Assertions (CAs) and Matching
Functions (MFs). CAs formally specify the relationship between schema compo-
nents. MFs indicate when two data entities represent the same instance of the
real world. LPS includes data transformations, such as names conversion and
data types conversion.

Fig. 1. Proposed architecture

Figure 1 illustrates the basic components of the proposed architecture and
their relationships. The schemata RM, S1,...,Sn and G are defined using the lan-
guage LS and represent, respectively, the reference model, the sources S1,...,Sn,
and a global schema. The schemata S’1 and S’2 are defined using the language
LPS , and represent, respectively, a viewpoint of S1 and an integrated viewpoint
of S2 and S3. S’1 and S’2 are special kinds of perspective schemata (called
view schema), since the target schema is described in the scope of a perspec-
tive schema, instead of just referring to an existing model. The relationships

144 Reference Model and Perspective Schemata Inference for Enterprise Data Integration

Fig. 2. Motivating example

between the target and the base schemata are shown through the perspective
schemata Ps′1|RM , Ps′2|RM , Ps4|RM , ..., Psn|RM , PRM |G, and Ps′1,s′2,s4,...,sn|G
(denoted by arrows). In the current research, Ps′1,s′2,s4,...,sn|G can be automati-
cally deduced by the proposed inference mechanism. The next Sect. illustrates,
through the examples, the language LPS , and the Sect. 5 presents the proposed
inference mechanism. For a more detailed and formal description of LS and LPS
languages, the reader is referred to [32, 33, 4].

4 Perspective Schema Language

The remainder of the paper, considers a simple sales scenario comprising two
data sources S1 and S2, a reference model RM, and a global schema G. The
schemata are shown in Fig. 2. All properties that are key to a relation (or class)
are shown in Fig. 2 using “]” before their names.

The language LPS , as we mentioned before, is used to define perspective
schemata. Usually, a perspective schema is formed by the following components:

1. Name is a schema name with the notation: PS|T, being S the name of one
or more base schemata and T the name of the target schema. In Fig. 1, for
instance, Ps′1|RM is a name of a perspective schema whose base is S′1 and
the target is RM;

2. ‘Require’ declarations express the subset of the components of the target
schema (classes, relations, keys, and foreign keys) that will be necessary in
the perspective schema;

3. Matching Function signatures indicate which matching functions must be
implemented to determine when two objects/tuples are distinct representa-
tions of the same object in the real-world;

4. Correspondence Assertions establish the semantic correspondence between
schemata’s components.

Valéria Magalhães Pequeno and João Moura Pires 145

The target schema may have much more information than is required to
represent in a perspective schema, namely when the target is the Reference
Model. Hence, it is necessary to clearly indicate which elements of the target
schema are in the scope of the perspective schema. This is done in LPS using
‘require’ declarations. For instance, consider the perspective schema PS2|RM be-
tween the schemata RM and S2, both as presented in Fig. 2. For this perspective
schema, four relations from RM are needed (product, customer, sale, and
sale item). The ‘require’ declaration to relation customer, for example, would
be as follows:

require(customer, {cidRM, cnameRM, cphoneRM})
Note that, for instance, the properties cregion idRM and caddressRM from

RM.customer are not declared as being required.

4.1 Matching Functions

From a conceptual viewpoint, it is essential to provide a way to identify instances
of different models that represent the same entity in the real-world in order to
combine them appropriately. This identification (we call it the instance matching
problem) usually is expensive to compute, due to the complex structure and the
character of the data. It is not part of the current research deal with the full
instance matching problem. We assume, usually like the DW designers do, that
data quality tools were used and that, for instance, duplicates were removed.
Even then, in a data integration context, the instance matching problem still
persists. The proposal presented in [4] is using MF signatures, which points
to situations that should be considered in a data integration context. These
signatures define a 1:1 correspondence between the objects/tuples in families of
corresponding classes/relations. In particular, the work shown in [4] is based on
the following matching function signature:

match : ((S1 [R1] , τ1)× (S2 [R2] , {τ2}))→ Boolean , (1)

being Si schema names, Ri class/relation names, and τi the data type of the
instances of Ri, for i ∈ {1,2}. When both arguments are instanced, match
verifies whether two instances are semantically equivalent or not. If only the first
argument is instanced (i.e., S1.R1) then it obtains the semantically equivalent
S2.R2 instance of the given S1.R1 instance, returning true when it is possible,
and false when nothing is found or when there is more than one instance to
match.

In some scenarios one-to-many correspondence between instances are com-
mon (e.g., when historical data is stored in the DW). In this case, a variant of
match should be used, which has the following form:

match : ((S1 [R1] , τ1)× (S2 [R2 (predicate)] , {τ2}))→ Boolean . (2)

In (2), predicate is a boolean condition that determines the context in which
the instance matching must be applied in S2.R2. An example of a matching
function signature involving schemata of Fig. 2 is as follows:

146 Reference Model and Perspective Schemata Inference for Enterprise Data Integration

match : ((RM [customer] , τ1)× (G [customer] , {τ2}))→ Boolean (3)

The implementation of the matching functions shall be externally provided,
since their implementation is very close to the application domain and to the
application itself.

4.2 Correspondence Assertions

The semantic correspondence between schemata’s components is declared in the
proposal presented in [4] through the CAs, which are used to formally assert
the correspondence between schema components in a declarative way. CAs are
classified in four groups: Property Correspondence Assertion (PCA), Extension
Correspondence Assertion (ECA), Summation Correspondence Assertion (SCA),
and Aggregation Correspondence Assertion (ACA). Examples of CAs are shown
in Table 1 and explained in this Sect..

Table 1. Examples of correspondence assertions

Property Correspondence Assertions (PCAs)
ψ1: PRM|G [customer] • idcardG → numberTOtext (RM [customer] • cidRM)
ψ2: PRM|G [customer] • contactG → RM [customer] • cphoneRM

Extension Correspondence Assertions (ECAs)
ψ3: PRM|G [customer]→ RM [customer]
ψ4: Sv [customer]→ S1 [customer] A./@ S2 [customer]
Summation Correspondence Assertion (SCA)
ψ5: PS3|RM [product] (pidRM)→normalise (S3 [product sales] (product num-

berS3))

PCAs relate properties of a target schema to the properties of base schemata.
They allow dealing with several kinds of semantic heterogeneity such as: nam-
ing conflict (for instance synonyms and homonyms properties), data representa-
tion conflict (that occur when similar contents are represented by different data
types), and encoding conflict (that occur when similar contents are represented
by different formats of data or unit of measures). For example, the PCAs ψ1

and ψ2 (see Table 1) deal with, respectively, data representation conflict and
naming conflict. ψ1 links the property idcardG to the property cidRM using
the function numberTOtext to convert the data type from number to text. ψ2

assigns contactG to cphoneRM .
ECAs are used to describe which objects/tuples of a base schema should

have a corresponding semantically equivalent object/tuple in the target schema.
For instance, the relation G.customer is linked to relation RM.customer
through the ECA ψ3 presented in Table 1. ψ3 determines that G.customer and
RM.customer are equivalent (i.e., for each tuple of customer of the schema

Valéria Magalhães Pequeno and João Moura Pires 147

RM there is one semantically equivalent tuple in customer of the schema G,
and vice-versa).

There are five different kinds of ECAs: equivalence, selection, difference,
union, and intersection, being the ECA of union similar to the natural outer-join
of the usual relational models. For instance, consider the view schema Sv (not
presented in any figure) with the relation customer, which is related to the
relations customer of the schemata S1 and S2 through the ECA ψ4 shown in
Table 1. ψ4 determines that customer in Sv is the union/join of customer
in S1 and customer in S2 (i.e., for each tuple in customer of S1 there is
one semantically equivalent tuple in customer of Sv, or for each tuple in cus-
tomer of S2 there is one semantically equivalent tuple in customer of Sv, and
vice-versa). In an ECA, any relation/class can appear with a selection condition,
which determines the subset of instances of the class/relation being considered.
This kind of ECA is especially important to the DW because through it the
current instances of the DW can be selected and related to the instances of their
sources (which usually do not have historical data).

SCAs are used to describe the summary of a class/relation whose instances
are related to the instances of another class/relation by breaking them into
logical groups that belong together. They are used to indicate that the relation-
ship between classes/relations involve some type of aggregate functions (called
SCA of groupby) or a normalisation process (called SCA of normalisation)1. For
example, consider the source schema S3 (not presented in any figure), which
contains a denormalised relation product sales(product numberS3, prod-
uctS3, quantityS3, priceS3, purchase orderS3) and the schema RM presented
in Fig. 2. product sales holds information about sold items in a purchase or-
der as well as information logically related to products themselves, which could
be in another relation, as occurring in schema RM. The SCA ψ5, displayed in Ta-
ble 1, determines the relationship between product sales and RM.product
when a normalisation process is involved (i.e., it determines that RM.product
is a normalisation of S3.product sales based on distinct values of property
product numberS3).

ACAs link properties of the target schema to the properties of the base
schema when a SCA is used. ACAs associated to SCAs of groupby contains
aggregation functions supported by most of the queries languages, like SQL-
99 [34] (i.e., summation, maximum, minimum, average and count). The ACAs,
similar to the PCAs, allow for the description of several kinds of situations;
therefore, the aggregate expressions can be more detailed than simple property
references. Calculations performed can include, for example, ordinary functions
(such as sum or concatenate two or more properties’ values before applying the
aggregate function), and Boolean conditions (e.g., count all male students whose
grades are greater or equal to 10).

1 This research also deals with denormalisations, which is defined using path expres-
sions (component of the language LS).

148 Reference Model and Perspective Schemata Inference for Enterprise Data Integration

5 Inference Mechanism

This proposal provides an inference mechanism to automatically infer a new
perspective schema (see Fig. 3(c)), given:

1. a set of origin schemata and their associated perspective schemata, which
take the origin schemata as base and the reference model as target (see
Fig. 3(a));

2. a destination schema and its associated perspective schema, which take the
reference model as base and the destination schema as target (see Fig. 3(b)).

Fig. 3. Sketch of the inference mechanism

In context of the Fig. 1, the perspective schema Ps′1,s′2,s4,...,sn|G can be
inferred taking as origin the schemata S′1, S′2, S4, ..., Sn as well as the perspective
schemata Ps′1|RM , Ps′2|RM , Ps4|RM , ..., Psn|RM , and as destination the schema
G as well as the perspective schema PRM |G.

The inferred perspective schema will have as base a subset of origin schemata,
and as target the destination schema. Its ‘require’ declarations will be the same
‘require’ declarations present in the perspective schema associated to the desti-
nation schema. The MF signatures and CAs of the inferred perspective schema
will be automatically generated using a rule-based rewriting system.

5.1 The Rewriting System

The rule-based rewriting system is formed by a set of rules having the general
form:

Rule :
X ⇒ Y

Z
(read X is rewritten as Y if Z is valid) , (4)

In (4), Rule is the name of the rule. X and Y can be formed by any of
the following expressions: a CA pattern expression, a MF pattern signature,
or a component pattern expression. CA pattern expressions and MF pattern
signatures are expressions conforming to the LPS syntax to declare, respectively,

Valéria Magalhães Pequeno and João Moura Pires 149

CAs and MF signatures, being that some of their elements are variables to be
used in a unification process. Component pattern expressions are expressions
conforming to the LS or the LPS syntax to represent components that can appear
in CAs or in MF signatures (e.g., properties, path expressions, functions with
n-ary arguments, values, or conditions of selection (predicates)), being that some
of their elements are variables to be used in a unification process. Z is a condition
formed by a set of CA pattern expressions, or expressions of the form A ⇒ B
such that A and B are component pattern expressions.

A condition Z is valid when all of its expressions are valid: a) the CA pattern
expression is valid if there is a CA, which is declared in one of the perspective
schemata associated to the origin or destination schemata, that unifies with it;
b) the expression of the form A⇒ B, such that A and B are component pattern
expressions, is valid if there is a rule which unifies with it and which is recursively
applied.

When X and Y are CA pattern expressions, the rules are rewritten-rules that
rewrite CAs in other CAs (RR-CAs). When X and Y are MF pattern signatures,
the rules are rewritten-rules that rewrite MFs in other MFs (RR-MFs). When
X and Y are component pattern expressions, the rules are substitution-rules
that rewrite components in other components (RR-Cs). The latter are used as
an intermediary process by the RR-CAs and RR-MFs.

An example of a RR-CA is as follows:

RR-CA1 :
PRM|D

[
CD

]→ rm
[
CRM

]⇒ PS|D
[
CD

]→ KS

PS|RM

[
CRM

]→ KS
. (5)

In (5), all variables are indicated by an underline. D is the destination schema,
RM is the reference model, and S is a variable that will be instantiated with
some of the origin schemata. CD is a variable that will be instantiated with a
class/relation of the schema D; mutatis mutandis to CRM. K is a variable that
will be instantiated with the right side of a CA pattern expression of exten-
sion. The letter S in KS means that all elements in that expression belong to
schema S. The value of S and K will depend on which CA, that is declared
in the perspective schema associated to some origin schemata, will unify with
the condition of the rule. The notation in (5) will be used through the paper to
explain examples of rules.

The rule RR-CA1 rewrites an ECA of equivalence connecting a class/rela-
tion CD to a class/relation CRM, into an ECA connecting CD to a class/relation
CS; when is provided an ECA that connect CRM to CS.

An example of a RR-MF is as follows:

RR-MF1 :

match :
((

RM
[
CRM

]
, τRM

)× (
D

[
CD

]
, τD

))→ Boolean⇒
match :

((
S

[
CS

]
, τS

)× (
D

[
CD

]
, τD

))→ Boolean

PS|RM

[
CRM

]→ S
[
CS

] .

(6)

150 Reference Model and Perspective Schemata Inference for Enterprise Data Integration

In (6), τ is a data type. The rule RR-MF1 rewrites a MF signature that
matches a class/relation CRM to a class/relation CD, into a MF signature that
matches a class/relation CS to CD, when is provided an ECA of equivalence that
connects CRM to CS.

An example of a RR-C is as follows:

RR-C1 :
rm

[
CRM

] • pRM ⇒ AS

PS|RM

[
CRM

] • pRM → AS
. (7)

In (7), pRM is a variable that will be instantiated with a property of a
class/relation (the symbol “•” means that pRM is defined in CRM). A is a
variable that will be instantiated with a component pattern expression. Similar
to KS in (5), the letter S in AS means that all elements into that expression
belong to schema S. The value of S and A will depend on which CA declared in
the perspective schema associated to some origin schemata will unify with the
condition of the rule.

The rule RR-C1 rewrites a property pRM into a property, a path expression,
or a function of some origin schema; when is provided an PCA that connects
pRM to that property, path expression, or function. The whole set of proposed
rules can be found in [35].

5.2 Implementation Issues

A pseudo-code detailing as new CAs are deduced is shown in Fig. 4.

1: procedure infer CAs(AG → ARM,CAs)
2: repeat

3: find A G → A Si applying the inference rule R:

4: R: A
G→ARM⇒AG→A Si

conditions
;

5: add A G → A Si to CAs;
6: until all rules for rewriting CAs have been tested

7: end procedure

Fig. 4. A pseudo-code of the inference mechanism to generate new CAs

In Fig. 4, G is a destination schema, RM the reference model, and Si, i ≥ 1,
origin schemata. The algorithm tries to find, for each CA of the general form AG

→ ARM (assigning the global schema to the reference model), one or more CAs
AG → ASi as a result of applying to AG → ARM some rule for rewriting CAs.
Notice that, in the condition of the rule can appear expressions of the form A
⇒ B. In this case, the recursivity will be present. In order to reduce the search
space, all rules of the inference mechanism are oriented. Let us see an example.
A new ECA:

Valéria Magalhães Pequeno and João Moura Pires 151

PS1|G [customer]→ S1 [customer]

can be created based on ψ3 (see Table 1) by using the rule RR-CA1, since the
CA ψ6 is defined in perspective schema PS1|RM (see Table 2).

Table 2. More examples of correspondence assertions

Extension Correspondence Assertion (ECA)
ψ6: PS1|RM [customer]→ S1 [customer]
ψ7: PS2|RM [customer]→ S2 [customer]

A pseudo-code detailing as new MF signatures are deduced is shown in Fig. 5.
In Fig. 5, K and L are pairs (classes/relations, data type) of the reference model
or of the destination schema, while K′ and L′ are pairs (classes/relations, data
type) of some origin or destination schemata. For each MF M that is declared in
the perspective schema associated to the destination schema, the algorithm tries
to find one or more MFs as a result of applying to M some rule for rewriting
MFs. For instance, two new MF signatures:

match:((S1[customer],τ1)×(G[customer],{τ2}))→Boolean
match:((S2[customer],τ1)×(G[customer],{τ2}))→Boolean

can be created based on MF signature presented in (3) by using the rule RR-
MF1 twice, since as the CAs ψ6 and ψ7 are defined, respectively, in perspective
schemata PS1|RM and PS2|RM (see Table 2).

1: procedure infer MFs(match:(K×L)→Boolean ,MFs)
2: repeat

3: find match:(K′×L′)→Boolean applying the inference rule R:

4: R: match:(K×L)→Boolean⇒match:(K′×L′)→Boolean

conditions
;

5: add match:(K′×L′) → Boolean to MFs;
6: until all rules for rewriting MFs have been tested

7: end procedure

Fig. 5. A pseudo-code of the inference mechanism to generate new MFs

A pseudo-code with the iteration of the process to generate a new perspective
schema is shown in Fig. 6. In Fig. 6, PT is a perspective schema from the reference
model to the global model; Pj , 1 ≤ j ≤ n, are perspective schemata from the
sources to the reference model; and PI is the inferred perspective schema from
the sources to the global model. All elements of the perspective schemata are
grouped in lists: classList, relationList, keyList, caList, and mfList. The three
first lists hold ‘require’ declarations of, respectively, classes, relations, and keys

152 Reference Model and Perspective Schemata Inference for Enterprise Data Integration

1: procedure generateNewPerspective(PT , P1, ..., Pn, PI)
2: for each CA A G → A RM in PT .caList do
3: infer CAs(A G → A RM,{A G → A Si});
4: add CAs A G → A Si to PI .caList;
5: end for

6: for each MF m in PT .mfList do
7: infer MFs(m ,{m ′i});
8: add MFs m ′i to PI .mfList
9: end for

10: for each E in classList/relationList/keyList do
11: create a require declaration to PI ;
12: add it, appropriately, to PI .classList/
13: PI .relationList/PI .keyList
14: end for

15: end procedure

Fig. 6. A pseudo-code to the creation of inferred perspective schemata

(including foreign keys). caList contains CA declarations, and mfList has MF
signatures.

This mechanism has been developed as part of a proof-of-concept prototype
using a Prolog language. Beside the inference mechanism module, the prototype
consists of another five modules, such as the schema manager, and the ISCO
translator. The schema manager module is employed by the designer to manage
the schemata (in language LS) as well as the perspective schemata (in language
LPS). The ISCO translator performs the mapping between schemata written
in LS or LPS languages to schemata defined in a language programming called
Information Systems Construction (ISCO) language [36]. ISCO is based on a
contextual constraint logic programming that allows the construction of infor-
mation systems. It can define (object) relational schemata, represent data, and
transparently access data from various heterogeneous sources in a uniform way,
like a mediator system [37]. Thus, it is possible to access data from information
sources using the perspective schema in ISCO. Furthermore, once the perspec-
tive schema from source schemata to the global schema has been inferred, as
well as the new match functions have been implemented, it can be translated
to ISCO language and so the data of the global schema can be queried. Details
about the prototype can be found in [38].

6 Conclusions and Future Works

In this paper, the authors have presented a proposal to automatically connect
a global schema to its sources by using an inference mechanism taking into
account a reference model. The proposal approach makes clear the mappings
that there are in a DW system, and uncouples them in order to make their
maintenance easier. Besides, the relationship between the global schema and the

Valéria Magalhães Pequeno and João Moura Pires 153

source schemata is made explicitly and declaratively through correspondence
assertions.

The current approach is particularly useful in data integration systems that
define a common or canonical schema, such as in DW systems and in FDBSs.
An advantage of the proposed approach is that by using the reference model the
designer does not need to have an in depth knowledge of all schemata involved
in the DW system or in the FDBSs, since each schema (source or global) needs
to be related only to the reference model. Thus, the effort to describe the map-
pings between schemata is reduced, since mappings between the DW and each
sources (and between sources themselves) is automatically done by the inference
mechanism. Besides, the DW designer can describe the global system without
concerns about where the sources are or how they are stored. The inference
mechanism also allows that changes changes in the actual source schemata, in
the global schema, or in the mapping between schemata, which are common in
the life cycle of any system, are completely transparent to the DW systems (or
FDBSs).

Another advantage of our approach is that the process of data integration
can be incrementally done in two ways:

1. View schemata can be created as a middle process to relate sections of data
that have been integrated (those view schemata, in turn, are related to the
reference model). Thus the data integration process can be divided in small
parts, rather than being seen as a whole, making the integration task easier.

2. New source schemata can be added gradually, due to the inference mecha-
nism.

A prototype Prolog-based has been developed to allow the description of
schemata and perspective schemata in the proposed language as well as to infer
new perspective schemata based on other ones. The matching functions can be
implemented using Prolog itself or external functions. In addition, the prototype
includes translators from the proposed language to the ISCO one. ISCO [36]
allows access to heterogeneous data sources and to perform arbitrary compu-
tations. Thus, user-queries can be done, in a transparent way, to access the
information sources, like occurs in mediator systems [37].

For future work, investigations will be made into how the perspective schemata
can be used to automate the materialisation of the data in the DWs or in another
repository of a data integration environment. Another important direction for
future work is the development of a graphical user-friendly interface to declare
the schemata in the proposed language, and thus, to hide some syntax details.

References

1. Imhoff, C., Galemmo, N., Geiger, J.G.: Mastering Data Warehouse Design - Rela-
tional and Dimensional Techniques. Wiley Publishing (2003)

2. Geiger, J.G.: Why build a data model? Information Management Magazine (June
2009)

154 Reference Model and Perspective Schemata Inference for Enterprise Data Integration

3. Moody, D.L.: From enterprise models to dimensional models: A methodology for
data warehouse and data mart design. In: Proc. of the Intl. Workshop on Design
and Management of Data Warehouses. (2000)

4. Pequeno, V.M., Pires, J.C.G.M.: Using perspective schemata to model the ETL
process. In: ICMIS 2009 :Intl. Conf. on Management Information Systems, France
(June 2009)

5. Halevy, A.Y., Rajaraman, A., Ordille, J.J.: Data integration: The teenage years.
In: VLDB. (2006) 9–16

6. Stumptner, M., Schrefl, M., Grossmann, G.: On the road to behavior-based in-
tegration. In: APCCM: First Asia-Pacific Conf. on Conceptual Modelling. (2004)
15–22

7. Louie, B., Mork, P., Martin-Sanchez, F., Halevy, A., Tarczy-Hornoch, P.: Data
integration and genomic medicine. Journal of Biomedical Informatics 40 (2007)
5–13

8. Naidu, P.G., Palakal, M.J., Hartanto, S.: On-the-fly data integration models for
biological databases. In: SAC’07: Proc. of the 2007 ACM symp. on Applied com-
puting, USA, ACM (2007) 118–122

9. Yoakum-Stover, S., Malyuta, T.: Unified architecture for integrating intelligence
data. In: DAMA: Europe Conf., UK (2008)

10. Vidal, V.M.P., Lóscio, B.F., Salgado, A.C.: Using correspondence assertions for
specifying the semantics of XML-based mediators. In: Workshop on Information
Integration on the Web. (2001) 3–11

11. Ives, Z.G., Knoblock, C.A., Minton, S., Jacob, M., Talukdar, P.P., Tuchinda, R.,
Ambite, J.L., Muslea, M., Gazen, C.: Interactive data integration through smart
copy & paste. In: CIDR:4th Biennial Conference on Innovative Data Systems
Research, www.crdrdb.org (2009)

12. Mccann, R., Doan, A., Varadarajan, V., Kramnik, E.: Building data integration
systems via mass collaboration. In: WebDB: Intl. Workshop on the Web and
Databases, USA (2003)

13. Berger, S., Schrefl, M.: From federated databases to a federated data warehouse
system. In: HICSS’08: 41st Annual Hawaii Intl. Conf. on System Sciences, USA,
IEEE Computer Society (2008) 394

14. Dori, D., Feldman, R., Sturm, A.: From conceptual models to schemata: An object-
process-based data warehouse construction method. Inf. Syst. 33(6) (2008) 567–
593

15. Malinowski, E., Zimányi, E.: A conceptual model for temporal data warehouses
and its transformation to the ER and the object-relational models. Data knowl.
eng. 64(1) (2008) 101–133

16. Pérez, J.M., Berlanga, R., Aramburu, M.J., Pedersen, T.B.: A relevance-extended
multi-dimensional model for a data warehouse contextualized with documents.
In: DOLAP’05: Proc. of the 8th ACM Intl. Workshop on Data Warehousing and
OLAP, USA, ACM (2005) 19–28

17. Golfarelli, M., Maniezzo, V., Rizzi, S.: Materialization of fragmented views in
multidimensional databases. Data Knowl. Eng. 49(3) (2004) 325–351

18. Husemann, B., Lechtenborger, J., Vossen, G.: Conceptual data warehouse model-
ing. In: DMDW: Design and Management of Data Warehouses. (2000) 6

19. Rizzi, S.: Conceptual modeling solutions for the data warehouse. In Data Ware-
housing and Mining: Concepts, Methodologies, Tools, and Applications (2008)
208–227 copyright 2008 by Information Science Reference, formerly known as Idea
Group Reference (an imprint of IGI Global).

Valéria Magalhães Pequeno and João Moura Pires 155

20. Wrembel, R.: On a formal model of an object-oriented database with views sup-
porting data materialisation. In: Proc. of the Conf. on Advances in Databases and
Information Systems. (1999) 109–116

21. Franconi, E., Kamble, A.: A data warehouse conceptual data model. In: SS-
DBM’04: Proc. of the 16th Intl. Conf. on Scientific and Statistical Database Man-
agement, USA, IEEE Computer Society (2004) 435–436

22. Kamble, A.S.: A conceptual model for multidimensional data. In: APCCM’08:
Proc. of the 15th on Asia-Pacific Conf. on Conceptual Modelling, Australia, Aus-
tralian Computer Society, Inc. (2008) 29–38

23. Sapia, C., Blaschka, M., Höfling, G., Dinter, B.: Extending the E/R model for the
multidimensional paradigm. In: Proc. of the Workshops on Data Warehousing and
Data Mining. (1999) 105–116

24. Tryfona, N., Busborg, F., Christiansen, J.G.B.: starER: a conceptual model for
data warehouse design. In: DOLAP’99: Proc. of the 2nd ACM Intl. Workshop on
Data warehousing and OLAP, USA, ACM (1999) 3–8

25. Luján-Mora, S., Trujillo, J., Song, I.Y.: A UML profile for multidimensional mod-
elling in data warehouses. Data Knowl. Eng. 59(3) (2005) 725–769

26. Nguyen, T.B., Tjoa, A.M., Wagner, R.: An object oriented multidimensional data
model for OLAP. In: Web-Age Inf. Management. (2000) 69–82

27. Trujillo, J., Palomar, M., Gómez, J.: Applying object-oriented conceptual modeling
techniques to the design of multidimensional databases and OLAP applications.
In: WAIM’00: Proc. of the 1st Intl. Conf. on Web-Age Information Management,
UK, Springer-Verlag (2000) 83–94

28. Skoutas, D., Simitsis, A.: Designing ETL processes using semantic web technolo-
gies. In: DOLAP’06: Proceedings of the 9th ACM international workshop on Data
warehousing and OLAP, USA, ACM (2006) 67–74

29. Calvanese, D., Dragone, L., Nardi, D., Rosati, R., Trisolini, S.M.: Enterprise mod-
eling and data warehousing in TELECOM ITALIA. Inf. Syst. 31(1) (2006) 1–32

30. Codd, E.F.: A relational model of data for large shared data banks. In: Commu-
nications of the ACM. (1970) 377–387

31. Cattell, R.G., Barry, D., eds.: The Object Database Standard ODMG 3.0. Morgan
Kaufmann Publishers (2000)

32. Pequeno, V.M., Pires, J.C.G.M.: A formal object-relational data warehouse model.
Technical report, Universidade Nova de Lisboa (November 2007)

33. Pequeno, V.M., Pires, J.C.G.M.: Using perspective schemata to model the ETL
process. Technical report, Universidade Nova de Lisboa (2009)

34. Elmasri, R., Navathe, S.B.: Fundamentals of database systems. 5th edn. Addison
Wesley (2006)

35. Pequeno, V.M., Pires, J.C.G.M.: Reference model and perspective schemata in-
ference for enterprise data integration. Technical report, Universidade Nova de
Lisboa (2009)

36. Abreu, S., Nogueira, V.: Using a logic programming language with persistence and
contexts. In: INAP’05: 16th Intl. Conf. on applications of declarative programming
and knowledge management. Volume 4369 of Lecture Notes in Computer Science.,
Springer (2006) 38–47 (Revised Selected Papers).

37. Wiederhold, G.: Mediators in the architecture of future information systems. Com-
puter 25(3) (1992) 38–49

38. Pequeno, V.M., Abreu, S., Pires, J.C.G.M.: Using contextual logic programming
language to acess data in warehousing systems. In: 14th Portuguese Conference
on Artificial Intelligence, Portugal (October 2009) (to appear).

156 Reference Model and Perspective Schemata Inference for Enterprise Data Integration

A Very Compact and Efficient Representation
of List Terms for Tabled Logic Programs

João Raimundo and Ricardo Rocha

DCC-FC & CRACS, University of Porto
Rua do Campo Alegre, 1021/1055, 4169-007 Porto, Portugal

{jraimundo,ricroc}@dcc.fc.up.pt

Abstract. Tabling is an implementation technique that overcomes some
limitations of traditional Prolog systems in dealing with redundant sub-
computations and recursion. A critical component in the implementation
of an efficient tabling system is the design of the data structures and al-
gorithms to access and manipulate tabled data. Arguably, the most suc-
cessful data structure for tabling is tries, which is regarded as a very com-
pact and efficient data structure for term representation. Despite these
good properties, we found that, for list terms, we can design even more
compact and efficient representations. We thus propose a new represen-
tation of list terms for tries that avoids the recursive nature of the WAM
representation of list terms in which tries are based. Our experimental
results using the YapTab tabling system show a significant reduction in
the memory usage for the trie data structures and impressive gains in
the running time for storing and loading list terms.

Key words: Tabling Logic Programming, Table Space, Implementation.

1 Introduction

Tabling [1] is an implementation technique that overcomes some limitations of
traditional Prolog systems in dealing with redundant sub-computations and re-
cursion. Tabling has become a popular and successful technique thanks to the
ground-breaking work in the XSB Prolog system and in particular in the SLG-
WAM engine [2]. The success of SLG-WAM led to several alternative implemen-
tations that differ in the execution rule, in the data-structures used to implement
tabling, and in the changes to the underlying Prolog engine. Implementations
of tabling are now widely available in systems like Yap Prolog, B-Prolog, ALS-
Prolog, Mercury and more recently Ciao Prolog.

A critical component in the implementation of an efficient tabling system
is the design of the data structures and algorithms to access and manipulate
tabled data. Arguably, the most successful data structure for tabling is tries [3].
Tries are trees in which common prefixes are represented only once. The trie
data structure provides complete discrimination for terms and permits lookup
and possibly insertion to be performed in a single pass through a term, hence
resulting in a very compact and efficient data structure for term representation.

João Raimundo and Ricardo Rocha 157

When representing terms in the trie, most tabling engines, like XSB Prolog,
Yap Prolog and others, try to mimic the WAM [4] representation of these terms
in the Prolog stacks in order to avoid unnecessary transformations when stor-
ing/loading these terms to/from the trie. Despite this idea seems straightforward
for almost all type of terms, we found that this is not the case for list terms (also
known as pair terms) and that, for list terms, we can design even more compact
and efficient representations.

In Prolog, a non-empty list term is formed by two sub-terms, the head of the
list, which can be any Prolog term, and the tail of the list, which can be either a
non-empty list (formed itself by a head and a tail) or the empty list. WAM based
implementations explore this recursive nature of list terms to design a very simple
representation at the engine level that allows for very robust implementations
of key features of the WAM, like the unification algorithm, when manipulating
list terms. However, when representing terms in the trie, the recursive nature of
the WAM representation of list terms is negligible as we are most interested in
having a compact representation with fast lookup and insertion capabilities.

In this paper, we thus propose a new representation of list terms for tabled
data that gets around the recursive nature of the WAM representation of list
terms. In our new proposal, a list term is simply represented as the ordered
sequence of the term elements in the list, i.e., we only represent the head terms
in the sub-lists and avoid representing the sub-lists’ tails themselves. Our ex-
perimental results show a significant reduction in the memory usage for the trie
data structures and impressive gains in the running time for storing and loading
list terms with and without compiled tries. We will focus our discussion on a
concrete implementation, the YapTab system [5], but our proposals can be easy
generalized and applied to other tabling systems.

The remainder of the paper is organized as follows. First, we briefly introduce
some background concepts about tries and the table space. Next, we introduce
YapTab’s new design for list terms representation. Then, we discuss the implica-
tions of the new design and describe how we have extended YapTab to provide
engine support for it. At last, we present some experimental results and we end
by outlining some conclusions.

2 Tabling Tries

The basic idea behind tabling is straightforward: programs are evaluated by
storing answers for tabled subgoals in an appropriate data space, called the
table space. Repeated calls to tabled subgoals1 are not re-evaluated against the
program clauses, instead they are resolved by consuming the answers already
stored in their table entries. During this process, as further new answers are
found, they are stored in their tables and later returned to all repeated calls.

Within this model, the table space may be accessed in a number of ways: (i)
to find out if a subgoal is in the table and, if not, insert it; (ii) to verify whether

1 A subgoal repeats a previous subgoal if they are the same up to variable renaming.

158 A Very Compact and Efficient Representation of List Terms for Tabled Logic Programs

a newly found answer is already in the table and, if not, insert it; and (iii) to
load answers to repeated subgoals. With these requirements, a correct design of
the table space is critical to achieve an efficient implementation. YapTab uses
tries which is regarded as a very efficient way to implement the table space [3].

A trie is a tree structure where each different path through the trie data
units, the trie nodes, corresponds to a term described by the tokens labelling the
nodes traversed. For example, the tokenized form of the term f(X, g(Y,X), Z) is
the sequence of 6 tokens < f/3, V AR0, g/2, V AR1, V AR0, V AR2 > where each
variable is represented as a distinct V ARi constant [6]. An essential property of
the trie structure is that common prefixes are represented only once. Two terms
with common prefixes will branch off from each other at the first distinguishing
token. Figure 1 shows an example for a trie with three terms. Initially, the trie
contains the root node only. Next, we store the term f(X, a) and three trie nodes
are inserted: one for the functor f/2, a second for variable X (V AR0) and one
last for constant a. The second step is to store g(X,Y). The two terms differ on
the main functor, so tries bring no benefit here. In the last step, we store f(Y, 1)
and we save the two common nodes with f(X, a).

f/2

VAR0

a1

root

g/2

VAR0

VAR1

Fig. 1. Representing terms f(X, a), g(X, Y) and f(Y, 1) in a trie

To increase performance, YapTab implements tables using two levels of tries:
one for subgoal calls; the other for computed answers. More specifically:

– each tabled predicate has a table entry data structure assigned to it, acting
as the entry point for the predicate’s subgoal trie.

– each different subgoal call is represented as a unique path in the subgoal trie,
starting at the predicate’s table entry and ending in a subgoal frame data
structure, with the argument terms being stored within the path’s nodes.
The subgoal frame data structure acts as an entry point to the answer trie.

– each different subgoal answer is represented as a unique path in the answer
trie. Contrary to subgoal tries, answer trie paths hold just the substitution
terms for the free variables which exist in the argument terms of the corre-
sponding subgoal call. This optimization is called substitution factoring [3].

João Raimundo and Ricardo Rocha 159

An example for a tabled predicate t/2 is shown in Fig. 2. Initially, the subgoal
trie is empty2. Then, the subgoal t(X, f(1)) is called and three trie nodes are
inserted: one for variable X (V AR0), a second for functor f/1 and one last for
constant 13. The subgoal frame is inserted as a leaf, waiting for the answers. Next,
the subgoal t(X,Y) is also called. The two calls differ on the second argument, so
we need an extra node to represent variable Y (V AR1) followed by a new subgoal
frame. At the end, the answers for each subgoal are stored in the corresponding
answer trie as their values are computed. Subgoal t(X, f(1) has two answers,X =
f(1) and X = f(Z), so we need three trie nodes to represent both: a common
node for functor f/1 and two nodes for constant 1 and variable Z (V AR0)4.
For subgoal t(X,Y) we have four answers, resulting from the combination of the
answers f(1) and f(Z) for variables X and Y , which requires nine trie nodes.

subgoal frame for
t(VAR0,f(1))

f/1

VAR0

VAR1

subgoal
trie

:- table t/2.

t(X,Y) :- term(X),
 term(Y).

term(f(1)).
term(f(Z)). 1

table entry for t/2

answer
trie

f/1

1VAR0

subgoal frame for
t(VAR0,VAR1)

answer
trie

f/1

1VAR0

f/1

1VAR1

f/1

1VAR1

f
i
r
s
t

a
n
s
w
e
r

l
a
s
t

a
n
s
w
e
r

Fig. 2. YapTab table organization

Leaf answer trie nodes are chained in a linked list in insertion time order,
so that we can recover answers in the same order they were inserted. The sub-
goal frame points to the first and last answer in this list. Thus, a repeated call

2 In order to simplify the presentation of the following illustrations, we will omit the
representation of the trie root nodes.

3 Note that for subgoal tries, we can avoid inserting the predicate name, as it is already
represented in the table entry.

4 The way variables are numbered in a trie is specific to each trie and thus there is no
correspondence between variables sharing the same number in different tries.

160 A Very Compact and Efficient Representation of List Terms for Tabled Logic Programs

only needs to point at the leaf node for its last loaded answer, and consumes
more answers by just following the chain. To load an answer, the trie nodes are
traversed in bottom-up order and the answer is reconstructed.

On completion of a subgoal, a strategy exists that avoids answer recovery
using bottom-up unification and performs instead what is called a completed
table optimization. This optimization implements answer recovery by top-down
traversing the completed answer tries and by executing dynamically compiled
WAM-like instructions from the answer trie nodes. These dynamically compiled
instructions are called trie instructions and the answer tries that consist of these
instructions are called compiled tries [3]. Compiled tries are based on the obser-
vation that all common prefixes of the terms in a trie are shared during execution
of the trie instructions. Thus, when backtracking through the terms of a trie that
is represented using the trie instructions, each edge of the trie is traversed only
once. Figure 3 shows the compiled trie for subgoal call t(V AR0, V AR1) in Fig. 2.

f/1

1VAR0

f/1

1VAR1

f/1

VAR1

try_var

do_struct

try_var

do_struct

trust_atom

trust_atom

do_struct

try_var 1trust_atom

Fig. 3. Compiled trie for subgoal call t(V AR0, V AR1) in Fig. 2

Each trie node is compiled accordingly to its position in the list of sibling
nodes and to the term type it represents. For each term type there are four
specialized trie instructions. First nodes in a list of sibling nodes are compiled
using try ? instructions, intermediate nodes are compiled using retry ? instruc-
tions, and last nodes are compiled using trust ? instructions. Trie nodes without
sibling nodes are compiled using do ? instructions. For example, for atom terms,
the trie instructions are: try atom, retry atom, trust atom and do atom. As the
try ?/retry ?/trust ? instructions denote the choice possibilities when travers-
ing top-down an answer trie, at the engine level, they allocate and manipulate
a choice point in a manner similar to the generic try/retry/trust WAM instruc-
tions, but here the failure continuation points to the next sibling node. The do ?
instructions denote no choice and thus they don’t allocate choice points.

The implementation of tries requires the following fields per trie node: a first
field (token) stores the token for the node, a second (child), third (parent) and
fourth (sibling) fields store pointers respectively to the first child node, to the
parent node, and to the next sibling node. For the answer tries, an additional
fifth field (code) is used to support compiled tries.

João Raimundo and Ricardo Rocha 161

3 Representation of List Terms

In this section, we introduce YapTab’s new design for the representation of list
terms. In what follows, we will refer to the original design as standard lists and
to our new design as compact lists. Next, we start by briefly introducing how
standard lists are represented in YapTab and then we discuss in more detail the
new design for representing compact lists.

3.1 Standard Lists

YapTab follows the seminal WAM representation of list terms [4]. In YapTab,
list terms are recursive data structures implemented using pairs, where the first
pair element, the head of the list, represents a list element and the second pair
element, the tail of the list, represents the list continuation term or the end of
the list. In YapTab, the end of the list is represented by the empty list atom [].
At the engine level, a pair is implemented as a pointer to two contiguous cells,
the first cell representing the head of the list and the second the tail of the list.
In YapTab, as we will see next, the tail of a list can be any term. Figure 4(a)
shows YapTab’s WAM representation for lists in more detail.

Alternatively to the standard notation for list terms, we can use the pair
notation [H|T], where H denotes the head of the list and T denotes its tail. For
example, the list term [1, 2, 3] in Fig. 4 can be alternatively denoted as [1|[2, 3]],
[1|[2|[3]]] or [1|[2|[3|[]]]]. The pair notation is also useful when the tail of a list
is neither a continuation list nor the empty list. See, for example, the list term
[1, 2|3] in Fig. 4(a) and its corresponding WAM representation. In what follows,
we will refer to these lists as term-ending lists and to the lists ending with the
empty list atom as empty-ending lists.

(a) WAM Representation

PAIR

PAIR

1

PAIR

3

[]

1

PAIR

...

2

PAIR

...

2

3

[]

PAIR

...

(b) Original Trie Design

1

PAIR

...

2

3

...

PAIR

...

List Term
[1,2,3]

List Term
[1,2|3]

PAIR

3

1

PAIR

2

List Term
[1,2,3]

List Term
[1,2|3]

Fig. 4. YapTab’s WAM representation and original trie design for standard lists

162 A Very Compact and Efficient Representation of List Terms for Tabled Logic Programs

Regarding the trie representation of lists, the original YapTab design, as most
tabling engines, including XSB Prolog, tries to mimic the corresponding WAM
representation. This is done by making a direct correspondence between each
pair pointer at the engine level and a trie node labelled with the special token
PAIR. For example, the tokenized form of the list term [1, 2, 3] is the sequence
of 7 tokens < PAIR, 1, PAIR, 2, PAIR, 3, [] >. Figure 4(b) shows in more detail
YapTab’s original trie design for the list terms represented in Fig. 4(a).

3.2 Compact Lists

In this section, we introduce the new design for the representation of list terms.
The discussion we present next tries to follow the different approaches that we
have considered until reaching our current final design. The key idea common to
all these approaches is to avoid the recursive nature of the WAM representation
of list terms and have a more compact representation where the unnecessary
intermediate PAIR tokens are removed.

Figure 5 shows our initial approach. In this first approach, all intermediate
PAIR tokens are removed and a compact list is simply represented by its term
elements surrounded by a begin and a end list mark, respectively, the BLIST
and ELIST tokens. Figure 5(a) shows the tokenized form of the empty-ending
list [1, 2, 3] that now is the sequence of 6 tokens < BLIST, 1, 2, 3, [], ELIST >
and the tokenized form of the term-ending list [1, 2|3] that now is the sequence
of 5 tokens < BLIST, 1, 2, 3, ELIST >.

Our approach clearly outperforms the standard lists representation when
representing individual lists (except for the base cases of list terms of sizes 1 to
3). It requires about half the nodes when representing individual lists. For an
empty-ending list of S elements, standard lists require 2S + 1 trie nodes and

BLIST

[]

1

2

ELIST

3

BLIST

ELIST

1

2

3

BLIST

[]

1

2

ELIST

3

BLIST

ELIST

1

2

3

[]

ELIST

4

ELIST

4

BLIST

[]

1

2

ELIST

3

[]

ELIST

4

3

2

List Term
[1,2,3]

List Term
[1,2|3]

List Terms
[1,2,3]
[2,3,4]

List Terms
[1,2,3]
[1,2,4]

List Terms
[1,2|3]
[1,2|4]

(a) (b)

Fig. 5. Trie design for compact lists: initial approach

João Raimundo and Ricardo Rocha 163

compact lists require S+3 nodes. For a term-ending list of S elements, standard
lists require 2S − 1 trie nodes and compact lists require S + 2 nodes.

Next, in Fig. 5(b) we try to illustrate how this approach behaves when we
represent more than a list in the same trie. It presents three different situations:
the first situation shows two lists with the first element different (a kind of worst
case scenario); the second and third situations show, respectively, two empty-
ending and two term-ending lists with the last element different (a kind of best
case scenario).

Now consider that we generalize these situations and represent in the same
trie N lists of S elements each. Our approach is always better for the first
situation, but this may not be the case for the second and third situations. For
the second situation (empty-ending lists with last element different), standard
lists require 2N + 2S − 1 trie nodes and compact lists require 3N + S nodes
and thus, if N > S − 1 then standard lists is better. For the third situation
(term-ending lists with last element different), standard lists require N + 2S− 2
trie nodes and compact lists require 2N +S nodes and again, if N > S− 2 then
standard lists is better.

The main problem with this approach is that it introduces an extra token in
the end of each list, the ELIST token, that do not exists in the representation
of standard lists. To avoid this problem, we have redesigned our compact lists
representation in such a way that the ELIST token appears only once for lists
with the last element different. Figure 6 shows our second approach for the
representation of compact lists.

In this second approach, a compact list still contains the begin and end list
tokens, BLIST and ELIST, but now the ELIST token plays the same role of
the last PAIR token in standard lists, i.e., it marks the last pair term in the
list. Figure 6(a) shows the new tokenized form of the empty-ending list [1, 2, 3]

BLIST

3

1

2

[]

ELIST

BLIST

3

1

ELIST

2

BLIST

3

1

2

[]

ELIST

BLIST

3

1

ELIST

2

4

[]

4

BLIST

3

1

2

[]

ELIST

4

[]

ELIST

3

2

List Term
[1,2,3]

List Term
[1,2|3]

List Terms
[1,2,3]
[2,3,4]

List Terms
[1,2,3]
[1,2,4]

List Terms
[1,2|3]
[1,2|4]

(a) (b)

Fig. 6. Trie design for compact lists: second approach

164 A Very Compact and Efficient Representation of List Terms for Tabled Logic Programs

that now is < BLIST, 1, 2, ELIST, 3, [] >, and the new tokenized form of the
term-ending list [1, 2|3] that now is < BLIST, 1, ELIST, 2, 3 >.

Figure 6(b) illustrates again the same three situations showing how this sec-
ond approach behaves when we represent more than a list in the same trie. For
the first situation, the second approach is identical to the initial approach. For
the second and third situations, the second approach is not only better than the
initial approach, but also better than the standard lists representation (except
for the base cases of list terms of sizes 1 and 2).

Consider again the generalization to represent in the same trie N lists of S
elements each. For the second situation (empty-ending lists with last element
different), compact lists now require 2N +S + 1 trie nodes (the initial approach
for compact lists require 3N + S nodes and standard lists require 2N + 2S − 1
nodes). For the third situation (term-ending lists with last element different),
compact lists now require N +S+1 trie nodes (the initial approach for compact
lists require 2N +S nodes and standard lists require N + 2S−2 nodes). Despite
these better results, this second approach still contains some drawbacks that
can be improved. Figure 7 shows our final approach for the representation of
compact lists.

In this final approach, we have redesigned our previous approach in such a
way that the empty list token [] was avoided in the representation of empty-
ending lists. Note that, in our previous approaches, the empty list token is what
allows us to distinguish between empty-ending lists and term-ending lists. As we
need to maintain this distinction, we cannot simply remove the empty list token
from the representation of compact lists. To solve that, we use a different end
list token, EPAIR, for term-ending lists. Hence, the ELIST token marks the last
element in an empty-ending list and the EPAIR token marks the last element
in an term-ending list. Figure 7(a) shows the new tokenized form of the empty-
ending list [1, 2, 3] that now is < BLIST, 1, 2, ELIST, 3 >, and the new tokenized
form of the term-ending list [1, 2|3] that now is < BLIST, 1, 2, EPAIR, 3 >.

BLIST

3

1

2

ELIST

BLIST

3

1

2

EPAIR

BLIST

3

1

2

ELIST

BLIST

3

1

2

EPAIR

4 4

BLIST

3

1

2

ELIST

4

ELIST

3

2

List Term
[1,2,3]

List Term
[1,2|3]

List Terms
[1,2,3]
[2,3,4]

List Terms
[1,2,3]
[1,2,4]

List Terms
[1,2|3]
[1,2|4]

(a) (b)

Fig. 7. Trie design for compact lists: final approach

João Raimundo and Ricardo Rocha 165

Figure 7(b) illustrates again the same three situations showing how this final
approach behaves when we represent more than a list in the same trie. For the
three situations, this final approach clearly outperforms all the other represen-
tations for standard and compact lists. For lists with the first element different
(first situation), it requires NS + N + 1 trie nodes for both empty-ending and
term-ending lists. For lists with the last element different (second and third situ-
ations), it requires N +S+ 1 trie nodes for both empty-ending and term-ending
lists. Table 1 summarizes the comparison between all the approaches regarding
the number of trie nodes required to represent in the same trie N list terms of
S elements each.

List Terms
Standard Compact Lists

Lists Initial Second Final

First element different
N [E1, ..., ES−1, ES] 2NS + 1 NS + 2N + 1 NS + 2N + 1 NS + N + 1
N [E1, ..., ES−1|ES] 2NS − 2N + 1 NS + N + 1 NS + N + 1 NS + N + 1

Last element different
N [E1, ..., ES−1, ES] 2N + 2S − 1 3N + S 2N + S + 1 N + S + 1
N [E1, ..., ES−1|ES] N + 2S − 2 2N + S N + S + 1 N + S + 1

Table 1. Number of trie nodes to represent in the same trie N list terms of S elements
each, using the standard lists representation and the three compact lists approaches

4 Compiled Tries for Compact Lists

We then discuss the implications of the new design in the completed table opti-
mization and describe how we have extended YapTab to support compiled tries
for compact lists.

We start by presenting in Fig. 8(a) the compiled trie code for the standard
list [1, 2, 3]. For standard lists, each PAIR token is compiled using one of the
? list trie instructions. At the engine level, these instructions create a new pair
term in the heap stack and then they bind the previous tail element of the list
being constructed to the new pair.

Figure 8(b) shows the new compiled trie code for compact lists. In the new
representation for compact lists, the PAIR tokens were removed. Hence, we need
to include the pair terms creation step in the trie instructions associated with
the elements in the list, except for the last list element. To do that, we have
extended the set of trie instructions for each term type with four new specialized
trie instructions: try ? in list, retry ? in list, trust ? in list and do ? in list. For
example, for atom terms, the new set of trie instructions is: try atom in list,
retry atom in list, trust atom in list and do atom in list. The ELIST tokens are
compiled using ? ending list instructions and the BLIST and EPAIR tokens
are compiled using ? void instructions. At the engine level, the ? ending list

166 A Very Compact and Efficient Representation of List Terms for Tabled Logic Programs

(b) Compact Lists

PAIR

1

PAIR

2

do_atom

do_list

do_atom

do_list

PAIR

3

[]

do_list

do_atom

do_atom

BLIST

1

2

ELIST

do_atom_in_list

do_atom_in_list

do_ending_list

do_void

3do_atom

(a) Standard Lists

BLIST

1

2

EPAIR

do_atom_in_list

do_atom_in_list

do_void

do_void

3do_atom

Fig. 8. Comparison between the compiled trie code for standard and compact lists

instructions also create a new pair term in the heap stack to be bound with the
previous tail element of the list being constructed. Besides, in order to denote
the end of the list, they bind the tail of the new pair with the empty list atom
[]. The ? void instructions do nothing. Note however that the trie nodes for
the tokens BLIST and EPAIR cannot be avoided because they are necessary to
mark the beginning and the end of list terms when traversing the answer tries
bottom-up, and to distinguish between a term t and the list term whose first
element is t.

Next we present in Fig. 9, two more examples showing how list terms includ-
ing compound terms, the empty list term and sub-lists are compiled using the
compact lists representation. The tokenized form of the list term [f(1, 2), [], g(a)]
is the sequence of 8 tokens < BLIST, f/2, 1, 2, [], ELIST, g/1, a > and
the tokenized form of the list term [1, [2, 3], []] is the sequence of 8 tokens
< BLIST, 1, BLIST, 2, ELIST, 3, ELIST, [] >. To see how the new trie in-
structions for compact lists are associated with the tokens representing list ele-
ments, please consider a tokenized form where the tokens representing common
list elements are explicitly aggregated:

[f(1, 2), [], g(a)]: < BLIST, < f/2, 1, 2 >, [], ELIST, < g/1, a >>
[1, [2, 3], []]: < BLIST, 1, < BLIST, 2, ELIST, 3 >, ELIST, [] >.

The tokens that correspond to first tokens in each list element are the ones
that need to be compiled with the new ? in list trie instructions (please see
Fig. 9 for full details).

5 Experimental Results

We next present some experimental results comparing YapTab with and without
support for compact lists. The environment for our experiments was an Intel(R)

João Raimundo and Ricardo Rocha 167

BLIST

f/2

1

2

do_struct_in_list

do_atom

do_atom

do_void

[]do_atom_in_list

List Term
[f(1,2),[],g(a)]

ELIST

g/1

do_ending_list

do_struct

ado_atom

BLIST

1

BLIST

2

do_atom_in_list

do_void_in_list

do_atom_in_list

do_void

ELISTdo_ending_list

List Term
[1,[2,3],[]]

3

ELIST

do_atom

do_ending_list

[]do_atom

Fig. 9. Compiled trie code for the compact lists [f(1, 2), [], g(a)] and [1, [2, 3], []]

Core(TM)2 Quad 2.66GHz with 2 GBytes of main memory and running the
Linux kernel 2.6.24-24-generic with YapTab 6.0.0.

To put the performance results in perspective, we have defined a top query
goal that calls recursively a tabled predicate list terms/1 that simply stores in
the table space list terms facts. We experimented the list terms/1 predicate
using 100,000 list terms of sizes 60, 80 and 100 for empty-ending and term-ending
lists with the first and with the last element different.

Tables 2 and 3 show the table memory usage (columns Mem), in KBytes,
and the running times, in milliseconds, to store (columns Store) the tables (first
execution) and to load from the tables (second execution) the complete set of
answers without (columns Load) and with (columns Cmp) compiled tries for
YapTab using standard lists (column YapTab) and using the final design for
compact lists (column YapTab+CL / YapTab). For compact lists, we only
show the memory and running time ratios over YapTab using standard lists. The
running times are the average of five runs.

As expected, the memory results obtained in these experiments are consistent
with the formulas presented in Table 1. The results in Tables 2 and 3 clearly
confirm that the new trie design based on compact lists can decrease significantly
memory usage when compared with standard lists. In particular, for empty-
ending lists, with the first and with the last element different, and for term-
ending lists with the first element different, the results show an average reduction
of 50%. For term-ending lists with the last element different, memory usage is
almost the same. This happens because the memory reduction obtained in the
representation of the common list elements (respectively 59, 79 and 99 elements

168 A Very Compact and Efficient Representation of List Terms for Tabled Logic Programs

Empty-Ending Lists
YapTab YapTab+CL / YapTab

Mem Store Load Cmp Mem Store Load Cmp

First element different
100, 000 [E1, ..., E60] 234,375 1036 111 105 0.51 0.52 0.71 0.69
100, 000 [E1, ..., E80] 312,500 1383 135 128 0.51 0.52 0.73 0.64
100, 000 [E1, ..., E100] 390,625 1733 166 170 0.51 0.53 0.67 0.55

Last element different
100, 000 [E1, ..., E60] 3,909 138 50 7 0.50 0.75 0.64 0.56
100, 000 [E1, ..., E80] 3,909 171 71 8 0.50 0.81 0.61 0.40
100, 000 [E1, ..., E100] 3,910 211 82 9 0.50 0.76 0.62 0.44

Table 2. Table memory usage (in KBytes) and store/load times (in milliseconds) for
empty-ending lists using YapTab with and without support for compact lists

Term-Ending Lists
YapTab YapTab+CL / YapTab

Mem Store Load Cmp Mem Store Load Cmp

First element different
100, 000 [E1, ..., E59|E60] 230,469 1028 113 97 0.52 0.54 0.67 0.64
100, 000 [E1, ..., E79|E80] 308,594 1402 138 134 0.51 0.53 0.69 0.63
100, 000 [E1, ..., E99|E100] 386,719 1695 162 163 0.51 0.55 0.66 0.60

Last element different
100, 000 [E1, ..., E59|E60] 1,956 121 45 4 1.00 0.86 0.82 1.00
100, 000 [E1, ..., E79|E80] 1,956 150 59 4 1.00 0.88 0.72 1.00
100, 000 [E1, ..., E99|E100] 1,957 194 96 4 1.00 0.88 0.53 1.00

Table 3. Table memory usage (in KBytes) and store/load times (in milliseconds) for
term-ending lists using YapTab with and without support for compact lists

in these experiments) is residual when compared with the number of different
last elements (100,000 in these experiments).

Regarding running time, the results in Tables 2 and 3 indicate that compact
lists can achieve impressive gains for storing and loading list terms. In these
experiments, the storing time using compact lists is around 2 times faster for
list terms with the first element different, and around 1.15 to 1.30 times faster
for list terms with the last element different. Note that this is the case even for
term-ending lists, where there is no significant memory reduction. This happens
because the number of nodes to be traversed when navigating the trie data
structures for compact lists is considerably smaller than the number of nodes for
standard lists.

These results also indicate that compact lists can outperform standard lists
for loading terms, both with and without compiled tries, and that the reduction
on the running time seems to decrease proportionally to the size of the list
terms being considered. The exception is compiled tries for term-ending lists
with the last element different, but the 4 milliseconds of the execution time in
these experiments is too small to be taken into consideration.

João Raimundo and Ricardo Rocha 169

6 Conclusions

We have presented a new and more compact representation of list terms for
tabled data that avoids the recursive nature of the WAM representation by
removing unnecessary intermediate pair tokens. Our presentation followed the
different approaches that we have considered until reaching our current final
design. We focused our discussion on a concrete implementation, the YapTab
system, but our proposals can be easy generalized and applied to other tabling
systems. Our experimental results are quite interesting, they clearly show that
with compact lists, it is possible not only to reduce the memory usage overhead,
but also the running time of the execution for storing and loading list terms,
both with and without compiled tries.

Further work will include exploring the impact of our proposal in real-world
applications, such as, the recent works on Inductive Logic Programming [7] and
probabilistic logic learning with the ProbLog language [8], that heavily use list
terms to represent, respectively, hypotheses and proofs in trie data structures.

Acknowledgements

This work has been partially supported by the FCT research projects STAMPA
(PTDC/EIA/67738/2006) and JEDI (PTDC/EIA/66924/2006).

References

1. Chen, W., Warren, D.S.: Tabled Evaluation with Delaying for General Logic Pro-
grams. Journal of the ACM 43(1) (1996) 20–74

2. Sagonas, K., Swift, T.: An Abstract Machine for Tabled Execution of Fixed-Order
Stratified Logic Programs. ACM Transactions on Programming Languages and
Systems 20(3) (1998) 586–634

3. Ramakrishnan, I.V., Rao, P., Sagonas, K., Swift, T., Warren, D.S.: Efficient Access
Mechanisms for Tabled Logic Programs. Journal of Logic Programming 38(1) (1999)
31–54

4. Aı̈t-Kaci, H.: Warren’s Abstract Machine – A Tutorial Reconstruction. The MIT
Press (1991)

5. Rocha, R., Silva, F., Santos Costa, V.: On applying or-parallelism and tabling to
logic programs. Theory and Practice of Logic Programming 5(1 & 2) (2005) 161–205

6. Bachmair, L., Chen, T., Ramakrishnan, I.V.: Associative Commutative Discrimi-
nation Nets. In: International Joint Conference on Theory and Practice of Software
Development. Number 668 in LNCS, Springer-Verlag (1993) 61–74

7. Fonseca, N.A., Camacho, R., Rocha, R., Costa, V.S.: Compile the hypothesis space:
do it once, use it often. Fundamenta Informaticae 89(1) (2008) 45–67

8. Kimmig, A., Costa, V.S., Rocha, R., Demoen, B., Raedt, L.D.: On the Efficient Ex-
ecution of ProbLog Programs. In: International Conference on Logic Programming.
Number 5366 in LNCS, Springer-Verlag (2008) 175–189

170 A Very Compact and Efficient Representation of List Terms for Tabled Logic Programs

Inspection Points and Meta-Abduction
in Logic Programs

Luís Moniz Pereira and Alexandre Miguel Pinto
{lmp|amp}@di.fct.unl.pt

Centro de Inteligência Artificial (CENTRIA)
Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

Abstract. In the context of abduction in Logic Programs, when finding an abduc-
tive solution for a query, one may want to check too whether some other literals
become true (or false) as a consequence, strictly within the abductive solution
found, that is without performing additional abductions, and without having to
produce a complete model to do so. That is, such consequence literals may con-
sume, but not produce, the abduced literals of the solution. We show how this type
of reasoning requires a new mechanism, not provided by others already available.
To achieve it, we present the concept of Inspection Point in Abductive Logic Pro-
grams, and show, by means of examples, how one can employ it to investigate
side-effects of interest (the inspection points) in order to help choose among ab-
ductive solutions. The touchstone of enabling inspection points can be construed
as meta-abduction, by (meta-)abducing an “abduction" to check (i.e. to passively
verify) that a certain concrete abduction is indeed adopted in a purported abduc-
tive solution. We show how to implement inspection points on top of already
existing abduction solving systems — ABDUAL and XSB-XASP — in a way
that can be adopted by other systems too.
Keywords: Logic Programs, Abduction, Side-Effects.

1 Introduction

We begin by presenting the motivation, plus some background notation and definitions
follow. Then issues of reasoning with logic programs are addressed in section 2, in par-
ticular, we take a look at abductive reasoning and the nature of backward and forward
chaining and their relationship to query answering in an abductive framework. In sec-
tion 3 we introduce inspection points, illustrate their need and their use with examples,
and provide a declarative semantics. In section 4 we describe in detail our implementa-
tion of inspection points and illustrate its workings with an example. To close the paper
we add conclusions, comparisons, and an elaboration on the possible use of inspection
points in future work is sketched.

1.1 Motivation

Sometimes, besides needing to abductively discover which hypotheses to assume in
order to satisfy some condition, we may also want to know some of the side-effects
of those assumptions; in fact, this is rather a rational thing to do. But, most of the

Luis Moniz Pereira and Alexandre Miguel Pinto 171

time, we do not wish to know all possible side-effects of our assumptions, as some of
them will be irrelevant to our concern. Likewise, the side-effects inherent in abductive
explanations might not all be of interest. One application of abductive reasoning is that
of finding which actions to perform, their names being coded as abducibles.

Example 1. Relevant and irrelevant side-effects. Consider this logic program where
drink_water and drink_beer are abducibles.

← thirsty, not drink. % This is an Integrity Constraint
wet_glass← use_glass. use_glass← drink.
drink ← drink_water. drink ← drink_beer.
thirsty. drunk ← drink_beer.
unsafe_drive← drunk.

Suppose we want to satisfy the Integrity Constraint(IC), and also to check if we
get drunk or not. However, we do not care about the glass becoming wet — that being
completely irrelevant to our current concern. In this case, computation of whole models
is a waste of time, because we are interested only in a subset of the program’s literals.
Moreover, in this example, we may simply want to know the side-effects of the possible
actions in order to decide (to drive or not to drive) after we know which side-effects
are true. In such a case, we do not want to simply introduce an IC expressed as ←
not unsafe_drive because that would always impose abducing not drink_beer. We
want to allow all possible solutions for the single IC ← thirsty, not drink and then
check for the side-effects of each abductive solution.

What we need is an inspection mechanism which permits to check the truth value of
given literals as a consequence of the abductions made to satisfy a given query plus
any ICs, but without further abducing. This will be achieved just through the inspect/1
meta-predicate, by introducing the IC← inspect(not unsafe_drive).

1.2 Background Notation and Definitions

Definition 1. Logic Rule. A Logic Rule has the general form
H ← B1, . . . , Bn, not C1, . . . , not Cm

where H is an atom, and the Bi and Cj are atoms.

We callH the head of the rule, andB1, . . . , Bn, not C1, . . . , not Cm its body. Through-
out this paper we use ‘not ’ to denote default negation. When the body of a rule is empty,
we say its head is a fact and we write the rule just as H . When the head is empty, we
designate the rule an Integrity Constraint (IC).

Definition 2. Logic Program. A Logic Program (LP for short) P is a (possibly infinite)
set of ground Logic Rules, where non-gound rules stand for all their ground instances.

In this paper we consider solely Normal LPs (NLPs), those whose heads of rules are
positive literals, i.e. simple atoms, or empty. In the next sections we focus on abductive
logic programs, i.e., those with abducibles. Abducibles are chosen (by a system specific
declaration) literals, not defined by any rules and correspond to hypotheses that one can
independently assume or not — apart from eventual ICs affecting them. Abducibles or
their default negations may appear in bodies of rules, just like any other literal.

172 Inspection Points and Meta-Abduction in Logic Programs

2 Abductive Reasoning with Logic Programs

Logic Programs have been used for a few decades now in knowledge representation and
reasoning. Amongst the most common kinds of reasoning performed using them, we
can find deduction, induction and abduction. When query answering, if we know that
the underlying semantics is relevant, i.e. guarantees it is enough to use only the rules
relevant to the query (those in its call-graph) to assess its truthfulness, then we need not
compute a whole model in order to find an answer to our query: it suffices to use just
the call-graph relevant part of the program. This way of top-down finding a solution to
a query, dubbed “backward chaining”, is possible only when the underlying semantics
is relevant in the above sense, because the existence of a full model is guaranteed.

Currently, the standard 2-valued semantics used by the logic programming commu-
nity is Stable Models [8]. Its properties are well known and there are efficient implemen-
tations (such as DLV and SModels [3, 11]). However, Stable Models (SMs) miss some
important properties, both from the theoretical and practical perspectives: guarantee of
model existence for every NLP, relevancy and cumulativity. Since SMs do not enjoy
relevancy they cannot use just backward chaining for query answering. This means that
it may incur in waste of computational resources, when extra time and memory are used
to compute parts of the model which may be irrelevant to the query.

When performing abductive reasoning, we want to find, by need only (via back-
ward chaining), one possible set of conditions (abductive literals of the program to be
assumed either true or false) sufficient to entail our query. However, sometimes we also
want to know which are (some of) the consequences (side-effects, so to speak) of such
conditions. I.e., we want to know the truth value of some other literals, not part of the
query’s call graph, whose truth-value may be determined by the abductive conditions
found. In some cases, we might be interested in knowing every possible side-effect —
the truth-value of every literal in a complete model satisfying the query and ICs. In
other situations though, our focus is only in some specific side-effects of abductions
performed.

In our approach, the side-effects of interest are explicitly indicated by the user by
wrapping the corresponding goals within reserved construct inspect/1. It is advanta-
geous, from a computational point of view, to be able to compute only the truth-value
of the important side-effects instead of the whole model, so as not to waste precious
time and computational resources. This is possible whenever the underlying semantics
guarantees model existence, and enjoys relevance.

2.1 Abduction

Abduction, or inference to the best explanation, is a reasoning method whereby one
chooses the hypotheses that would, if true, best explain the observed evidence. In LPs,
abductive hypotheses (or abducibles) are named literals of the program which have
no rules. They can be considered true or false for the purpose of answering a query.
Abduction in LPs ([1, 4, 5, 9, 10]) can naturally be used in a top-down query-oriented
proof-procedure to find an (abductive) answer to a query, where abducibles are leafs in
the call dependency graph. The Well-Founded Semantics (WFS) [7], which enjoys rele-
vancy, allows for abductive query answering. We used it in the specific implementation

Luis Moniz Pereira and Alexandre Miguel Pinto 173

described in section 4 based on ABDUAL [1]. Though WFS is 3-valued, the abduction
mechanism it employs can be, and in our case is, 2-valued.

Because they do not depend on any other literal in the program, abducibles can be
modeled in a Logic Program system without specific abduction mechanisms by includ-
ing for each abducible an even loop over default negation, e.g.,

abducible← not abducible_not. abducible_not← not abducible.
where neg_abducible is a new abducible atom, representing the (abducible) nega-

tion of the abducible. This way, under the SM semantics, a program may have models
where some abducible is true and another where it is false, i.e. neg_abducible is true.
If there are n abducibles in the program, there will be 2n models corresponding to all
the possible combinations of true and false for each. Under the WFS without a spe-
cific abduction mechanism, e.g. the one available in ABDUAL, both abducible and
neg_abducible remain undefined in the Well-Founded Model (WFM), but may hold
(as alternatives) in some Partial Stable Models.

Using the SM semantics abduction is done by guessing the truth-value of each ab-
ducible and providing the whole model and testing it for stability; whereas using the
WFS with abduction, it can be performed by need, induced by the top-down query solv-
ing procedure, solely for the relevant abducibles — i.e., irrelevant abducibles are left
unconsidered. Thus, top-down abductive query answering is a means of finding those
abducible values one might commit to in order to satisfy a query.

An additional situation, addressed in this paper, is when one wishes to only pas-
sively determine which abducibles would be sufficient to satisfy some goal but without
actually abducing them, just consuming other goals’ needed and produced abductions.
The difference is subtle but of importance, and it requires a new construct. Its mecha-
nism, of inspecting without abducing, can be conceived and implemented through meta-
abduction, and is discussed in detail in the sequel.

2.2 Backward and Forward Chaining

Abductive query-answering is intrinsically a backward-chaining process, a top-down
dependency-graph oriented proof-procedure. Finding the side-effects of a set of abduc-
tive assumptions may be conceptually envisaged as forward-chaining, as it consists of
progressively deriving conclusions from the assumptions until the truth value of the
chosen side-effect literals is determined.

The problem with full-fledged forward-chaining is that too many (often irrelevant)
conclusions of a model are derived. Wasting time and resources deriving them only
to be discarded afterwards is a flagrant setback. Worse, there may be many alternative
models satisfying an abductive query (and the ICs) whose differences just repose on
irrelevant conclusions. So unnecessary computation of irrelevant conclusions can be
compounded by the need to discard irrelevant alternative complete models too.

A more intelligent solution would be afforded by selective forward-chaining, where
the user would be allowed to specify those conclusions she is focused on, and only
those would be computed in forward-chaining fashion. Combining backward-chaining
with selective forward-chaining would allow for a greater precision in specifying what
we wish to know, and improve efficiency altogether. In the sequel we show how such
a selective forward chaining from a set of abductive hypotheses can be replaced by

174 Inspection Points and Meta-Abduction in Logic Programs

backward chaining from the focused on conclusions — the inspection points — by
virtue of a controlled form of abduction which, never performing extra abductions, just
checks for abducibles assumed elsewhere.

3 Inspection Points

Meta-abduction is used in abduction inhibited inspection. Intuitively, when an abducible
is considered under mere inspection, meta-abduction abduces only the intention to a
posteriori check for its abduction elsewhere, i.e. it abduces the intention of verify-
ing that the abducible is indeed adopted, but elsewhere. In practice, when we want to
meta-abduce some abducible ‘x’, we abduce a literal ‘consume(x)’ (or ‘abduced(x)’),
which represents the intention that ‘x’ is eventually abduced elsewhere in the process
of finding an abductive solution. The check is performed after a complete abductive
answer to the top query is found. Operationally, ‘x’ will already have been or will be
later abduced as part of the ongoing solution to the top goal.

Example 2. Police and Tear Gas Issue. Consider this NLP, where ‘tear_gas’, ‘fire’,
and ‘water_cannon’ are the only abducibles. Notice that inspect is applied to calls.

← police, riot, not contain. % this is an Integrity Constraint
contain← tear_gas. contain← water_cannon.
smoke← fire. smoke← inspect(tear_gas).
police. riot.

Notice the two rules for ‘smoke’. The first states that one explanation for smoke is
fire, when assuming the hypothesis ‘fire’. The second states ‘tear_gas’ is also a pos-
sible explanation for smoke. However, the presence of tear gas is a much more unlikely
situation than the presence of fire; after all, tear gas is only used by police to con-
tain riots and that is truly an exceptional situation. Fires are much more common and
spontaneous than riots. For this reason, ‘fire’ is a much more plausible explanation for
‘smoke’ and, therefore, in order to let the explanation for ‘smoke’ be ‘tear_gas’, there
must be a plausible reason — imposed by some other likely phenomenon. This is rep-
resented by inspect(tear_gas) instead of simply ‘tear_gas’. The ‘inspect’ construct
disallows regular abduction — only allowing meta-abduction — to be performed whilst
trying to solve ‘tear_gas’. I.e., if we take tear gas as an abductive solution for smoke,
this rule imposes that the step where we abduce ‘tear_gas’ is performed elsewhere,
not under the derivation tree for ‘smoke’. Thus, ‘tear_gas’ is an inspection point.
The IC, because there is ‘police’ and a ‘riot’, forces ‘contain’ to be true, and hence,
‘tear_gas’ or ‘water_cannon’ or both, must be abduced. ‘smoke’ is only explained
if, at the end of the day, ‘tear_gas’ is abduced to enact containment. Abductive solu-
tions should be plausible, and ‘smoke’ is plausibly explained by ‘tear_gas’ if there
is a reason, a best explanation, that makes the presence of tear gas plausible; in this
case the riot and the police. Plausibility is an important concept in science, for lending
credibility to hypotheses. Assigning plausibility measures to situations is an orthogonal
issue.

Luis Moniz Pereira and Alexandre Miguel Pinto 175

In this example, another way of viewing the need for the new mechanism embodied
by the inspect predicate is to consider we have 2 agents: one is a police officer and has
the possibility of abducing (corresponding to actually throwing) tear_gas; the other
agent is a civilian who, obviously, does not have the possibility of abducing (throwing)
tear_gas. For the police officer agent, having the smoke ← inspect(tear_gas) rule,
with the inspect is unnecessary: the agent knows that tear_gas is the explanation for
smoke because it was himself who abduced (threw) tear_gas; but for the civilian agent
the inspect in the smoke← inspect(tear_gas) rule is absolutely indispensable, since
he cannot abduce tear_gas and therefore cannot know, without inspecting, if that is
the real explanation for smoke.

Example 3. Nuclear Power Plant Decision Problem. This example was extracted
from [12] and adapted to our current designs, and its abducibles do not represent ac-
tions. In a nuclear power plant there is decision problem: cleaning staff will dust the
power plant on cleaning days, but only if there is no alarm sounding. The alarm sounds
when the temperature in the main reactor rises above a certain threshold, or if the alarm
itself is faulty. When the alarm sounds everybody must evacuate the power plant imme-
diately! Abducible literals are cleaning_day, temperature_rise and faulty_alarm.

dust ← cleaning_day, inspect(not sound_alarm)
sound_alarm← temperature_rise
sound_alarm← faulty_alarm
evacuate ← sound_alarm

← not cleaning_day

Satisfying the unique IC imposes cleaning_day true and gives us three minimal
abductive solutions: S1 = {dust, cleaning_day},
S2 = {cleaning_day, sound_alarm, temperature_rise, evacuate}, and
S3 = {cleaning_day, sound_alarm, faulty_alarm, evacuate}. If we pose the query
?−not dustwe want to know what could justify the cleaners dusting not to occur given
that it is a cleaning day (enforced by the IC). However, we do not want to abduce the
rise in temperature of the reactor nor to abduce the alarm to be faulty in order to prove
not dust. Any of these justifying two abductions must result as a side-effect of the
need to explain something else, for instance the observation of the sounding of the
alarm, expressible by adding the IC ← not sound_alarm, which would then abduce
one or both of those two abducibles as plausible explanations. The inspect/1 in the
body of the rule for dust prevents any abduction below sound_alarm to be made just
to make not dust true. One other possibility would be for two observations, coded by
ICs ← not temperature_rise or ← not faulty_alarm, to be present in order for
not dust to be true as a side-effect. A similar argument can be made about evacuating:
one thing is to explain why evacuation takes place, another altogether is to justify it
as necessary side-effect of root explanations for the alarm to go off. These two prag-
matic uses correspond to different queries: ? − evacuate and ? − inspect(evacuate),
respectively.

176 Inspection Points and Meta-Abduction in Logic Programs

3.1 Declarative Semantics of Inspection Points

A simple transformation maps programs with inspection points into programs without
them. Mark that the Stable Models of the transformed program where each abducible(X)
is matched by the abducible X (X being a literal a or its default negation not a) clearly
correspond to the intended procedural meanings ascribed to the inspection points of the
original program.

Definition 3. Transforming Inspection Points. Let P be a program containing rules
whose body possibly contains inspection points. The program Π(P) consists of:

1. all the rules obtained by the rules in P by systematically replacing:

– inspect(not L) with not inspect(L);
– inspect(a) or inspect(abduced(a)) with abduced(a)

if a is an abducible, and keeping inspect(a) otherwise.

2. for every rule A← L1, . . . , Lt in P , the additional rule:
inspect(A)← L

′
1, . . . , L

′
t where for every 1 ≤ i ≤ t:

L
′
i =

abduced(Li) if Li is an abducible
inspect(X) if Li is inspect(X)
inspect(Li) otherwise

The semantics of the inspect predicate is exclusively given by the generated rules
for inspect

Example 4. Transforming a Program P with Nested Inspection Levels.

x← a, inspect(y), b, c, not d y ← inspect(not a)
z ← d y ← b, inspect(not z), c

Then, Π(P) is:

x ← a, inspect(y), b, c, not d
inspect(x)← abduced(a), inspect(y), abduced(b), abduced(c), not abduced(d)
y ← not inspect(a)
y ← b, not inspect(z), c
inspect(y) ← not abduced(a)
inspect(y) ← abduced(b), not inspect(z), abduced(c)
z ← d
inspect(z) ← abduced(d)

The abductive stable model of Π(P) respecting the inspection points is:
{x, a, b, c, abduced(a), abduced(b), abduced(c), inspect(y)}.

Note that for each abduced(a) the corresponding a is in the model.

Luis Moniz Pereira and Alexandre Miguel Pinto 177

4 Implementation

We based our practical work on a formally defined, XSB-implemented, true and tried
abduction system — ABDUAL [1]. ABDUAL lays the foundations for efficiently com-
puting queries over ground three-valued abductive frameworks for extended logic pro-
grams with integrity constraints, on the well-founded semantics and its partial stable
models.

The query processing technique in ABDUAL relies on a mixture of program trans-
formation and tabled evaluation. A transformation removes default negative literals (by
making them positive) from both the program and the integrity rules. Specifically, a
dual transformation is used, that defines for each objective literal O and its set of rules
R, a dual set of rules whose conclusions not (O) are true if and only if O is false in
R. Tabled evaluation of the resulting program turns out to be much simpler than for
the original program, whenever abduction over negation is needed. At the same time,
termination and complexity properties of tabled evaluation of extended programs are
preserved by the transformation, when abduction is not needed. Regarding tabled evalu-
ation, ABDUAL is in line with SLG [13] evaluation, which computes queries to normal
programs according to the well-founded semantics. To it, ABDUAL tabled evaluation
adds mechanisms to handle abduction and deal with the dual programs.

ABDUAL is composed of two modules: the preprocessor which transforms the orig-
inal program by adding its dual rules, plus specific abduction-enabling rules; and a
meta-interpreter allowing for top-down abductive query solving. When solving a query,
abducibles are dealt with by means of extra rules the preprocessor added to that ef-
fect. These rules just add the name of the abducible to an ongoing list of current ab-
ductions, unless the negation of the abducible was added before to the lists failing
in order to ensure abduction consistency. Meta-abduction is implemented adroitly by
means of a reserved predicate, ‘inspect/1’ taking some literal L as argument, which
engages the abduction mechanism to try and discharge any meta-abductions performed
under L by matching with the corresponding abducibles, adopted elsewhere outside
any ‘inspect/1’ call. The approach taken can easily be adopted by other abductive sys-
tems, as we had the occasion to check, e.g., with system [2]. We have also enacted an
alternative implementation, relying on XSB-XASP and the declarative semantics trans-
formation above, which is reported below.

Procedurally, in the ABDUAL implementation, the checking of an inspection point
corresponds to performing a top-down query-proof for the inspected literal, but with
the specific proviso of disabling new abductions during that proof. The proof for the in-
spected literal will succeed only if the abducibles needed for it were already adopted, or
will be adopted, in the present ongoing solution search for the top query. Consequently,
this check is performed after a solution for the query has been found. At inspection-
point-top-down-proof-mode, whenever an abducible is encountered, instead of adopt-
ing it, we simply adopt the intention to a posteriori check if the abducible is part of
the answer to the query (unless of course the negation of the abducible has already been
adopted by then, allowing for immediate failure at that search node.) That is, one (meta-
) abduces the checking of some abducibleA, and the check consists in confirming thatA
is part of the abductive solution by matching it with the object of the check. According
to our method, the side-effects of interest are explicitly indicated by the user by wrap-

178 Inspection Points and Meta-Abduction in Logic Programs

ping the corresponding goals subject to inspection mode, with the reserved construct
‘inspect/1’.

4.1 ABDUAL with Inspection Points

Inspection points in ABDUAL function mainly by means of controlling the general ab-
duction step, which involves very few changes, both in the pre-processor and the meta-
interpreter. Whenever an ‘inspect(X)’ literal is found in the body of a rule, where
‘X’ is a goal, a meta-abduction-specific counter — the ‘inspect_counter’ — is in-
creased by one, in order to keep track of the allowed character, active or passive, of
performed abductions. The top-down evaluation of the query for ‘X’ then proceeds
normally. Actual abductions are only allowed if the counter is set to zero, otherwise
only meta-abductions are allowed. After finding an abductive solution for the query
‘X’ the counter is decreased by one. Backtracking over counter assignations is duly
accounted for. Of course, this way of implementing the inspection points (with one
‘inspect_counter’) presupposes the abductive query answering process is carried out
“depth-first”, guaranteeing the order of the literals in the bodies of rules actually corre-
sponds to the order they are processed. We assume such a “depth-first” discipline in the
implementation of inspection points, described in detail below. We lift this restriction
at the end of the subsection.

Changes to the pre-processor:

1. A new dynamic predicate was added: the ‘inspect_counter/1’. This is initialized
to zero (‘inspect_counter(0)’) via an assert, before a top-level query is launched.

2. The original rules for the normal abduction step are now preceded by an additional
condition checking that the ‘inspect_counter’ is indeed set to zero.

3. Extra rules for the “inspection” abduction step are added, preceded by a condi-
tion checking the ‘inspect_counter’ is set to greater than zero. When these rules
are called, the corresponding abducible ‘A’ is not abduced as it would happen in
the original rules; instead, ‘consume(A)’ (or ‘abduced(A)’) is abduced. This cor-
responds to the meta-abduction: we abduce the need to abduce ‘A’, the need to
‘consume’ the abduction of ‘A’, which is finally checked when derivation for the
very top goal is finished.

The changes to the meta-interpreter include all the remaining processing needed to
correctly implement inspection points, namely matching the meta-abduction of
‘consume(X)’ against the abduction of ‘X’.

Changes to the meta-interpreter: The semantics we chose for the inspection points
in ABDUAL is actually very close to that of the deontic verifiers mentioned before
(and also below), in the sense that if a meta-abduction on ‘X’ (resulting from abducing
‘consume(X)’) is not matched by an actual abduction on ‘X’ when we reach the end
of solving the top query, the candidate abductive answer is considered invalid and the
query solving fails. On backtracking, another alternative abductive solution (possibly
with other meta-abductions) will be sought.

In detail, the changes to the meta-interpreter include:

Luis Moniz Pereira and Alexandre Miguel Pinto 179

1. Two ‘quick-kill’ rules for improved efficiency that detect and immediately solve
trivial cases for meta-abduction:

– When literal ‘X’ about to be meta-abduced (‘consume(X)’ about to be added
to the abductions list) has actually been abduced already (‘X’ is in the abduc-
tions list) the meta-abduction succeeds immediately and ‘consume(X)’ is not
added to the abductions list;

– When the situation in the previous point occurs, but with ‘not X’ already ab-
duced instead, the meta-abduction immediately fails.

2. Two new rules for the general case of meta-abduction, that now specifically treat
the ‘inspect(not X)’ and ‘inspect(X)’ literals. In either rule, first we increase the
‘inspect_counter’ mentioned before, then proceed with the usual meta-interpretation
for ‘not X’ (‘X’, respectively), and, when this evaluation succeeds, we then de-
crease ‘inspect_counter’.

3. After an abductive solution is found to the top query, check (impose) that every
meta-abduction, i.e., every ‘consume(X)’ literal abduced, is matched by a respec-
tive and consistent abduction, i.e., is matched by the abducible ‘X’ in the abduc-
tions list; otherwise the tentative solution found fails.

A counter — ‘inspect_counter’ — is used instead of a toggle because several
‘inspect(X)’ literals may appear at different graph-depth levels under each other, and
reseting a toggle after solving a lower-level meta-abduction would allow actual abduc-
tions under the higher-level meta-abduction. An example clarifies this.

Example 5. Nested Inspection Points. Consider again the program of the previous
example, where the abducibles are a, b, c, d:

x← a, inspect(y), b, c, not d. y ← inspect(not a).
z ← d. y ← b, inspect(not z), c.

When we want to find an abductive solution for x, skipping over the low-level tech-
nical details we proceed as follows:

1. a is an abducible and since the ‘inspect_counter’ is still set initially to 0 we can
abduce a by adding it to the running abductions list;

2. y is not an abducible and so we cannot use any ‘quick kill’ rule on it. We increase
the ‘inspect_counter’ — which now takes the value 1 — and proceed to find an
abductive solution for y;

3. since the ‘inspect_counter’ is different from 0, only meta-abductions are allowed;
4. using the first rule for y we need to ‘inspect(not a)’, but since we have already ab-

duced a a ‘quick-kill’ is applicable here: we already know that this ‘inspect(not a)’
will fail. The value of the ‘inspect_counter’ will remain 1;

5. on backtracking, the second rule for y is selected, and now we meta-abduce b by
adding ‘consume(b)’ to the ongoing abductions list;

6. increase ‘inspect_counter’ again, making it take the value 2, and continue on,
searching an abductive solution for not z;

7. the only solution for not z is by abducing not d, but since the ‘inspect_counter’
is greater than 0, we can only meta-abduce not d, i.e.,
‘consume(not d)’ is added to the running abductions list;

180 Inspection Points and Meta-Abduction in Logic Programs

8. returning to y’s rule: the meta-interpretation of ‘inspect(not z)’ succeeds and so
we decrease the ‘inspect_counter’ by one — it takes the value 1 again. Now we
proceed and try to solve c;

9. c is an abducible, but since the inspect_counter is set to 1, we only meta-abduce
c by adding ‘consume(c)’ to the running abductions list;

10. returning to x’s rule: the meta-interpretation of ‘inspect(y)’ succeeds and so we
decrease the ‘inspect_counter’ once more, and it now takes the value 0. From this
point onwards regular abductions will take place instead of meta-abductions;

11. we abduce b, c, and not d by adding them to the abductions list;
12. a tentative abductive solution is found to the initial query. It consists of the abduc-

tions: [a, consume(b), consume(not d), consume(c), b, c, not d];
13. the abductive solution is now checked for matches between meta-abductions and

actual abductions. In this case, for every ‘consume(A)’ in the abduction list there
is an A also in the abduction list, i.e., every intention of abduction ‘consume(A)’
is satisfied by the actual abduction of A. Because this final checking step suc-
ceeds, the whole answer is actually accepted. Note it is irrelevant which order a
‘consume(A)’ and the corresponding A appear and were placed in the abductions
list. The A in consume(A) is just any abducible literal a or its default negation
not a.

In this example, we can see clearly that the inspect predicate can be used on any arbi-
trary literal, and not just on abducibles.

The correctness of this implementation against the declarative semantics provided
before can be sketched by noticing that whenever the inspect_counter is set to 0 the
meta-interpreter performs actual abduction which corresponds to the use of the original
program rules; whenever the inspect_counter is set to some value greater than 0 the
meta-interpreter just abduces consume(A) (whereA is the abducible being checked for
its abduction being produced elsewhere), and this corresponds to the use of the program
transformation rules for the inspect predicate.

The implementation of ABDUAL with inspection points is available on request.

More general query solving In case the “depth-first” discipline is not followed, ei-
ther because goal delaying is taking place, or multi-threading, or co-routining, or any
other form of parallelism is being exploited, then each queried literal will need to
carry its own list of ancestors with their individual ‘inspect_counters’. This is nec-
essary so as to have a means, in each literal, to know which and how many inspects
there are between the root node and the currently being processed literal, and which
inspect_counter to update; otherwise there would be no way to know if abductions or
meta-abductions should be performed.

4.2 Alternative Implementation Method

The method presented here is an avenue for implementing the inspection points mech-
anism through a simple syntactic transformation which can be readily used by any SMs
system like SModels or DLV. Using an SMs implementation alone, one can get the ab-
ductive SMs of some program P by computing the SMs of P ′ where P ′ is obtained

Luis Moniz Pereira and Alexandre Miguel Pinto 181

from P by applying the program transformation we presented for the declarative se-
mantics of the inspection points, and then adding an even loop over negation for each
abducible (like the one depicted in section 2.1). Using XSB-Prolog’s XSB-XASP in-
terface, the process would be the same as for using an SMs implementation alone, but
instead of sending the whole P ′ to the SMs engine, only the residual program, relevant
for the query at hand, would be sent. This way, abductive reasoning can benefit from
the relevance property enjoyed by the Well-Founded Semantics implemented by the
XSB-Prolog’s SLG-WAM.

Given the top-down proof procedure for abduction, implementing inspection points
for program P becomes just a matter of adapting the evaluation of derivation subtrees
falling under ‘inspect/1’ literals, at meta-interpreter level, subsequent to performing
the transformation Π(P) presented before, which defines the declarative semantics.
Basically, any considered abducibles evaluated under ‘inspect/1’ subtrees, say A, are
codified as ‘abduced(A)’, where:

abduced(A)← not abduced_not(A)
abduced_not(A)← not abduced(A)

All abduced/1 literals collected during computation of the residual program are later
checked against the stable models themselves. Every ‘abduced(a)’ must pair with a
corresponding abducible a for the model to be accepted.

5 Conclusions, Comparisons, and Future Work

In the context of abductive logic programs, we have presented a new mechanism of in-
specting literals that can be used to check for side-effects, by relying on meta-abduction.
We have implemented the inspection mechanism within the Abdual [1] meta-interpreter,
and also in XSB-XASP, and checked that it can be ported to other systems [2].

HyProlog [2] is an abduction/assumption system which allows for the user to spec-
ify if an abducible is to be consumed only once or many times. In HyProlog, as the
query solving proceeds, when abducibles/assumptions consumptions take place they
are executed as storing the respective consumption intention in a store. After an ab-
ductive solution for a query is found, the actual abductions/assumptions are matched
against the consumption intentions. In general, there is not such a big difference be-
tween the operational semantics of HyProlog and the inspection points implementation
we present; however, there is a major functionality difference: in HyProlog we can only
require consumption directly on abducibles, and with inspection points we can inspect
any literal, not just abducibles.

In [12], the authors detect a problem with the IFF abductive proof procedure [6] of
Fung and Kowalski, in what concerns the treatment of negated abducibles in integrity
constraints (e.g. in their examples 2 and 3). They then specialize IFF to avoid such
problems and prove correctness of the new procedure. The problems detected refers to
the active use of an IC of some not A, where A is an abducible, whereas the intended use
should be a passive one, simply checking whether A is proved in the abductive solution
found. To that effect they replace such occurrences of not A by not provable(A), in
order to ensure that no new abductions are allowed during the checking. Our own work

182 Inspection Points and Meta-Abduction in Logic Programs

generalizes the scope of the problem they solved and solves the problems involved in
this wider scope. For one we allow for passive checking not just of negated abducibles
but also of positive ones, as well as passive checking of any literal, whether or not
abducible, and allow also to single out which occurrences are passive or active. Thus,
we can cater for both passive and active ICs, depending on the use desired. Our solution
uses abduction itself to solve the problem, making it general for use in other abductive
frameworks and procedures.

A future application of inspection points is planning in a multi-agent setting. An
agent may have abduced a plan and, in the course of carrying out its abduced actions, it
may find that another agent has undone some of its already executed actions. So, before
executing an action, the agent should check all necessary preconditions hold. Note it
should only check, thereby avoiding abducing again a plan for them: this way, if the
preconditions hold the agent can continue and execute the planned action. The agent
should only take measures to enforce the preconditions again whenever the check fails.
Clearly, an inspection of the preconditions is what we need here.

6 Acknowledgements

We thank Robert Kowalski, Verónica Dahl and Henning Christiansen for discussions,
Pierangelo Dell’Acqua for the declarative semantics, and Gonçalo Lopes for help with
the XSB-XASP implementation.

References

1. J. J. Alferes, L. M. Pereira, and T. Swift. Abduction in well-founded semantics and gener-
alized stable models via tabled dual programs. Theory and Practice of Logic Programming,
4(4):383–428, July 2004.

2. H. Christiansen and V. Dahl. Hyprolog: A new logic programming language with assump-
tions and abduction. In M. Gabbrielli and G. Gupta, editors, ICLP, volume 3668 of LNCS,
pages 159–173. Springer, 2005.

3. S. Citrigno, T. Eiter, W. Faber, G. Gottlob, C. Koch, N. Leone, C. Mateis, G. Pfeifer, and
F. Scarcello. The dlv system: Model generator and advanced frontends (system description).
In 12th Workshop on Logic Programming, 1997.

4. M. Denecker and D. De Schreye. Sldnfa: An abductive procedure for normal abductive
programs. In Apt, editor, Proceedings of the Joint International Conference and Symposium
on Logic Programming, pages 686–700, Washington, USA, 1992. The MIT Press.

5. T. Eiter, G. Gottlob, and N. Leone. Abduction from logic programs: semantics and complex-
ity. Theoretical Computer Science, 189(1–2):129–177, 1997.

6. T. H. Fung and R. Kowalski. The iff proof procedure for abductive logic programming. J.
Log. Prog., 33(2):151 – 165, 1997.

7. A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for general logic
programs. J. of ACM, 38(3):620–650, 1991.

8. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In
ICLP/SLP, pages 1070–1080. MIT Press, 1988.

9. K. Inoue and C. Sakama. A fixpoint characterization of abductive logic programs. Journal
of Logic Programming, 27(2):107–136, 1996.

Luis Moniz Pereira and Alexandre Miguel Pinto 183

10. A. Kakas, R. Kowalski, and F. Toni. The role of abduction in logic programming. In Hand-
book of Logic in AI and LP, volume 5, pages 235–324. Oxford University Press, 1998.

11. I. Niemelä and P. Simons. Smodels - an implementation of the stable model and well-
founded semantics for normal logic programs. In Procs. 4th Intl. Conf. Logic Programming
and Nonmonotonic Reasoning, volume 1265 of LNAI, pages 420–429, July 1997.

12. F. Sadri and F. Toni. Abduction with negation as failure for active and reactive rules. In
E. Lamma and P. Mello, editors, AI*IA, volume 1792 of LNCS, pages 49–60. Springer, 1999.

13. T. Swift and D. S. Warren. An abstract machine for slg resolution: Definite programs. In
Symp. on Logic Programming, pages 633–652, 1994.

184 Inspection Points and Meta-Abduction in Logic Programs

Stable Model implementation of Layer Supported
Models by program transformation

Luís Moniz Pereira and Alexandre Miguel Pinto
{lmp|amp}@di.fct.unl.pt

Centro de Inteligência Artificial (CENTRIA)
Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

Abstract. For practical applications, the use of top-down query-driven proof-
procedures is convenient for an efficient use and computation of answers using
Logic Programs as knowledge bases. A 2-valued semantics for Normal Logic
Programs (NLPs) allowing for top-down query-solving is thus highly desirable,
but the Stable Models semantics (SM) does not allow it, for lack of the relevance
property. To overcome this limitation we introduced in [11], and summarize here,
a new 2-valued semantics for NLPs — the Layer Supported Models semantics —
which conservatively extends the SM semantics, enjoys relevance and cumula-
tivity, guarantees model existence, and respects the Well-Founded Model. In this
paper we exhibit a space and time linearly complex transformation, TR, from one
propositional NLP into another, whose Layer Supported Models are precisely the
Stable Models of the transform, which can then be computed by extant Stable
Model implementations, providing a tool for the immediate generalized use of
the new semantics and its applications. TR can be used to answer queries but
is also of theoretical interest, for it may be used to prove properties of programs,
say. Moreover, TR can be employed in combination with the top-down query pro-
cedure of XSB-Prolog, and be applied just to the residual program corresponding
to a query (in compliance with the relevance property of Layer Supported Model
). The XSB-XASP interface then allows the program transform to be sent for
Smodels for 2-valued evaluation.
Keywords: Stable Models, Layer Supported Models, Relevance, Layering, Pro-
gram Transformation.

1 Introduction and Motivation

The semantics of Stable Models (SM) [7] is a cornerstone for the definition of some of
the most important results in logic programming of the past two decades, providing an
increase in logic programming declarativity and a new paradigm for program evalua-
tion. When we need to know the 2-valued truth value of all the literals in a logic program
for the problem we are modeling and solving, the only solution is to produce complete
models. Depending on the intended semantics, in such cases, tools like SModels [9] or
DLV [2] may be adequate because they can indeed compute whole models according to
the SM semantics. However, the lack of some important properties of language seman-
tics, like relevance, cumulativity and guarantee of model existence (enjoyed by, say,
Well-Founded Semantics [6] (WFS)), somewhat reduces its applicability in practice,

Luis Moniz Pereira and Alexandre Miguel Pinto 185

namely regarding abduction, creating difficulties in required pre- and post-processing.
But WFS in turn does not produce 2-valued models, though these are often desired, nor
guarantees 2-valued model existence.

SM semantics does not allow for top-down query-solving precisely because it does
not enjoy the relevance property — and moreover, does not guarantee the existence
of a model. Furthermore, frequently there is no need to compute whole models, like
its implementations do, but just the partial models that sustain the answer to a query.
Relevance would ensure these could be extended to whole models.

To overcome these limitations we developed in [11] (summarized here) a new 2-
valued semantics for NLPs — the Layer Supported Models (LSM) — which conserva-
tively extends the SMs, enjoys relevance and cumulativity, guarantees model existence,
and respects the Well-Founded Model (WFM) [6]. Intuitively, a program is conceptu-
ally partitioned into “layers” which are subsets of its rules, possibly involved in mutual
loops. An atom is considered true if there is some rule for it at some layer, where all the
literals in its body which are supported by rules of lower layers are also true. Otherwise
that conclusion is false. That is, a rule in a layer must, to be usable, have the support of
rules in the layers below.

The core reason SM semantics fails to guarantee model existence for every NLP is
that the stability condition it imposes on models is impossible to be complied with by
Odd Loops Over Negation (OLONs) 1. In fact, the SM semantics community uses such
inability as a means to impose Integrity Constraints (ICs).

Example 1. OLON as IC. Indeed, using SMs, one would write an IC in order to pre-
ventX being in any model with the single rule for some atom ‘a’: a← not a,X . Since
the SM semantics cannot provide a semantics to this rule whenever X holds, this type
of OLON is used as IC. When writing such ICs under SMs one must be careful and
make sure there are no other rules for a. But the really unintuitive thing about this kind
of IC used under SM semantics is the meaning of the atom a. What does a represent?

The LSM semantics instead provides a semantics to all NLPs. ICs are implemented
with rules for reserved atom falsum, of the form falsum← X , where X is the body
of the IC we wish to prevent being true. This does not prevent falsum from being in
some models. To avoid them, the user must either conjoin goals with not falsum or, if
inconsistency examination is desired, a posteriori discard such models. LSM semantics
separates OLON semantics from IC compliance.

After notation and background definitions, we summarize the formal definition of
LSM semantics and its properties. Thereafter, we present a program transformation, TR,
from one propositional (or ground) NLP into another, whose Layer Supported Models
are precisely the Stable Models of the transform, which can be computed by extant
Stable Model implementations, which also require grounding of programs. TR’s linear
space and time complexities are then examined. The transformation can be used to
answer queries but is also of theoretical interest, for it may be used to prove properties
of programs, say. In the Implementation section we show how TR can be employed, in
combination with the top-down query procedure of XSB-Prolog, it being sufficient to
apply it solely to the residual program corresponding to a query (in compliance with

1 OLON is a loop with an odd number of default negations in its circular call dependency path.

186 Stable Model implementation of Layer Supported Models by program transformation

the relevance property of Layer Supported Model). The XSB-XASP interface allows
the program transform to be sent for Smodels for 2-valued evaluation. Conclusions and
future work close the paper.

2 Background Notation and Definitions
Definition 1. Logic Rule. A Logic Rule r has the general form
H ← B1, . . . , Bn, not C1, . . . , not Cm where H , the Bi and the Cj are atoms.

We call H the head of the rule — also denoted by head(r). And body(r) denotes the
set {B1, . . . , Bn, not C1, . . . , not Cm} of all the literals in the body of r. Throughout
this paper we will use ‘not ’ to denote default negation. When the body of the rule is
empty, we say the head of rule is a fact and we write the rule just as H . An IC or denial
is a rule with head falsum.

Definition 2. Logic Program. A Logic Program (LP for short) P is a (possibly infinite)
set of ground Logic Rules of the form in Definition 1.
In this paper we focus only on NLPs, those whose heads of rules are positive literals,
i.e., simple atoms; and there is default negation just in the bodies of the rules. Hence,
when we write simply “program” or “logic program” we mean an NLP. The shifting
rule [5, 8] may be used to reduce disjunctive programs into NLPs, as may other known
transformations, say from Extended LPs into NLPs ([3]).

3 Layering of Logic Programs

The well-known notion of stratification of LPs has been studied and used for decades
now. But the common notion of stratification does not cover all LPs, i.e., there are some
LPs which are non-stratified. The usual syntactic notions of dependency are mainly fo-
cused on atoms. They are based on a dependency graph induced by the rules of the pro-
gram. Useful as these notions might be, for our purposes they are insufficient since they
leave out important structural information about the call-graph of P . To encompass that
information we define below the notion of a rule’s dependency. Indeed, layering puts
rules, not atoms, in layers. An atom B directly depends on atom A in P iff there is at
least one rule with head B and with A or not A in the body. An atom’s dependency is
just the transitive closure of the atom’s direct dependency. A rule directly depends on
atom B iff any of B or not B is in its body. A rule’s dependency is just the transitive
closure of the rule’s direct dependency. The relevant part of P for some atom A, rep-
resented by RelP (A), is the subset of rules of P with head A plus the set of rules of
P whose heads the atom A depends on, cf. [4]. The relevant part of P for rule r, rep-
resented by RelP (r), is the set containing the rule r itself plus the set of rules relevant
for each atom r depends on.

Definition 3. Parts of the body of a rule. Let r = H ← B1, . . . , Bn, not C1, . . . , not Cm

be a rule of P . Then, rl = {Bi, not Cj : Bi depends on H ∧ Cj depends on H}. Also,
rB = {Bi : Bi ∈ (body(r) \ rl)}, and rC = {Cj : not Cj ∈ (body(r) \ rl)}.

Luis Moniz Pereira and Alexandre Miguel Pinto 187

Definition 4. HighLayer function. The HighLayer function is defined over a set of
literals: its result is the highest layer number of all the rules for all the literals in the
set, or zero if the set is empty. The highest layer number of a given literal is zero if there
are no rules for it in the program, otherwise it is the maximum of the layer numbers for
all the rules having that literal as head.

Definition 5. Layering of a Logic Program P . Given a logic program P a layering
function L/1 is just any function defined over the rules of P ′, where P ′ is obtained from
P by adding a rule of the form H ← falsum for every atom H with no rules in P ,
assigning each rule r ∈ P ′ a positive integer, such that:

– L(r) = 0 if falsum ∈ body(r), otherwise
– L(r) ≥ max(HighLayer(rl), HighLayer(rB), (HighLayer(rC) + 1))

A layering of program P is a partition P 1, . . . , Pn of P such that P i contains all rules
r having L(r) = i, i.e., those which depend only on the rules in the same layer or layers
below it.

Amongst the several possible layerings of a program P we can always find the least
one, i.e., the layering with least number of layers and where the integers of the layers
are smallest. In the remainder of the paper when referring to the program’s layering we
mean such least layering (easily seen to be unique).

Example 2. Layering example. Consider the following program P , depicted along
with the layer numbers for its least layering:

c← not d, not y, not a Layer 3
d← not c
y ← not x b← not x Layer 2
x← not x b Layer 1
a← falsum Layer 0

Atom a has no rules so its now created unique rule a← falsum is placed in Layer
0. Atom b has a fact rule rb1 : its body is empty, and therefore all HighLayer(rl

b1
),

HighLayer(rB
b1

), and HighLayer(rC
b1

) are 0 (zero). Hence, L(rb1) = max(0, 0, (0+
1)) = max(0, 0, 1) = 1, where rb1 is the fact rule for b, placed in Layer 1.

The unique rule for x, rx is also placed in Layer 1 in the least layering of P because
HighLayer(rl

x) = L(rx), HighLayer(rB
x) = 0, and HighLayer(rC

x) = 0. So,
L(rx) = max(L(rx), 0, (0 + 1)) = max(L(rx), 0, 1) = 1, in the least layering.

The unique rule for c, rc is placed in Layer 3 because HighLayer(rC
c) = 2,

HighLayer(rB
c) = 0, and HighLayer(rl

c) = HighLayer(rd) = 3. By the same
token, rd is placed in the same Layer 3. Both rb2 and ry are placed in Layer 2.

This program has two LSMs: {b, c, x}, and {b, d, x}.

4 Layer Supported Models Semantics
The Layer Supported Models semantics we now present is the result of the two new
notions we introduced: the layering, formally introduced in section 3, which is a gen-
eralization of stratification; and the layered support, as a generalization of classical

188 Stable Model implementation of Layer Supported Models by program transformation

support. These two notions are the means to provide the desired 2-valued semantics
which respects the WFM, as per below.

An interpretation M of P is classically supported iff every atom a of M is classi-
cally supported in M , i.e., all the literals in the body of some rule for a are true under
M in order for a to be supported under M .

Definition 6. Layer Supported interpretation. An interpretation M of P is layer sup-
ported iff every atom a of M is layer supported in M , and this holds iff a has a rule r
where all literals in (body(r) \ rl) are true in M . Otherwise, it follows that a is false.

Theorem 1. Classical Support implies Layered Support. Given an NLP P , an inter-
pretation M , and an atom a such that a ∈M , if a is classically supported in M then a
is also layer supported in M .

Proof. Trivial from the definitions of classical support and layered support. ut
In programs without odd loops layered supported models are classically supported too.

Intuitively, the minimal layer supported models up to and including a given layer,
respect the minimal layer supported models up to the layers preceding it. It follows triv-
ially that layer supported models are minimal models, by definition. This ensures the
truth assignment to atoms in loops in higher layers is consistent with the truth assign-
ments in loops in lower layers and that these take precedence in their truth labeling. As
a consequence of the layered support requirement, layer supported models of each layer
comply with the WFM of the layers equal to or below it. Combination of the (merely
syntactic) notion of layering and the (semantic) notion of layered support makes the
LSM semantics.

Definition 7. Layer Supported Model of P . Let P 1, . . . , Pn be the least layering of
P . A layer supported interpretation M is a Layer Supported Model of P iff

∀1≤i≤nM |≤i is a minimal layer supported model of ∪1≤j≤i P
j

where M |≤i denotes the restriction of M to heads of rules in layers less or equal to i:
M |≤i ⊆M ∩ {head(r) : L(r) ≤ i}

The Layer Supported semantics of a program is just the intersection of all of its
Layer Supported Models.

Example 3. Layer Supported Models semantics. Consider again the program from
example 2. Its LS models are {b, c, x}, and {b, d, x}. According to LSM semantics b
and x are true because they are in the intersection of all models. c and d are undefined,
and a and y are false.

Layered support is a more general notion than that of perfect models [12], with sim-
ilar structure. Perfect model semantics talks about “least models” rather than “minimal
models” because in strata there can be no loops and so there is always a unique least
model which is also the minimal one. Layers, as opposed to strata, may contain loops
and thus there is not always a least model, so layers resort to minimal models, and these
are guaranteed to exist (it is well known every NLP has minimal models).

The arguments in favor of the LSM semantics are presented in [10, 11], and are
not detailed here. This paper assumes the LSM semantics and focuses on a program
transformation.

Luis Moniz Pereira and Alexandre Miguel Pinto 189

4.1 Respect for the Well-Founded Model

Definition 8. Interpretation M of P respects the WFM of P . An interpretation M
respects the WFM of P iff M contains the set of all the true atoms of WFM, and it is
contained by the set of true or undefined atoms of the WFM. Formally, WFM+(P) ⊆
M ⊆WFM+u(P).

Theorem 2. Layer Supported Models respect the WFM. Let P be a NLP, and P≤i

denote
⋃

1≤j≤i P
j . Each sub-LSM M |≤i of LSM M respects the WFM of P≤i.

Proof. (The reader can skip this proof without loss for the following). By definition,
each M |≤i is a full LSM of P≤i. Consider P≤1. Every M |≤1 contains the facts of P ,
and their direct positive consequences, since the rules for all of these are necessarily
placed in the first layer in the least layering of P . Necessarily, M |≤1 contains all the
true atoms of the WFM of P≤1. Layer 1 also contains whichever loops that do not
depend on any other atoms besides those which are the heads of the rules forming
the loop. These loops that have no negative literals in the bodies are deterministic and,
therefore, the heads of the rules forming the loop will be all true or all false in the WFM,
depending if the bodies are fully supported by facts in the same layer, or not. In any case,
a minimal model of this layer will necessarily contains all the true atoms of the WFM
of P≤1, i.e., WFM+(P≤1). For loops involving default negation, the atoms head of
rules forming such loops are undefined in the WFM; some of them might be in M |≤i

too. Assume now there is some atom a false in the WFM of P≤1 such that a ∈ M |≤1.
a can only be false in the WFM of P≤1 if either it has no rules or if every rule for a
has a false body. In the first case a’s unique rule a ← false is placed in the first layer
making it impossible for a to be in any LSM. In the second case, since in a LSM every
atom must be layer supported, if all the bodies of all rules for a are false, a will not
be layer supported and so it will no be in any LSM, in particular, not in M |≤1. Since
M |≤1 contains all true atoms of WFM ofP≤1 and it contains no false atoms, it must be
contained by the true or undefined atoms of WFM of P≤1. Consider now P≤i+1, and
M |≤i a LSM of P≤i. Assuming in P i+1 all the atoms of M |≤i as true, there might be
some bodies of rules of P i+1 which are true. In such case, a minimal model of P i+1

will also consider the heads of such rules to be true — these will necessarily comply
with the layered support requirement, and will be true in the WFM of P i+1 ∪M |≤i.
For the same reasons indicated for layer 1, no false atom in the WFM of P i+1 ∪M |≤i

could ever be considered true in M |≤i+1. ut

5 Program Transformation

The program transformation we now define provides a syntactical means of generating
a program P ′ from an original program P , such that the SMs of P ′ coincide with
the LSMs of P . It engenders an expedite means of computing LSMs using currently
available tools like Smodels [9] and DLV [2]. The transformation can be query driven
and performed on the fly, or previously preprocessed.

190 Stable Model implementation of Layer Supported Models by program transformation

5.1 Top-down transformation

Performing the program transformation in top-down fashion assumes applying the trans-
formation to each atom in the program in the call-graph of a query. The transformation
involves traversing the call-graph for the atom, induced by its dependency rules, to de-
tect and “solve” the OLONs, via the specific LSM-enforcing method described below.
When traversing the call-graph for an atom, one given traverse branch may end by find-
ing (1) a fact literal, or (2) a literal with no rules, or (3) a loop to a literal (or its default
negation conjugate) already found earlier along that branch.

To produce P ′ from P we need a means to detect OLONs. The OLON detection
mechanism we employ is a variant of Tarjan’s Strongly Connected Component (SCC)
detection algorithm [14], because OLONs are just SCCs which happen to have an odd
number of default negations along its edges. Moreover, when an OLON is detected, we
need another mechanism to change its rules, that is to produce and add new rules to the
program, which make sure the atoms a in the OLON now have “stable” rules which do
not depend on any OLON. We say such mechanism is an “OLON-solving” one. Trivial
OLONs, i.e. with length 1 like that in Example 1 (a ← not a,X), are “solved” simply
by removing the not a from the body of the rule. General OLONs, i.e. with length ≥ 3,
have more complex (non-deterministic) solutions, described below.

Minimal Models of OLONs In general, an OLON has the form
R1 = λ1 ← not λ2, ∆1

R2 = λ2 ← not λ3, ∆2

...
Rn = λn ← not λ1, ∆n

where all the λi are atoms, and the ∆j are arbitrary conjunction of literals which we
refer to as “contexts”. Assuming any λi true alone in some model suffices to satisfy any
two rules of the OLON: one by rendering the head true and the other by rendering the
body false.

λi−1 ←∼ λi, ∆i−1, and
λi ←∼ λi+1, ∆i

A minimal set of such λi is what is needed to have a minimal model for the OLON.
Since the number of rules n in OLON is odd we know that n−1

2 atoms satisfy n − 1
rules of OLON. So, n−1

2 + 1 = n+1
2 atoms satisfy all n rules of OLON, and that is the

minimal number of λi atoms which are necessary to satisfy all the OLON’s rules. This
means that the remaining n− n+1

2 = n−1
2 atoms λi must be false in the model in order

for it to be minimal.
Taking a closer look at the OLON rules we see that λ2 satisfies both the first

and second rules; also λ4 satisfies the third and fourth rules, and so on. So the set
{λ2, λ4, λ6, . . . , λn−1} satisfies all rules in OLON except the last one. Adding λ1 to
this set, since λ1 satisfies the last rule, we get one possible minimal model for OLON:
MOLON = {λ1, λ2, λ4, λ6, . . . , λn−1}. Every atom in MOLON satisfies 2 rules of
OLON alone, except λ1, the last atom added. λ1 satisfies alone only the last rule of
OLON. The first rule of OLON — λ1 ← not λ2, ∆1 — despite being satisfied by λ1,
was already satisfied by λ2. In this case, we call λ1 the top literal of the OLON under

Luis Moniz Pereira and Alexandre Miguel Pinto 191

M . The other Minimal Models of the OLON can be found in this manner simply by
starting with λ3, or λ4, or any other λi as we did here with λ2 as an example. Con-
sider the MOLON = {λ1, λ2, λ4, λ6, . . . , λn−1}. Since ∼ λi+1 ∈ body(Ri) for every
i < n, and ∼ λ1 ∈ body(Rn); under MOLON all the R1, R3, R5, . . . , Rn will have
their bodies false. Likewise, all the R2, R4, R6, . . . , Rn−1 will have their bodies true
under MOLON .

This means that all λ2, λ4, λ6, . . . , λn−1 will have classically supported bodies (all
body literals true), namely via rules R2, R4, R6, . . . , Rn−1, but not λ1 — which has
only layered support (all body literals of strictly lower layers true). “Solving an OLON”
corresponds to adding a new rule which provides classical support for λ1. Since this new
rule must preserve the semantics of the rest of P , its body will contain only the con-
junction of all the “contexts” ∆j , plus the negation of the remaining λ3, λ5, λ7, . . . , λn

which were already considered false in the minimal model at hand.
These mechanisms can be seen at work in lines 2.10, 2.15, and 2.16 of the Transform

Literal algorithm below.

Definition 9. Top-down program transformation.

input : A program P
output: A transformed program P’

context = ∅1.1
stack = empty stack1.2
P’ =P1.3
foreach atom a of P do1.4

Push (a, stack)1.5
P’ =P’ ∪Transform Literal (a)1.6
Pop (a, stack)1.7

end1.8

Algorithm 1: TR Program Transformation

The TR transformation consists in performing this literal transformation, for each
individual atom of P . The Transform Literal algorithm implements a top-down, rule-
directed, call-graph traversal variation of Tarjan’s SCC detection mechanism. More-
over, when it encounters an OLON (line 2.9 of the algorithm), it creates (lines 2.13–
2.17) and adds (line 2.18) a new rule for each literal involved in the OLON (line 2.11).
The newly created and added rule renders its head true only when the original OLON’s
context is true, but also only when that head is not classically supported, though being
layered supported under the minimal model of the OLON it is part of.

Example 4. Solving OLONs. Consider this program, coinciding with its residual:
a← not a, b b← c c← not b, not a

Solving a query for a, we use its rule and immediately detect the OLON on a. The
leaf not a is removed; the rest of the body {b} is kept as the Context under which the
OLON on a is “active” — if b were to be false there would be no need to solve the

192 Stable Model implementation of Layer Supported Models by program transformation

input : A literal l
output: A partial transformed program Pa’

previous context =context2.1
Pa’ =P2.2
atom =atom a of literal l; //removing the eventual not2.3
if a has been visited then2.4

if a or not a is in the stack then2.5
scc root indx =lowest stack index where a or not a can be found2.6
nots seq = sequence of neg. lits from (scc root indx +1) to top indx2.7
loop length = length of nots seq2.8
if loop length is odd then2.9

nots in body = (loop length−1)
2

2.10
foreach ‘not x’ in nots seq do2.11

idx = index of not x in nots seq2.12
newbody = context2.13
for i=1 to # nots in body do2.14

newbody = newbody ∪2.15
{nots seq ((idx + 2 ∗ i) mod loop length)}2.16

end2.17
newrule = x←newbody2.18
Pa’ =Pa’ ∪{newrule }2.19

end2.20

end2.21

end2.22

else // a has not been visited yet2.23
mark a as visited2.24
foreach rule r = a← b1, . . . , bn, not bn+1, . . . , not bm of P do2.25

foreach (not)bi do2.26
Push ((not)bi, stack)2.27
context =context ∪{b1, . . . , (not)bi−1, (not)bi+1, . . . , not bm}2.28
Transform Literal ((not)bi)2.29
Pop ((not)bi, stack)2.30
context =previous context2.31

end2.32

end2.33

end2.34

Algorithm 2: Transform Literal

Luis Moniz Pereira and Alexandre Miguel Pinto 193

OLON on a’s rule. After all OLONs have been solved, we use the Contexts to create
new rules that preserve the meaning of the original ones, except the new ones do not
now depend on OLONs. The current Context for a is now just {b} instead of the original
{not a, b}.

Solving a query for b, we go on to solve c — {c} being b’s current Context. Solving
c we find leaf not b. We remove c from b’s Context, and add c’s body {not b, not a}
to it. The OLON on b is detected and the not b is removed from b’s Context, which
finally is just {not a}. As can be seen so far, updating Contexts is similar to performing
an unfolding plus OLON detection and resolution by removing the dependency on the
OLON. The new rule for b has final Context {not a} for body. I.e., the new rule for
b is b ← not a. Next, continuing a’s final Context calculation, we remove b from a’s
Context and add {not a} to it. This additional OLON is detected and not a is removed
from a’s Context, now empty. Since we already exhausted a’s dependency call-graph,
the final body for the new rule for a is empty: a will be added as a fact. Moreover, a
new rule for b will be added: b← not a. The final transformed program is:

a← not a, b a b← c b← not a c← not b, not a
it has only one SM = {a} the only LSM of the program. Mark layering is respected
when solving OLONs: a’s final rule depends on the answer to b’s final rule.

Example 5. Solving OLONs (2). Consider this program, coinciding with its residual:
a← not b, x b← not c, y c← not a, z x y z

Solving a query for a we push it onto the stack, and take its rule a ← not b, x. We
go on for literal not b and consider the rest of the body {x} as the current Context under
which the OLON on a is “active”. Push not b onto the stack and take the rule for b. We
go on to solve not c, and add the y to the current Context which now becomes {x, y}.
Once more, push not c onto the stack, take c’s rule c ← not a, z, go on to solve not a
and add z to the current Context which is now {x, y, z}. When we now push not a onto
the stack, the OLON is detected and it “solving” begins. Three rules are created and
added to the program a← not c, x, y, z, b← not a, x, y, z, and c← not b, x, y, z. To-
gether with the original program’s rules they render “stable” the originally “non-stable”
LSM {a, b, x, y, z}, {b, c, x, y, z}, and {a, c, x, y, z}. The final transformed program is:

a← not b, x b← not c, y c← not a, z x y z

a← not c, x, y, z b← not a, x, y, z c← not b, x, y, z

TR transformation correctness The TR transformation steps occur only when OLONs
are detected, and in those cases the transformation consists in adding extra rules. So,
when there are no OLONs, the TR transformation’s effect is P ′ = P , thus preserving
the SMs of the original P . The additional Layer Supported Models of P are obtained
by “solving” OLONs (by adding new rules in P ′), so that the order of OLON solving
complies with the layers of P . This is ensured because the top-down search, by its na-
ture, solves OLONs conditional on their Context, and the latter will include same or
lower layer literals, but not above layer ones. Finally, note Stable Models evaluation of
P ′ itself respects the Well-Founded Semantics and hence Contexts evaluation respects
layering, by Theorem 2.

194 Stable Model implementation of Layer Supported Models by program transformation

5.2 Number of Models

Loop detection and the variety of their possible solutions concerns the number of Strongly
Connect Components (SCCs) of the residual program.

Theorem 3. Maximum number of SCCs and of LSMs of a strongly connected resid-
ual component with N nodes. They are, respectively, N

3 and 3
N
3 .

Proof. Consider a component containing N nodes. A single odd loop with N nodes,
by itself, contains N LSMs: each one obtained by minimally solving the implicit dis-
junction of the heads of the rules forming the OLON. Given only two OLONs in the
component, with N1 + N2 = N nodes, they could conceivably always be made in-
dependent of each other. Independent in the sense that each and every solution of one
OLON combines separately with each and every solution of the other. To achieve this,
iteratively duplicate as needed the rules of each OLON such that the combination of
values of literals from the other loop are irrelevant. For example, in a program like

a← not b b← not c c← not a, e

e← not d d← not f f ← not e, c

add the new rules c← not a, not e and f ← not e, not c so that now the loop on a, b, c
becomes independent of the truth of e, and the loop on e, d, f becomes independent of
the truth of c. So, in the worst (more complex) case of two OLONs the number of LSMs
is N1 ∗N2, in this case 3 ∗ 3 = 9.

Each loop over an even number of default negations (ELON), all by itself contains
2 LSMs, independently of the number N of its nodes. An OLON can always be made
independent of an ELON by suitably and iteratively duplicating its rules, as per above.
So an OLON with N1 nodes dependent on a single ELON will, in the worst case,
provide 2 ∗N1 LSMs.

It is apparent the highest number of LSMs in a component with N nodes can be
gotten by combining only OLONs. Moreover, we have seen, the worst case is when
these are independent.

Consider a component with N nodes and two OLONs with nodes N1 + N2 = N .
The largest value of N1 ∗ N2 is obtained when N1 = N2 = N

2 . Indeed, since N2 =

N −N1, take the derivative d(N1∗(N−N1))
dN1

= d(N∗N1)
dN1

− dN2
1

dN1
= N − 2 ∗N1. To obtain

the highest value make the derivative N − 2 ∗N1 = 0, and hence N1 = N
2 .

Similarly, for
∑

iNi = N , so Ni = N
i gives the maximum value for

∏
iNi. Thus,

the maximum number of LSMs for a component of N nodes is obtained when all its
(odd) loops have the same size.

And what is the size i that maximizes this value? Let us again use a derivative in i,

in this case di
N
i

di as the number of LSMs is i
N
i . Now di

N
i

di = −N ∗ i. Equating it to zero
we have i = 0. But i must be greater than zero and less than N . It is easy to see that the
i that affords the value of the derivative closest to zero is i = 1. But OLONs of length
1 afford no choices hence the least i that is meaningful is i = 3.

Hence the maximum number of LSMs of a component with N nodes is 3
N
3 . ut

Theorem 4. Maximum number of ELONs and of SMs of a SCC component with N
nodes. These are, respectively, N

2 and 2
N
2 .

Luis Moniz Pereira and Alexandre Miguel Pinto 195

Proof. By the same reasoning as above, the maximum number of SMs of a component
with N nodes is 2

N
2 , since there are no OLONs in SMs and so i can only be 2. ut

Corollary 1. Comparison between number of possible models of LSMs and SMs.
The highest number of models possible for LSMs, #LSMs, is larger than that for SMs,
#SMs.

Proof. By the two previous theorems, we know that for a component with N nodes,
#LSMs
#SMs = 3

N
3

2
N
2

= 3(N∗[13− 1
2∗(log32)]). ut

6 Implementation

The XSB Prolog system2 is one of the most sophisticated, powerful, efficient and versa-
tile implementations, with a focus on execution efficiency and interaction with external
systems, implementing program evaluation following the WFS for NLPs. The XASP
interface [1] (standing for XSB Answer Set Programming), is included in XSB Prolog
as a practical programming interface to Smodels [9], one of the most successful and
efficient implementations of the SMs over generalized LPs. The XASP system allows
one not only to compute the models of a given NLP, but also to effectively combine
3-valued with 2-valued reasoning. The latter is achieved by using Smodels to compute
the SMs of the so-called residual program, the one that results from a query evaluated in
XSB using tabling [13]. A residual program is represented by delay lists, that is, the set
of undefined literals for which the program could not find a complete proof, due to mu-
tual dependencies or loops over default negation for that set of literals, detected by the
XSB tabling mechanism. This coupling allows one to obtain a two-valued semantics of
the residual, by completing the three-valued semantics the XSB system produces. The
integration also allows to make use of and benefit from the relevance property of LSM
semantics by queries.

In our implementation, detailed below, we use XASP to compute the query rele-
vant residual program on demand. When the TR transformation is applied to it, the
resulting program is sent to Smodels for computation of stable models of the relevant
sub-program provided by the residue, which are then returned to the XSB-XASP side.

Residual Program After launching a query in a top-down fashion we must obtain the
relevant residual part of the program for the query. This is achieved in XSB Prolog
using the get_residual/2 predicate. According to the XSB Prolog’s manual “ the
predicate get_residual/2 unifies its first argument with a tabled subgoal and its
second argument with the (possibly empty) delay list of that subgoal. The truth of the
subgoal is taken to be conditional on the truth of the elements in the delay list”. The
delay list is the list of literals whose truth value could not be determined to be true nor
false, i.e., their truth value is undefined in the WFM of the program.

2 XSB-Prolog and Smodels are freely available, at: http://xsb.sourceforge.net and
http://www.tcs.hut.fi/Software/smodels.

196 Stable Model implementation of Layer Supported Models by program transformation

It is possible to obtain the residual clause of a solution for a query literal, and in turn
the residual clauses for the literals in its body, and so on. This way we can reconstruct
the complete relevant residual part of the KB for the literal — we call this a residual
program or reduct for that solution to the query.

More than one such residual program can be obtained for the query, on backtrack-
ing. Each reduct consists only of partially evaluated rules, with respect to the WFM,
whose heads are atoms relevant for the initial query literal, and whose bodies are just
the residual part of the bodies of the original KB’s rules. This way, not only do we get
just the relevant part of the KB for the literal, we also get precisely the part of those
rules bodies still undefined, i.e., those that are involved in Loops Over Negation.

Dealing with the Query and Integrity Constraints ICs are written as just falsum←
IC_Body. An Smodels IC preventing falsum from being true (:- falsum) is en-
forced whenever a transformed program is sent to Smodels. Another two rules are added
to the Smodels clause store through XASP: one creates an auxiliary rule for the initially
posed query; with the form: lsmGoal :- Query, where Query is the query con-
junct posed by the user. The second rule just prevents Smodels from having any model
where the lsmGoal does not hold, having the form: :- not lsmGoal.

The XSB Prolog source code for the meta-interpreter, based on this program trans-
formation, is available at http://centria.di.fct.unl.pt/∼amp/software.html

7 Conclusions and Future Work

We have recapped the LSMs semantics for all NLPs, complying with desirable require-
ments: 2-valued semantics, conservatively extending SMs, guarantee of model exis-
tence, relevance and cumulativity, plus respecting the WFM.

We have exhibited a space and time linearly complex transformation, TR, from one
propositional NLP into another, whose Layer Supported Models are precisely the Stable
Models of the transform, which can then be computed by extant Stable Model imple-
mentations. TR can be used to answer queries but is also of theoretical interest, for it
may be used to prove properties of programs. Moreover, it can be employed in com-
bination with the top-down query procedure of XSB-Prolog, and be applied solely to
the residual program corresponding to a query. The XSB-XASP interface subsequently
allows the program transform to be sent for Smodels for 2-valued evaluation.

The applications afforded by LSMs are all those of SMs, plus those where odd loops
over default negation (OLONs) are actually employed for problem domain representa-
tion, as we have shown in examples 4 and 5. The guarantee of model existence is es-
sential in applications where knowledge sources are diverse (like in the Semantic Web),
and wherever the bringing together of such knowledge (automated or not) can give rise
to OLONs that would otherwise prevent the resulting program from having a semantics,
thereby brusquely terminating the application. A similar situation can be brought about
by self- and mutually-updating programs, including in the learning setting, where un-
foreseen OLONs would stop short an ongoing process if the SM semantics were in use.
Hence, apparently there is only to gain in exploring the adept move from SM semantics

Luis Moniz Pereira and Alexandre Miguel Pinto 197

to the more general LSM one, given that the latter is readily implementable through the
program transformation TR, introduced here for the first time.

Work under way concerns an XSB engine level efficient implementation of the LSM
semantics, and the exploration of its wider scope of applications with respect to ASP,
and namely in combination with abduction and constructive negation.

Finally, the concepts and techniques introduced in this paper are readily adoptable
by other logic programming systems and implementations.

References

1. L. Castro, T. Swift, and D. S. Warren. XASP: Answer Set Programming with XSB and Smod-
els. http://xsb.sourceforge.net/packages/xasp.pdf.

2. S. Citrigno, T. Eiter, W. Faber, G. Gottlob, C. Koch, N. Leone, C. Mateis, G. Pfeifer, and
F. Scarcello. The dlv system: Model generator and advanced frontends (system description).
In Workshop in Logic Programming, 1997.

3. C.V. Damásio and L. M. Pereira. Default negated conclusions: Why not? In R. Dyckhoff
et al, editor, Extensions of Logic Programming, ELP’96, volume 1050 of LNAI, pages 103–
118. Springer-Verlag, 1996.

4. J. Dix. A Classification-Theory of Semantics of Normal Logic Programs: I, II. Fundamenta
Informaticae, XXII(3):227–255, 257–288, 1995.

5. J. Dix, G. Gottlob, V.W. Marek, and C. Rauszer. Reducing disjunctive to non-disjunctive
semantics by shift-operations. Fundamenta Informaticae, 28:87–100, 1996.

6. A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for general logic
programs. J. of ACM, 38(3):620–650, 1991.

7. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In
ICLP/SLP, pages 1070–1080. MIT Press, 1988.

8. M. Gelfond, H. Przymusinska, V. Lifschitz, and M. Truszczynski. Disjunctive defaults. In
KR-91, pages 230–237, 1991.

9. I. Niemelä and P. Simons. Smodels - an implementation of the stable model and well-
founded semantics for normal logic programs. In Procs. LPNMR’97, LNAI 1265, pages
420–429, 1997.

10. L.M. Pereira and A.M. Pinto. Layered models top-down querying of normal logic programs.
In Procs. PADL’09, volume 5418 of LNCS, pages 254–268. Springer, January 2009.

11. Luís Moniz Pereira and Alexandre Miguel Pinto. Layer supported models of logic programs.
In E. Erdem, F. Lin, and T. Schaub, editors, Procs. 10th LPNMR, LNAI. Springer, September
2009. http://centria.di.fct.unl.pt/∼lmp/publications/online-papers/LSMs.pdf (long version).

12. T.C. Przymusinski. Perfect model semantics. In ICLP/SLP, pages 1081–1096, 1988.
13. T. Swift. Tabling for non-monotonic programming. AMAI, 25(3-4):201–240, 1999.
14. R. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Computing, 1(2):146–160,

1972.

198 Stable Model implementation of Layer Supported Models by program transformation

Towards Computing Revised Models for FO
Theories

Johan Wittocx?, Broes De Cat, and Marc Denecker

Department of Computer Science, K.U. Leuven, Belgium
{johan.wittocx,broes.decat,marc.denecker}@cs.kuleuven.be

Abstract. In many real-life computational search problems, one is not
only interested in finding a solution, but also in maintaining it under
varying circumstances. E.g., in the area of network configuration, an
initial configuration of a computer network needs to be obtained, as well
as a new configuration when one of the machines in the network breaks
down. Currently, most such revision problems are solved manually, or
with highly specialized software.

A recent declarative approach to solve (hard) computational search prob-
lems involving a lot of domain knowledge, is by finite model generation.
Here, the domain knowledge is specified as a logic theory T , and models
of T correspond to solutions of the problem. In this paper, we extend
this approach to also solve revision problems. In particular, our method
allows to use the same theory to describe the search problem and the
revision problem, and applies techniques from current model generators
to find revised solutions.

1 Introduction

In many real-life search problems, one searches for objects of a complex nature,
such as an assignment, a plan or a schedule. Often, these objects can be rep-
resented by a finite structure and implicitly described by a logic theory. This
observation led to declarative problem solving paradigms based on finite model
generation such as Answer Set Programming [7, 11], np-spec [2] and the Model
Expansion framework [9]. Several efficient solvers for these frameworks have been
developed, making them applicable in practice.

Often, one is not (only) interested in a single solution to a search problem,
but also in revising this solution under varying circumstances. E.g., a network
administrator is interested in computing an initial configuration of a computer
network as well as in maintaining the configuration when one of the machines in
the network breaks down. Typically, the following are requirements for a revised
solution:

1. To allow a fast reaction on new circumstances, computing a revision should
be efficient.

? Research assistant of the Fund for Scientific Research - Flanders (FWO-Vlaanderen)

Johan Wittocx, Broes De Cat and Marc Denecker 199

2. Executing a proposed revision in the problem domain usually has a certain
cost. E.g., it takes time to move mail servers from one computer to another. A
good revision should preferably have a low cost. I.e., it should be executable
by a small number of cheap operations.

Most existing approaches to solve revision problems are tailored towards a
specific application such as train rescheduling, and hence, they are not (entirely)
declarative. In this paper, we present a revision method that is much closer to the
declarative problem solving frameworks mentioned above. Formally, we describe
a revision problem by a theory T , a finite model M of T and a set of atoms C: T
describes the original search problem, M a solution to that problem and C the
atoms that should swap truth value compared to M . A solution to the revision
problem is a model M ′ of T such that for every atom in C, its truth value in M ′

is opposite to its truth value in M . Revision problems where the theory T or the
domain of M is changed can be reduced to this case, as we show in Section 3.2.

In this paper, we describe a method to solve revision problems where T is a
first-order logic (FO) theory. Like finite model generation for FO, these problems
can easily be reduced to SAT. An off-the-shelf SAT solver can then be used to
solve the resulting SAT problem. However, directly using this approach does
not satisfy the two requirements mentioned above. It does not guarantee that
the revised model is close to the original model and it can take too much time
and space to create and store the SAT problem. The method we propose avoids
these problems by first constructing a set of atoms S′, called a search bound.
The bound contains all the atoms that we allow to swap truth value to obtain
a revised model M ′ from the original one M . Then the method tries to find, by
reducing to SAT, such a revised model M ′. If it does not succeed, the bound S′ is
enlarged and the process is repeated. However, if it succeeds and S′ is relatively
small, the two requirements are met. Only a small number of operations should
be performed to obtain M ′, because the only changes are on atoms in S′. Also,
reducing to SAT can be efficient if S′ is small.

To make the approach work, the consecutive search bounds should be con-
structed such that there is a reasonable chance that a revised model bounded by
them exists. In Section 5, we present a non-deterministic algorithm to compute
such search bounds. Experiments with a prototype implementation are discussed
in Section 6. They indicate that the algorithm often finds small search bounds
containing a revision. We end with conclusions and topics for future work.

2 Preliminaries

We assume the reader is familiar with classical first-order logic (FO), see, e.g., [4].
We introduce the conventions and notations used in this paper. Without loss
of generality, we consider function-free FO in this paper and assume that all
negations (¬) occur directly in front of atoms. I.e., we assume that every formula
is in negation normal form.

A vocabulary Σ consists of variables and predicate symbols. Variables are
denoted by lowercase letters, predicate symbols by uppercase letters. Sets and

200 Towards Computing Revised Models for FO Theories

tuples of variables are denoted by x, y,. . . . For a formula ϕ, we often write ϕ[x]
to denote that x are its free variables. If ϕ[x] is a formula and d an element from
a domain D, we denote by ϕ[d] the result of replacing all free occurrences of x
in ϕ by d. This notation is extended to tuples of variables and domain elements
of the same length. We say that a formula ψ occurs positively (negatively) in
another formula ϕ if it occurs in the the scope of an even (odd) number of
negations.

A literal is an atom (positive literal) or its negation (negative literal). By |L|
we denote the atom P (x) if L is the literal P (x) or ¬P (x). For an atom (literal)
L[x] and a tuple of domain elements d from a domain D, L[d] is called a domain
atom (literal) over D. We denote the set of all domain atoms over D by A(D).

A Σ-structure I with domain D is an assignment of a relation P I ⊆ Dn to
every n-ary predicate symbol P ∈ Σ. A structure is called finite if its domain is
finite. In this paper, all structures are finite. We say that a domain atom P (d) is
true, respectively false, in I if d ∈ P I , respectively d 6∈ P I . If R is a set of domain
atoms, we denote by swap(I,R) the structure obtained from I by swapping the
truth values of the domain atoms in R. I.e., d ∈ P swap(I,R) if one of the following
holds:

– d ∈ P I and P (d) 6∈ R;
– d 6∈ P I and P (d) ∈ R.

The satisfaction relation relation |= is defined as usual [4].

3 The Revision Problem

3.1 Basic Revision Problems

For the rest of this paper, we assume a fixed vocabulary Σ and finite domain
D. Unless stated otherwise, every structure has domain D. We now formally
define the revision problem. Let T be a theory, M a finite model of T and C a
set of domain atoms. A revision for input 〈M,T,C〉 is a set R of domain atoms
such that R ∩ C = ∅ and swap(M,R ∪ C) |= T . Intuitively, M describes the
original solution to a problem, C the changes that occurred, and R the changes
that should be made to repair the currently wrong solution swap(M,C). We call
swap(M,R ∪ C) a revised model.

Example 1. Consider the problem of placing n non-attacking rooks on an n ×
n chessboard. A model with domain {1, 2, . . . , n} of the following theory T1

describes a solution to this problem. Here, atom R(r, c) means “there is a rook
on square (r, c)”.

∀r ∃c R(r, c).
∀c ∃r R(r, c).
∀r∀c1∀c2 (R(r, c1) ∧R(r, c2) ⊃ c1 = c2).
∀r1∀r2∀c (R(r1, c) ∧R(r2, c) ⊃ r1 = r2).

Johan Wittocx, Broes De Cat and Marc Denecker 201

For n = 3,M1 = {R(1, 1), R(2, 3), R(3, 2)} is a model. Assume we have computed
M1, but for some reason, we do not want a rook on position (1, 1). That means we
have to search for a revision for 〈T1,M1, C1〉, where C1 = {R(1, 1)}. An example
revision is the set R1 = {R(1, 3), R(2, 1), R(2, 3)}, which yields the revised model
{R(1, 3), R(2, 1), R(3, 2)}.

In practice, it is often the case that not all atoms are allowed to swap truth
value in order to obtain a revised model. E.g., in a train rescheduling problem,
the truth value of atoms that state the positions of the railway stations should
never change, because the position of the stations cannot be changed in reality.
To formally describe such a problem, let S be a set of domain atoms, disjoint
from C. Intuitively, S is the set of atoms that are allowed to swap truth value,
i.e. the search space to find a revision. A revision R for 〈T,M,C〉 is bounded by
S if R ⊆ S. The bounded revision problem with input 〈T,M,C, S〉 is the problem
of finding a revision that is bounded by S.

3.2 Domain and Theory Changes

Besides the revision problem as described above, i.e., the problem of computing
a new model when the truth values of some of the domain atoms change, one
could also consider the problem of computing a new model when either1:

1. A new sentence is added to the theory.
2. A domain element is left out of the old model.
3. A new domain element is added to the old model.

All three problems can easily be reduced to the revision problem defined above.
To reduce (1), let ϕ be the sentence that is added, let P be a new propositional

atom and M a model of T such that P is false in M . Then a revision for
〈T ∪ {P ⊃ ϕ},M, {P}〉 is a model for T ∪ {ϕ}. To reduce (2), let Used be a
new unary predicate and denote by T ′ the theory obtained by replacing each
subformula in T of the form (∀xϕ), respectively (∃xϕ), by (∀x (Used(x) ⊃ ϕ)),
respectively (∃x (Used(x)∧ϕ)). Let U be the set of all domain atoms of the form
Used(d), M a model of T such that each atom in U is true in M , and denote by d′

the domain element that is left out. A revision for 〈T ′,M, {Used(d′)},A(D)\U〉,
restricted to the atoms not mentioning d′, is a model for T . In a similar way, (3)
can be reduced.

3.3 Weighted Revision Problems

In real-life revision problems, one is often more interested in a revision with
a low cost, than in a small revision. E.g., suppose some problem in a network
can be solved by either moving multiple DHCP servers, or by moving only one
mail server. Although the revision describing the first solution will have a higher
1 Observe that, due to the monotonicity of FO, it is trivial to compute a new model

when a sentence of T is left out.

202 Towards Computing Revised Models for FO Theories

cardinality than the second one, the cost of performing the second one is higher,
since moving a mail server involves moving all mailboxes of users. Moving a
DHCP server only involves copying a single script.

To model revision problems where the cost of the revision plays an important
role, a pair (c+, c−) of positive numbers is assigned to each domain atom P (d).
These two numbers indicate the cost of changing the truth value of P (d) from
false to true, respectively from true to false. E.g., if P (d) means that there is
a mail server on machine d, c+ indicates the cost of installing a mail server on
d, while c− indicates the cost of uninstalling it. A good revision only contains
atoms that are false, respectively true, in the original model and are assigned a
low c+, respectively c−.

4 Solving the Revision Problem

In the rest of this paper, we assume a fixed T , M , C and S and consider the
bounded revision problem for input 〈T,M,C, S〉. The problem 〈T,M,C, S〉 can
be solved by reducing it to the problem of finding a model of a propositional
theory Tg, called a grounding. The model generation problem can then be solved
by an off-the-shelf efficient SAT solver [10]. To find revisions with low cardinality
(or low cost in case of a weighted revision problem), one can use a SAT solver
with support for optimization, such as a max-SAT solver [6, 14].

4.1 Grounding

A formula ϕ is in ground normal form (GNF) if it is a boolean combination of
domain atoms. I.e., ϕ is a sentence containing no quantifiers or variables. A GNF
theory is a theory containing only GNF formulas. Observe that a GNF theory
is essentially a propositional theory.

Definition 1. A grounding for 〈T,M,C, S〉 is a GNF theory Tg such that for
every R ⊆ S, R is a revision for 〈T,M,C, S〉 iff swap(M,C ∪R) |= Tg. A
grounding is called reduced if all domain atoms that occur in it belong to S.

A basic grounding algorithm consists of recursively replacing every universal
subformula ∀x ϕ[x] in T by the conjunction

∧
d∈D ϕ[d] and every existential

subformula ∃x ϕ[x] by
∨

d∈D ϕ[d]. The resulting grounding is called the full
grounding. The size of the full grounding is polynomial in the size of D and
exponential in the maximum width of a formula in T . A reduced grounding can
be obtained by applying the following result.

Lemma 1. Let Tg be a grounding for 〈T,M,C, S〉 and ϕ a subformula of Tg. If
for every R ⊆ S, ϕ is true (false) in swap(M,C ∪R), then the theory obtained
by substituting > (⊥) for ϕ in Tg is also a grounding for 〈T,M,C, S〉.
According to this lemma, all formulas in Tg that do not contain an atom of S
can be replaced by > or ⊥, according to their truth value in swap(M,C). The

Johan Wittocx, Broes De Cat and Marc Denecker 203

result is a reduced grounding for 〈T,M,C, S〉. Observe that for a small search
space S, the size of a reduced grounding can be considerably smaller than the full
grounding size. Smart grounding algorithms avoid creating the full grounding by
applying Lemma 1 as soon as possible (see, e.g., [12, 13, 16]).

4.2 Optimized Grounding

If the search space S is small, a grounder that produces a reduced grounding
spends most of its time evaluating formulas in swap(M,C). Evaluating a formula
ϕ in a structure takes polynomial space in the size of ϕ. We can exploit the fact
that M is a model of T to evaluate some subformulas in T much more efficiently.

Inductively define the set τ(T) by

– If ϕ is a sentence of T , then ϕ ∈ τ(T);
– If ϕ1 ∧ ϕ2 ∈ τ(T), then ϕ1 ∈ τ(T) and ϕ2 ∈ τ(T);
– If ∀x ϕ[x] ∈ τ(T), then ϕ[x] ∈ τ(T).

If ϕ[x] is a formula of τ(T), then clearly M |= ϕ[d] for every tuple of domain
elements d. If ϕ does not contain dangerous literals then it remains true in every
revised model:

Definition 2. A domain literal L[d] is dangerous in a formula ϕ with respect
to S if L[d] ∈ C ∪ S, M |= L[d] and for some tuple of variables x, L[x] occurs
positively in ϕ.

Intuitively, a literal is dangerous in ϕ if it has a negative influence on the truth
value of ϕ in swap(M,C ∪ S), while it had a positive influence in M . We denote
the set of all dangerous literals in ϕ with respect to S by DS(ϕ).

Lemma 2. Let ϕ[x] ∈ τ(T) and d a tuple of domain elements. If DS(ϕ[d]) = ∅,
then swap(M,C ∪R) |= ϕ[d] for every R ⊆ S.

As such, a grounder can safely substitute formulas that satisfy the conditions of
Lemma 2 by >. Checking these conditions for a formula ϕ takes only linear time
in the size of ϕ.

5 Reducing the Search Space

5.1 Search Bounds

Directly solving a revision problem 〈T,M,C, S〉 by reducing it to SAT has the
drawback that there is no guarantee that the revised model that is found is close
to M , i.e., that the cardinality of the corresponding revision is low. The revision
R can be as large as S. On the other hand, one can often find a revision with
a cardinality much lower than the number of domain atoms that are allowed
to swap truth value. E.g., in a network configuration problem, a problem in a
certain subnet can often be repaired by only making changes within that subnet,

204 Towards Computing Revised Models for FO Theories

Fig. 1. Enlarging the search bound

not touching the rest of the network. In Example 1, the revision contains three
atoms, while there are n× n domain atoms in total.

The observation above suggests the following approach to find a revision for
〈T,M,C, S〉. First, construct a small subset S′ of S such that there might exist
a revision for 〈T,M,C, S′〉. We will call S′ the search bound. Then, try to find
a revision for 〈T,M,C, S′〉 by reducing to SAT. If a revision R is found, this is
also a revision for 〈T,M,C, S〉, because R ⊆ S′ ⊆ S. If, on the other hand, there
is no revision for 〈T,M,C, S′〉, the search bound S′ is enlarged. This process is
repeated until a revision is found or S′ = S. An example run of this algorithm
for Example 1 is shown in Figure 1, where the grey squares represent the domain
atoms in the consecutive S′. There are several important benefits of using this
approach compared to directly reducing to SAT:

– If a small search bound S′ can be detected such that there is a revision
for 〈T,M,C, S′〉, such a revision is small. Hence, the corresponding revised
model is close to the original model M .

– The size of the reduced grounding for 〈T,M,C, S′〉 is small when S′ is small.
Indeed, all atoms that occur in the reduced grounding are atoms of S′. In
general, the smaller the grounding, the faster the SAT solver can produce
its answer.

– A small S′ might speed up the grounding considerably, since the number of
formulas that satisfy the conditions of Lemma 2 depends on the size of S′.

5.2 Enlarging the Search Bound

Assume that we have constructed a search bound S′ that is not large enough.
I.e., there is no revision for 〈T,M,C, S′〉. Lemma 2 implies that this problem is
caused by the dangerous literals in the sentences of T with respect to S′. If we
want to enlarge S′ to a new search bound S′′ such that there is a reasonable
chance that there is a revision for 〈T,M,C, S′′〉, we should add atoms to S′ that
can have a positive influence on the sentences of T . I.e., if they swap truth value
compared to M , then some literals that occur positively in T become true. More
precisely:

Definition 3. A domain atom P (d) has positive influence in a formula ϕ if
there is a positive occurrence of a literal L[x] in T such that |L| = P and M 6|=
L[d].

Johan Wittocx, Broes De Cat and Marc Denecker 205

In most cases, it is not beneficial to choose the atoms to add to S′ randomly
among the atoms with a positive influence on T . Rather, atoms that are added
should be able to neutralize the negative influence of the dangerous literals. E.g.,
if a literal L ∈ DS′(ψ1 ∨ ψ2) and L occurs in ψ1, then its negative influence can
be neutralized by making ψ2 true. Hence in this case, one should add atoms to
S′ that have a positive influence on ψ2. Observe that a dangerous occurrence of
a literal L in a conjunction ψ1 ∧ ψ2 cannot be neutralized. If ψ1 is false, then
even if ψ2 is true, the conjunction is false. These intuitions are formalized in the
following definitions.

Definition 4. Let L[d] ∈ DS′(ϕ) and ψ[x] subformula of ϕ. We call ψ[d
′
] a

neutralizable formula for L[d] in ϕ if

– ψ is a disjunction or an existentially quantified formula,
– L[d] ∈ DS′(ψ[d

′
]) and

– swap(M,C ∪R) 6|= ψ[d
′
] for some R ⊆ S′.

The third condition expresses that ψ[d
′
] can become false when some of the

atoms in S′ ∪ C swap truth value. I.e., ψ[d
′
] can be a reason that there is no

revision bounded by S′.

Definition 5. Let ψ be a neutralizable formula for L[d] in ϕ. A domain atom
P (d

′
) is a neutralizer for L[d] in ψ if one of the following holds:

– ψ =
∨

1≤i≤n χi, L[d] ∈ DS′(χj) and P (d
′
) has positive influence in χk for

some k 6= j.
– ψ = ∃x χ[x], L[d] ∈ DS′(χ[d′′]) and P (d

′
) has positive influence in χ[d′′′] for

some domain element d′′′ 6= d′′.

Example 2. Let ϕ be the propositional formula ((A∨B)∧C)∨ (D ∧E) and let
M = {A,C,E}, C = {A} and S′ = ∅. Then A is dangerous in ϕ. Its negative
influence is clear: M |= ϕ, but swap(M,C ∪ S′) 6|= ϕ. There are two neutralizable
formulas for A in ϕ: A ∨ B and ϕ. B is a neutralizer for the former, D for the
latter. Observe that both swap(M,C ∪ {B}) and swap(M,C ∪ {D}) satisfy ϕ.
This suggests to add B and/or D to S′ to obtain a new search bound.

Example 3 (Ctd. from Example 1). Let S′ = {R(2, 1)}. Then R(1, 1) is danger-
ous in ∀r ∃c R(r, c). The only neutralizing formula in this case is ∃c R(1, c), yield-
ingR(1, 2) andR(1, 3) as neutralizers. ¬R(2, 1) is dangerous in ∀r∀c1∀c2 (R(r, c1)∧
R(r, c2) ⊃ c1 = c2). For every domain element d 6= 1, R(2, 1) ∧ R(2, d) ⊃ 1 = d
is a neutralizing formula, with R(2, d) as neutralizer.

Our algorithm to enlarge the search bound consists of first computing a non-
empty set V of neutralizers for literals in DS′(T) such that V ⊆ S and V ∩S′ = ∅.
Then, V ∪S′ is used as the next search bound. Due to the following proposition,
this strategy yields a complete algorithm to compute revisions.

206 Towards Computing Revised Models for FO Theories

Proposition 1. Let S′ ⊆ S and let V be the set of all neutralizers for all literals
in DS′(T). If there is no revision for 〈T,M,C, S′〉 and (V ∩ S) ⊆ S′ then there
is no revision for 〈T,M,C, S〉.

In the above, we did not specify how to choose the set of neutralizers to
enlarge the search bound. Several heuristics can be thought of. A thorough the-
oretical and experimental investigation of heuristics is part of future work. We
implemented the following simple heuristics, but none of them yielded signifi-
cantly better results than making random choices:

– In order to neutralize multiple dangerous literals at once, prefer to add atoms
to S′ that are neutralizer for more than one literal in DS′(T).

– Minimize the negative influence in the next iteration by preferring to add
literals that are dangerous for only few subformulas of T .

– A weighted sum of the two heuristics above.

In the experiments of the next section, all results are obtained with random
heuristics.

6 Implementation and Experiments

In this section, we report on a prototype implementation of the presented revision
algorithm. We present experimental results on three benchmark problems.

6.1 FO-Implementation

We made an implementation of the revision algorithm on top of the model
generation system idp. The idp system uses GidL [16] as grounder and Min-
isat(id) [8] as propositional solver. The latter is an adaption of the SAT solver
MiniSAT [3]. Currently, no heuristics are implemented in our system. At each
iteration, a random subset V of the neutralizers for literals in DS′(T) is added
to the search bound. The cardinality of V was restricted to a maximum of 10
atoms in each of the experiments below.

We tested the implementation on three different problems:

N-Rooks: The N -Rooks puzzle as described in Example 1. For each of the
instances, C contains three atoms. I.e., at least three atoms swap truth value
compared to the given model.

N-Queens: The classical N -Queens puzzle. C contains exactly one atom for
each of the instances.

M ×N-Queens: An adaption of the N -Queens puzzle. Here, M chess-boards
of dimension N ×N are placed in a circle. On each board, a valid N -Queens
solution is computed. Moreover, if a board contains a queen on square (x, y),
then the neighbouring boards may not contain a queen on (x, y). C contains
one atom for each of the instances. In this case, it often suffices to revise one
of the boards to revise the whole problem.

Johan Wittocx, Broes De Cat and Marc Denecker 207

In the tables below, MG stands for Model generation. Times and sizes in
columns marked MG denote times and sizes obtained when solving the problem
from scratch with the idp system. MR stands for Model revision. Numbers in
these columns are obtained with our system. All sizes are expressed in the num-
ber of propositional literals. The grounding size for model revision is the ground-
ing size for the final search bound. The full bound size is the size of the entire
search space, the final bound size is the average size of the first search bound
containing a revision. Iter denotes the average number of iterations, Changes
the average number of changes with respect to the original model. We used a
time-out (###) of 600 seconds. All results are averaged over 10 runs.

On the N -rooks problems, the revision algorithm scores well. Up to dimension
5000 is solved within 30 seconds, while model generation was impossible for
dimensions above 500. Around 3 iterations are needed to find a sufficiently large
search bound. This is as expected, since this problem is not strongly constrained:
it is possible to find revisions of low cardinality. On average, 5 rooks were moved
to obtain a revised model.

The results on the N -Queens show the weakness of the random heuristic on
strongly constrained problems. Model revision turns out to be far slower than
generating a new model from scratch. Also, many queens are moved to obtain
the revised model. E.g., for dimension 40 and 50, 15 queens are moved.

The M × N -queens problems show the strength of the revision algorithm.
For problems consisting of a large number of small subproblems, the algorithm is
able to revise an affected subproblem without looking at the other subproblems.
On large problems, this results in far better times compared to model generation.

Table 1. N -Rooks

Time (sec.) Grounding size Bound size
MG MR MG MR Full Final Iter. Changes

10 0 1 3.8 · 103 585 100 28 2.8 10.0
50 0 1 5.0 · 105 479 2500 24 2.4 10.4

100 2 1 3.9 · 106 698 10000 28 2.8 10.4
250 30 1 6.2 · 107 903 62500 29 2.9 10.6
500 ### 1 5.0 · 108 1116 2.5 · 105 28 2.8 10.4

1000 ### 2 ### 1998 1.0 · 106 28 2.8 11.0
5000 ### 29 ### 5575 2.5 · 107 26 2.6 11.0

7 Related Work

Most literature on revision of solutions focusses on particular applications such
as train rescheduling. We are not aware of papers describing techniques to handle
the general revision problem for FO described in this paper. In work dealing with
propositional logic, e.g. [5], the heuristics take large parts of the propositional

208 Towards Computing Revised Models for FO Theories

Table 2. N -Queens

Time (sec.) Grounding size Bound size
MG MR MG MR Full Final Iter. Changes

10 0 1 3140 1943 100 83 8.3 14
20 0 2 25880 6133 400 93 9.3 14
30 0 7 88220 16690 900 121 12.1 26
40 1 12 210160 30083 1600 135 13.5 30
50 2 24 411700 49317 2500 149 14.9 30
60 4 ### 712840 ### 3600 ### ### ###

Table 3. M ×N -Queens

Time (sec.) Grounding size Bound size
MG MR MG MR Full Final Iter. Changes

10× 10 0 2 33400 4387 1000 95 10.1 14
100× 10 1 5 334000 5932 10000 127 13.3 17

1000× 10 ### 29 3340000 5932 100000 127 14.6 17
10× 25 1 58 521000 34872 6250 408 41.4 25

100× 25 178 104 5210000 39540 62500 475 48.1 27
1000× 25 ### 277 52100000 39540 625000 475 44.6 27

theory into account, which becomes infeasible for problems with large domains.
In the area of Answer Set Programming (ASP), [1] presents a method for up-
dating answer sets of a logic program when a rule is added to it. The method
is completely different from the one we presented: it does not rely on existing
ASP or SAT solvers, it cannot handle the case where a rule is removed from the
program and it works on the propositional level.

Instead of using our method with a DPLL based SAT solver as back-end, one
could directly use a local search SAT solver [15] on the grounding of 〈T,M,C, S〉
and provide the original model M as starting point for the search. The main
difference with our approach is the way conflicts (dangerous literals) are handled.
A local search solver immediately swaps the truth value of neutralizers and hence
maintains a two-valued structure, while our approach implicitly assigns the truth
value unknown to all atoms in the search bound and hence maintains a three-
valued structure.

8 Conclusions and Future Work

We defined the model revision problem for FO and described an algorithm to
solve it. Our presentation leaves much freedom to experiment with different
heuristics. A prototype implementation of the algorithm produced promising
results, even with random choice heuristics.

The following are topics for future work:

Johan Wittocx, Broes De Cat and Marc Denecker 209

– A thorough theoretical and experimental study of heuristics. A promising
approach is to analyze the proof of unsatisfiability produced by the SAT-
solver on an input 〈T,M,C, S′〉. This analysis then guides the extension
of the search bound S′. Also heuristics applied in local search SAT and
constraint solvers could be of use. A different approach consists of developing
a more interactive system where the user can guide the search.

– The current implementation spends most of its time in grounding. For two
search bounds S′ ⊆ S′′, the grounding for 〈T,M,C, S′〉 is a subtheory of
the grounding for 〈T,M,C, S′′〉. As such the same subtheory is grounded
multiple times. It is part of future work on the implementation to avoid this
overhead by grounding in an incremental way.

– Many search and revision problems cannot be expressed in a natural manner
using an FO theory. E.g., this is the case for problems involving reachabil-
ity. Therefore, the input language of the idp system [16] extends FO with
constructs to express inductive definitions, aggregates, types, etc. We plan
to extend the revision algorithm to this richer language.

References

1. Martin Brain, Richard Watson, and Marina De Vos. An interactive approach
to answer set programming. In Answer Set Programming, volume 142 of CEUR
Workshop Proceedings. CEUR-WS.org, 2005.

2. Marco Cadoli, Giovambattista Ianni, Luigi Palopoli, Andrea Schaerf, and
Domenico Vasile. NP-SPEC: an executable specification language for solving all
problems in NP. Comput. Lang., 26(2-4):165–195, 2000.

3. Niklas Eén and Niklas Sörensson. An extensible sat-solver. In Enrico Giunchiglia
and Armando Tacchella, editors, SAT, volume 2919 of Lecture Notes in Computer
Science, pages 502–518. Springer, 2003.

4. Herbert B. Enderton. A Mathematical Introduction To Logic. Academic Press,
1972.

5. Maria Fox, Alfonso Gerevini, Derek Long, and Ivan Serina. Plan stability: Replan-
ning versus plan repair. In Derek Long, Stephen F. Smith, Daniel Borrajo, and
Lee McCluskey, editors, ICAPS, pages 212–221. AAAI, 2006.

6. Chu Min Li, Felip Manyà, and Jordi Planes. New inference rules for max-sat. J.
Artif. Intell. Res. (JAIR), 30:321–359, 2007.

7. Victor W. Marek and Mirek Truszczyński. Stable models and an alternative logic
programming paradigm. In K.R. Apt, V. Marek, M. Truszczyński, and D.S. War-
ren, editors, The Logic Programming Paradigm: a 25 Years Perspective, pages pp.
375–398. Springer-Verlag, 1999.

8. Maarten Mariën, Johan Wittocx, Marc Denecker, and Bruynooghe Maurice.
SAT(ID): Satisfiability of propositional logic extended with inductive definitions.
In Proceedings of the 11th conference on Theory and Applications of Satisfiabil-
ity Testing, SAT 2008, volume 4996 of Lecture Notes in Computer Science, pages
211–224. Springer, 2008.

9. David Mitchell and Eugenia Ternovska. A framework for representing and solving
NP search problems. In AAAI’05, pages 430–435. AAAI Press/MIT Press, 2005.

10. David G. Mitchell. A SAT-solver primer. Bulletin of the EATCS, 85:112–132,
2005.

210 Towards Computing Revised Models for FO Theories

11. Ilkka Niemelä. Logic programs with stable model semantics as a constraint
programming paradigm. Annals of Mathematics and Artificial Intelligence,
25(3,4):241–273, 1999.

12. Murray Patterson, Yongmei Liu, Eugenia Ternovska, and Arvind Gupta. Ground-
ing for model expansion in k-guarded formulas with inductive definitions. In
Manuela M. Veloso, editor, IJCAI, pages 161–166, 2007.

13. Simona Perri, Francesco Scarcello, Gelsomina Catalano, and Nicola Leone. En-
hancing DLV instantiator by backjumping techniques. Annals of Mathematics and
Artificial Intelligence, 51(2-4):195–228, 2007.

14. Knot Pipatsrisawat and Adnan Darwiche. Clone: Solving weighted max-sat in a
reduced search space. In Mehmet A. Orgun and John Thornton, editors, Australian
Conference on Artificial Intelligence, volume 4830 of Lecture Notes in Computer
Science, pages 223–233. Springer, 2007.

15. Bart Selman, Henry Kautz, and Bram Cohen. Local search strategies for satisfiabil-
ity testing. In DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, pages 521–532, 1993.

16. Johan Wittocx, Maarten Mariën, and Marc Denecker. GidL: A grounder for FO+.
In Michael Thielscher and Maurice Pagnucco, editors, NMR’08, pages 189–198,
2008.

Johan Wittocx, Broes De Cat and Marc Denecker 211

212

ISTO: a Language for Temporal Organisational
Information Systems

Vitor Nogueira and Salvador Abreu

Universidade de Évora and CENTRIA, Portugal
{vbn,spa}@di.uevora.pt

Abstract In this paper we propose to extend the logical framework
ISCO (Information System COnstruction language) with an expressive
means of representing and implicitly using temporal information. More-
over, we also provide a compilation scheme that targets a logic language
with modularity and temporal reasoning.

1 Introduction and Motivation

Organisational Information Systems (OIS) have a lot to benefit from Logic Pro-
gramming (LP) characteristics such as a rapid prototyping ability, the relative
simplicity of program development and maintenance, the declarative reading
which facilitates both development and the understanding of existing code, the
built-in solution-space search mechanism, the close semantic link with relational
databases, just to name a few. In [Por03,ADN04] we find examples of LP lan-
guages that were used to develop and maintain Organisational Information Sys-
tems.

ISCO (Information System COnstruction language) [Abr01] is based on a
Constraint Logic Programming framework to define the schema, represent data,
access heterogeneous data sources and perform arbitrary computations. In ISCO,
processes and data are structured as classes which are represented as typed1

Prolog predicates. An ISCO class may map to an external data source or sink
like a table or view in a relational database, or be entirely implemented as a
regular Prolog predicate. Operations pertaining to ISCO classes include a query
which is similar to a Prolog call as well as three forms of update.

In this paper we propose to extend ISCO with an expressive means of rep-
resenting and implicitly using temporal information. This evolution relies upon
the formalism called Temporal Contextual Logic Programming [NA07b,NA07a].
Moreover, having simplicity (syntactic, semantic, etc) as a guideline we present
a revised and stripped-down version of ISCO, keeping just some of the core fea-
tures that we consider indispensable in a language for Temporal Organisational
Information Systems. Leaving out aspects such as access control [Abr02] does
not mean they are deprecated, only not essential for the purpose at hand. The

1 The type system applies to class members, which are viewed as Prolog predicate
arguments.

Vitor Nogueira and Salvador Abreu 213

main motivation of this paper is to provide a language suited to construct and
maintain Temporal OIS where contexts aren’t explicit but implicit (they are
obtained throughout the compilation of this language).

The remainder of this article is structured as follows: Sect. 2 briefly overviews
Temporal Contextual Logic Programming. Section 3 presents a revised and
stripped-down version of the logical framework ISCO and Sect. 4 proposes the
temporal extension. Section 5 discusses a compilation scheme for this language
and Section 6 compares it with other approaches. Finally, Sect. 7 draws some
conclusions.

2 An Overview of Temporal Contextual Logic
Programming

In this section we present an overview of Temporal Contextual Logic Program-
ming (TCxLP). For a more detailed description please consider [NA07b,NA07a].
Since TCxLP combines the modular language Contextual Logic Programming
with the temporal paradigm Temporal Annotated Constraint Logic Program-
ming, we begin by briefly overviewing these formalisms.

2.1 Contextual Logic Programming

Contextual Logic Programming (CxLP) [MP93] is a simple yet powerful language
that extends logic programming with mechanisms for modularity. In CxLP a
finite set of Horn clauses with a given name is designated by unit. Using the
syntax of GNU Prolog/CX (recent implementation for CxLP [AD03]) consider a
unit named employee to represent some basic facts about university employees:

:-unit(employee(NAME , POSITION)).

item :- employee(NAME , POSITION).
employee(bill , teaching_assistant).
employee(joe , associate_professor).

name(NAME).
position(POSITION).

The main difference between the example above and a plain logic program is
the first line that declares the unit name (employee) along with the unit argu-
ments (NAME, POSITION). Unit arguments help avoid the annoying proliferation
of predicate arguments, which occur whenever a global structure needs to be
passed around. A unit argument can be interpreted as a “unit global” variable,
i.e. one which is shared by all clauses defined in the unit. Therefore, as soon as a
unit argument gets instantiated, all the occurrences of that variable in the unit
are replaced accordingly.

Suppose another unit to calculate the salary:

214 ISTO: a Language for Temporal Organisational Information Systems

:-unit(salary(SALARY)).

item :-
position(P),
index(P, I),
base_salary(B),
SALARY is I*B.

index(teaching_assistant , 12).
index(associate_professor , 20).

base_salary (100).

A set of units is designated as a contextual logic program. With the units
above we can build the program P = {employee, salary}. Moreover, if we
consider that employee and salary designate sets of clauses, then the resulting
program is given by the union of these sets.

For a given CxLP program, we can impose an order on its units, leading to
the (run time) notion of context. Contexts are implemented as lists of unit des-
ignators and each computation has a notion of its current context. The program
denoted by a particular context is the union of the predicates that are defined in
each unit. Moreover, we resort to the override semantics to deal with multiple
occurrences of a given predicate: only the topmost definition is visible.

To construct contexts, we have the context extension operation: the goal
U :> G extends the current context with unit U and resolves goal G in the new
context. As an illustration, consider a goal that computes Joe’s salary:

?- employee(joe , P) :> (item , salary(S) :> item).

A brief explanation of this goal is as follows: we extend the (initially) empty
context with unit employee obtaining context [employee(joe, P)] and then re-
solve query item. This leads to P being instantiated with associate professor.
After salary/1 being added, the context becomes [salary(S), employee(joe,
associate professor)]. Afterwards the second item is evaluated and the first
matching definition is found in unit salary. Goal position(P) is called and
since there is no rule for this goal in the current unit (salary), a search in the
context is performed. Since employee is the topmost unit that has a rule for
position(P), this goal is resolved in the (reduced) context [employee(joe,
associate professor)]. In an informal way, we queried the context for the po-
sition of whom we want to calculate the salary, obtaining associate professor.
The remaining is straightforward, leading to the answer S = 2000 and P =
associate professor.

2.2 Temporal Annotated Constraint Logic Programming

This section presents a brief overview of Temporal Annotated Constraint Logic
Programming (TACLP). For a more detailed explanation see for instance [Frü96].

Vitor Nogueira and Salvador Abreu 215

We consider the subset of TACLP where time points are totally ordered,
sets of time points are convex and non-empty, and only atomic formulae can be
annotated. Moreover clauses are free of negation.

Time can be discrete or dense. Time points are totally ordered by the relation
≤. We call the set of time points D and suppose that a set of operations (such
as the binary operations +,−) to manage such points is associated with it. We
assume that the time-line is left-bounded by the number 0 and open the future
(∞). A time period is an interval [r, s] with 0 ≤ r ≤ s ≤ ∞, r ∈ D, s ∈ D and
represents the convex, non-empty set of time points {t | r ≤ t ≤ s}. Therefore
the interval [0,∞] denotes the whole time line.

In TACLP there are the following annotated formulae:

– A at t means that A holds at time point t.
– A th I means that A holds throughout I, i.e. at every time point in the

period I.
– A in I means that A holds at some time point(s) in the time period I, but

there is no knowledge when exactly.

The set of annotations is endowed with a partial order relation v which turns
into a lattice. Given two annotations α and β, the intuition is that α v β if α
is “less informative” than β in the sense that for all formulae A, Aβ ⇒ Aα.
Assuming r1 ≤ s1, s1 ≤ s2 and s2 ≤ r2, we can summarise the axioms for the
lattice operation v by:

in[r1, r2] v in[s1, s2] v in[s1, s1] = at s1 = th[s1, s1] v th[s1, s2] v th[r1, r2]

A TACLP program is a finite set of TACLP clauses. A TACLP clause is a formula
of the form Aα← C1, . . . , Cn, B1α1, . . . , Bmαm (m,n ≥ 0) where A is an atom,
α and αi are optional temporal annotations, the Cj ’s are the constraints and
the Bi’s are the atomic formulae.

2.3 Temporal Contextual Logic Programming

The basic mechanism of CxLP is called context search and can be described
as follows: to solve a goal G in a context C, a search is performed until the
topmost unit of C that contains clauses for the predicate of G is found. Temporal
Contextual Logic Programming (TCxLP) incorporates temporal reasoning into
this mechanism. To accomplish that, temporal annotations are added not only
the dynamic part of CxLP (contexts) but also to the static one (units) and it
will be the relation between those two types of annotations that will determine
if a given unit is eligible to match a goal during a context search. Although
TCxLP has an operational semantics that provides a complete formalisation of
that behavior, for space reasons here we present only an illustrative example.
For further reading please consider [NA07b,NA07a].

Revisiting the University employees example, unit employee with temporal
information can be written as:

216 ISTO: a Language for Temporal Organisational Information Systems

:- unit(employee(NAME , POSITION)).

item.
employee(bill , teaching_assistant) th [2004 , inf].
employee(joe , teaching_assistant) th [2002 , 2006].
employee(joe , associate_professor) th [2007 , inf].

name(NAME).
position(POSITION).

This way it is possible to represent the history of the employees positions: Joe
was a teaching assistant between 2002 and 2006. The same person is a associate
professor since 2007. Moreover, in this case the rule for predicate item/0 doesn’t
need to be “item :- employee(NAME, POSITION).” because the goal item is
true only if the unit is (temporally) eligible and, for that to happen, the unit
arguments must be instantiated. To better understand this example, consider
the goal that queries Joe’s position throughout [2005,2006]:

?- [employee(joe , P)] th [2005 ,2006] :< item.

In the goal above we introduced a new operator (:<) called context switch where
C :< G allows the execution of goal G in the temporal annotated context C. For
the example above item is true as long as the unit is eligible in the current
context, and this happens when P is instantiated with teaching assistant,
therefore we get the answer P = teaching assistant.

Moreover, if there is no explicit temporal reference in the context, TCxLP
assumes the current time. For instance, the following goal queries Joe’s current
salary:

?- employee(joe , P) :> (item , salary(S) :> item).

As the reader might see, the goal above is identical to one used to illustrate
CxLP. The difference is that units employee and salary must be eligible in
the temporal context defined. Since there is no mention of time we assume the
current time (at 2009). Therefore in order for those two units to be eligible we
obtain P = associate professor and S = 20000.

For simplicity reasons we considered that unit salary is atemporal and
therefore base salary and index are the same throughout time. Neverthe-
less, it should be clear that it would reasonable to define new temporal units
base salary and index.

3 Revising the ISCO Programming Language

In this section we present a revised and stripped-down version of ISCO focus-
ing on what we consider the required features in a language to construct and
maintain (Temporal) Organisational Information Systems.

Vitor Nogueira and Salvador Abreu 217

3.1 Classes

When dealing with large amounts of data, one must be able to organise informa-
tion in a modular way. The ISCO proposal for this point are classes. Although
ISCO classes can be regarded as equivalent to Prolog predicates, they provide
the homonym OO concept, along with the related data encapsulation capability.

Let us see an ISCO class that handles data about persons, namely its name
and social security number:

Example 1. Class Person.

class person.
name: text.
ssn: int.

In this example after defining the class name to be person, we state its arguments
and types: name type text and ssn (Social Security Number) type int(eger).

3.2 Methods

By defining class arguments we are also implicitly setting class methods for ac-
cessing those arguments. For instance, in class person we have the predicates
ssn/1 and name/1. Therefore to query Joe’s ssn, besides the (positional) Pro-
log goal ?- person(joe, S). we can equivalently use ?- person(name(joe),
ssn(N)).

Besides these implicit methods, there can also be explicit ones defined by
means of regular Horn clauses. As an illustration of an Horn clause, consider that
argument name of class person is an atom with the structure syntax ’SURNAME
FIRST NAME’. In order to obtain the person surname we may add the following
clause to the class definition:

surname(Surname) :-
name(Name),
atom_chars(Name , N_Chrs),
append(Surname_Chrs , [’ ’|_], N_Chrs),
atom_chars(Surname , Surname_Chars).

3.3 Inheritance

Inheritance is another Object Oriented feature of ISCO that we would like to
retain in our language. The reasons for that are quite natural since it allow us
to share not only methods, but also data among different classes.

Consider class person of Example 1 and that we want to represent some
facts (name, social security number and position) about the employees of a given
company. Therefore, we define employee to be a subclass of person with the
argument position:

218 ISTO: a Language for Temporal Organisational Information Systems

Example 2. Class employee.

class employee: person.
position: text.

3.4 Composition

In order to have the OO feature of composition we retain the ISCO ability to
re-use a class definition as a data type. As an illustration suppose that we want
to deal with the employees home address and have the possibility of using the
address schema in other classes (e.g. for suppliers). For that we define a new
class address and re–define the employee class adding a new argument (home)
whose type is address:

Example 3. Class address.

class address.
street: text.
number: int.

class employee: person.
home: address.
position: text.

The access to compound types its quite natural, for instance suppose that we
want to know Joe’s street name:

?- employee(name(joe), home(address(street(S)))).

Actually, as the reader might see, there is no real need for the basic types
since we could develop one class for each. Nevertheless, because they are quite
intuitive to use, we decided to keep them.

3.5 Persistence

Having persistence in a Logic Programming language is a required feature to
construct actual OIS; this could conceivably be provided by Prolog’s internal
database but is best accounted for by software designed to handle large quanti-
ties of factual information efficiently, as is the case in relational database man-
agement systems. The semantic proximity between relational database query
languages and logic programming languages have made the former privileged
candidates to provide Prolog with persistence.

ISCO’s approach for interfacing to existing RDBMS2 involves providing dec-
larations for an external database together with defining equivalences between
classes and database relations.

As an illustration, consider that the employee facts are stored in a homonym
table of a PostgreSQL database named db running on the localhost:
2 ISCO access to frameworks beyond relational databases, such as LDAP directory

services or web services is out of scope for the present work. We shall stick with to
RDMBS only.

Vitor Nogueira and Salvador Abreu 219

Example 4. Class employee with persistence.

external(db_link , postgres(db, localhost)).

external(db_link , employee) class employee: person.
home: address.
position: text.

Since the database table has the same name as the class, the employee inside
the external term above is optional.

3.6 Data Manipulation Goals

Under the data manipulation operations we include not only insertion, removal
and update but also query operations. Since queries were already subject of
previous examples in this section we present only the remaining operations.

The modification goals (insert, delete and update) are based on simple queries,
non backtrackable and all follow the tuple-at-a-time approach. As an example,
suppose that we want to insert the employee Joe, update his address and then
remove this employee:

?- employee(name(joe), ssn(111) ,
position(associate_professor),
home(address(street(up), number (1)))) +.

?- employee(name(joe)) #
(home(address(street(down), number (2)))).

?- employee(name(joe)) -.

4 The ISTO Language

In this section we provide the revised ISCO language of the previous section with
the ability to represent and implicitly use temporal information. This temporal
evolution of the ISCO language will be called ISTO (Information System Tempo-
ral cOnstruction language). The capability of representing temporal information
will be achieved by extending ISCO classes to their temporal counterpart. More-
over, in order to handle such temporal information ISTO also includes temporal
data manipulation operations.

4.1 Temporal Classes

Temporal classes are syntactically introduced by adding the keyword temporal
before the keyword class.

Facts of a temporal class have a temporal dimension, i.e. all tuples have an
associated temporal stamp which represents instants or intervals (their precise

220 ISTO: a Language for Temporal Organisational Information Systems

definition will be given in Sect. 4.2). As an illustration, class employee can be
temporal (Example 3), since it makes sense that the position and home address
of a given employee evolves throughout time. On the other hand class person
should continue atemporal since the facts it stores shouldn’t evolve over time.

Example 5. Temporal class employee

temporal class employee: person.
home:address.
salary: int.

4.2 Temporal Data Manipulation

In this section we present the temporal equivalent of the data manipulation goals
described in Sect. 3.6, i.e. we provide a temporal query, insertion, removal and
update goals.

Keeping the syntax as simple as possible, temporal operations add a suffix
composed by the operator “@” and a temporal annotation to the atemporal coun-
terparts. The interval representation is the standard one [T1, T2] and stands
for all time points between T1 and T2 (where T2 ≥ T1). Moreover, in order to be
able to handle in-annotated information (see Sect. 2.2), we also allow another
type of intervals [T1; T2] to represent some time points (not necessarily all)
between T1 and T2, i.e. [T1; T2] is a subset of [T1, T2].

Although an instant T can be represented by the interval [T, T], to ease the
reading we denote it simply by T. As an illustration consider that we want to
know Joe’s street name in the year 2007:

Example 6. Joe’s street name in the year 2007

?- employee(name(joe),
home(address(street(S)))) @ 2007

S = upstreet

The goal above is a temporal version of the one presented in Sect. 3.4.

5 Compilation Scheme for ISTO

The compilation of the non-temporal part of ISTO yields CxLP and from the
temporal extension we target TCxLP. Due to the space limitations and since
the temporal aspects are the novelty, in this section we describe (essentially) the
compilation scheme for these aspects.

5.1 (Temporal) Classes

The translation from an ISTO class to CxLP can be roughly described as: every
class is mapped to a corresponding unit, with the class arguments transformed

Vitor Nogueira and Salvador Abreu 221

into unit arguments and predicates for accessing these arguments. Moreover, one
extra unit argument OID standing for Object Identifier is added to every unit
and is used to discriminate a given element in a class.

Before presenting the compilation of temporal classes and goals one must ob-
serve that non-temporal classes must behave as if they were valid throughout the
entire time line. Such a behavior can be obtained simply by adding a fact to each
nontemporal unit. For instance, to the unit person which has been presented, it
suffices to add the fact: person(OID, NAME, SSN) th [0, inf].

Let us now see the result of compiling the temporal class employee from
Example 5:

:- unit(employee(OID , HOME_OID , POSITION)).

oid(OID).

home(address(GOAL)) :-
[address(HOME_OID , STREET , NUMBER)]

:< (item , GOAL).

position(POSITION).

item :- :^ item.

The main difference from the compilation of the nontemporal class is that there
is no need for predicate item to instantiate the unit arguments, since the tempo-
ral context search will do that implicitly. Besides the clauses above there must be
also some temporal conditions such as employee(1, 1, associate professor)
th [2007, inf] (representing for instance part of Joe’s information.) Finally,
since employee is a subclass of person, the context for unit employee is of the
form [employee(...), person(...), ...], therefore to ensure consistency
item/0 must also be invoked in the context [person(...), ...] and that is
acomplished by :^ item. 3

5.2 Temporal Data Manipulation Goals

The translation of a temporal query will result in a goal in a temporal context.
The ISTO query of Joe’s street name in 2007 of Sect. 4.2 is translated into:

?- [employee(OID , HOME_OID , SALARY),
person(OID , NAME , SSN)] (at 2007) :<

(item , name(joe), home(address(street(S)))).

Introducing temporal modification goals needs further considerations. First of
all, as mentioned, these goals are extra-logical. Moreover, since now the th-
annotated facts can change at runtime, to use the (simplified) semantics of
TCxLP one must ensure that the backend of a temporal class always stores
3 The operator :^ is called the supercontext operator.

222 ISTO: a Language for Temporal Organisational Information Systems

the least upper bound of th-annotated unit temporal conditions. In order to
guarantee that, every insertion of a th-annotated temporal condition must in-
duce a recomputation of the least upper bound. As an illustration consider again
Joe’s positions through time:4

employee(1, teaching_assistant) th [2002 , 2006].
employee(1, associate_professor) th [2007 , inf].

Suppose the following ISTO goal to remove this employee information between
2005 and 2006:

?- (employee(name(joe)) -) @ [2005 , 2006].

It changes the temporal conditions in the following way:

employee(1, teaching_assistant) th [2002 , 2004].
employee(1, associate_professor) th [2007 , inf].

Finally, if we add the information that Joe’s position between 2005 and 2006
was associate professor:

?- (employee(name(joe),
position(associate_professor)) +) @ [2005, 2006].

then the least upper bound must be recomputed, leading to:

employee(1, teaching_assistant) th [2002 , 2004].
employee(1, associate_professor) th [2005 , inf].

6 Comparison with other Approaches

The temporal timestamps of ISTO can regarded as the counterpart of the valid
time proposed in temporal databases [TCG+93]. Although ISTO has no con-
cept similar to the transaction time, we consider that one could implement it
by adding a log in the ISTO backend unit. However this capability is beyond
the scope of the ISTO initial concerns. On the other hand, ISTO contextual
time enables an expressiveness that lacks in most database products with tem-
poral support. Only in Oracle Workspace Manager [Cor05] we find a concept
(workspace) that is related to our temporal context.

As far as we know there are logical languages that have modularity/OO,
others that provide temporal reasoning or even persistence. ISTO is the only
one that encompasses all those features.

7 Conclusions and Future Work

In this paper we presented a revision of a state-of-the-art logical framework for
constructing OIS called ISCO. We proceeded to introduce an extension to this
4 For simplicity reasons in this illustration we ignore the home address argument.

Vitor Nogueira and Salvador Abreu 223

language called ISTO, that includes the expressive means of representing and
implicitly using temporal information. Together with a syntactical definition of
ISTO we also presented a compilation scheme from this language into Temporal
Contextual Logic Programming.

Finally, we consider that ISTO can take advantage of the experience gained
from several real-world application developed in ISCO in order to act as back-
bone for constructing and maintaining Temporal OIS. Therefore we are currently
applying the language proposed in an University Information System.

References

Abr01. Salvador Abreu. Isco: A practical language for heterogeneous information
system construction. In Proceedings of INAP’01, Tokyo, Japan, October
2001. Prolog Association of Japan.

Abr02. Salvador Abreu. Modeling Role-Based Access Control in ISCO. In
Lgia Maria Ribeiro and Jos Marques dos Santos, editors, The 8th Inter-
national Conference of European University Information Systems. FEUP
Edies, June 2002. ISBN 972-752-051-0.

AD03. Salvador Abreu and Daniel Diaz. Objective: In minimum context. In Catus-
cia Palamidessi, editor, ICLP, volume 2916 of Lecture Notes in Computer
Science, pages 128–147. Springer, 2003.

ADN04. Salvador Abreu, Daniel Diaz, and Vitor Nogueira. Organizational informa-
tion systems design and implementation with contextual constraint logic
programming. In IT Innovation in a Changing World – The 10th Interna-
tional Conference of European University Information Systems, Ljubljana,
Slovenia, June 2004.

Cor05. Oracle Corportation. Oracle database 10g workspace manager overview.
Oracle White Paper, May 2005.

Frü96. Thom W. Frühwirth. Temporal annotated constraint logic programming. J.
Symb. Comput., 22(5/6):555–583, 1996.

MP93. Lúıs Monteiro and António Porto. A Language for Contextual Logic Pro-
gramming. In K.R. Apt, J.W. de Bakker, and J.J.M.M. Rutten, editors,
Logic Programming Languages: Constraints, Functions and Objects, pages
115–147. MIT Press, 1993.

NA07a. Vitor Nogueira and Salvador Abreu. Temporal Annotations for a Contex-
tual Logic Programming Language. In José Neves, Manuel Santos, and
José Machado, editors, Progress in Artificial Intelligence, 13th Portuguese
Conference on Artificial Intellige nce, EPIA 2007, Universidade do Minho,
2007.

NA07b. Vitor Nogueira and Salvador Abreu. Temporal contextual logic program-
ming. Electr. Notes Theor. Comput. Sci., 177:219–233, 2007.

Por03. António Porto. An integrated information system powered by prolog. In
Verónica Dahl and Philip Wadler, editors, PADL, volume 2562 of Lecture
Notes in Computer Science, pages 92–109. Springer, 2003.

TCG+93. Abdullah Uz Tansel, James Clifford, Shashi Gadia, Sushil Jajodia, Arie
Segev, and Richard Snodgrass, editors. Temporal databases: theory, design,
and implementation. Benjamin-Cummings Publishing Co., Inc., Redwood
City, CA, USA, 1993.

224 ISTO: a Language for Temporal Organisational Information Systems

Knowledge Representation
Using Logtalk Parametric Objects

Paulo Moura

Dep. of Computer Science, University of Beira Interior, Portugal
Center for Research in Advanced Computing Systems, INESC–Porto, Portugal

pmoura@di.ubi.pt

Abstract. This paper describes how Logtalk parametric objects can
be used for knowledge representation by presenting a comprehensive
set of useful programming patterns. A parametric object is an object
whose identifier is a compound term containing logical variables. These
variables play the role of object parameters. Object predicates can be
coded to depend on the parameter values. Parametric objects are a com-
mon feature of some other object-oriented logic programming languages
and Prolog object-oriented extensions. Logtalk extends the usefulness
of parametric objects by introducing the concept of object proxies. An
object proxy is a compound term that can be interpreted as a possible in-
stantiation of the identifier of a parametric object. Object proxies, when
represented as predicate facts, allow application memory footprint to be
minimized while still taking full advantage of Logtalk object-oriented
features for representing and reasoning with taxonomic knowledge.

Keywords: knowledge representation, logic-programming, parametric
objects, object proxies, programming patterns.

1 Introduction

Logtalk [1–3] is an object-oriented logic programming language that can use
most Prolog implementations as a back-end compiler. Logtalk extends Prolog
with versatile code encapsulation and code reuse constructs based on an in-
terpretation of object-oriented concepts in the context of logic programming.
Logtalk features objects (both prototypes and classes), static and dynamic bind-
ing (with predicate lookup caching), single and multiple inheritance, protocols
(aka interfaces; sets of predicate declarations that can be implemented by any
object), categories (fine-grained units of code reuse that can be used as object
building blocks), event-driven programming, and high-level multi-threading pro-
gramming (and-parallelism and competitive or-parallelism). Objects, protocols,
and categories can be either static or dynamic. The use of static entities and
static binding results in performance similar to plain Prolog.

Logtalk includes support for parametric objects, a feature common to some
object-oriented logic programming languages and Prolog object-oriented exten-
sions. A parametric object is an object whose identifier is a compound term

Paulo Moura 225

containing logical variables. A simple example of a parametric object for repre-
senting two-dimensional geometric points could be:

:- object(point(_X, _Y)).

:- end_object.

The variables in the object identifier play the role of object parameters. Ob-
ject predicates can be coded to depend on the parameter values. For example,
assuming that we needed to compute the distance of a point to the origin, we
could write:

:- object(point(_X, _Y)).

:- public(distance/1).

distance(Distance) :-

parameter(1, X),

parameter(2, Y),

Distance is sqrt(X*X + Y*Y).

:- end_object.

After compiling this parametric object we could try queries such as:

| ?- point(3.0, 4.0)::distance(Distance).

Distance = 5.0

yes

Thus, a parametric object can be regarded as a generic object from which specific
instantiations can be derived by instantiating the object parameters at runtime.
Note, however, that instantiating object parameters does not create new objects.
For example, the object identifiers point(2.0, 1.2) and point(3.0, 4.0) refer to
the same parametric object. Parameter instantiation usually takes place when a
message is sent to the object. By using logical variables, parameter instantiation
is undone on backtracking. Object parameters can be any valid term: logical
variables, constraint variables, atomic terms, or compound terms.

Despite the simplicity of the concept, parametric objects proved a valuable
asset in a diversity of applications. Parametric objects support several useful
programming patterns, presented and illustrated in this paper. The remainder
of the paper is organized as follows. Section 2 describes Logtalk built-in methods
for accessing object parameters. Section 3 illustrates parameter passing within
object hierarchies. Section 4 presents useful parametric object programming pat-
terns, illustrated by examples. Section 5 presents and discusses the concept of
object proxies, introducing additional programming patterns. Section 6 shows
how to use both object proxies and regular objects to represent entities of the
same type that differ on complexity or size. Section 7 discusses related work.
Section 8 presents our conclusions.

226 Knowledge Representation Using Logtalk Parametric Objects

2 Accessing Object Parameters

Logtalk provides a parameter/2 built-in method for accessing object parameters.
The first argument is the parameter position. The second argument is the object
parameter. For example:

:- object(ellipse(_Rx, _Ry, _Color)).

area(Area) :-

parameter(1, Rx),

parameter(2, Ry),

Area is Rx*Ry*pi.

...

Logtalk compiles the calls to the method parameter/2 in-line by unifying the
second argument with the corresponding object identifier argument in the exe-
cution context argument in the translated clause head. A second built-in method,
this/1, allows access to all object parameters at once:

area(Area) :-

this(ellipse(Rx, Ry, _)),

Area is Rx*Ry*pi.

As with the parameter/2 method, calls to the this/1 method are compiled in-line.
An alternative to the parameter/2 and this/1 methods for accessing object

parameters would be to interpret parameters as logical variables with global
scope within the object. This solution was discarded as it forces the programmer
to always be aware of parameter names when coding object predicates and it
collides with the local scope of Logtalk and Prolog variables in directives and
predicate clauses.

3 Parameter Passing

Logtalk objects may extend (defining parent-prototype relations), instantiate
(defining instance-class relations), or specialize (defining class-superclass rela-
tions) other objects. When using parametric objects, parameter passing is es-
tablished through unification in the object opening directive. As an example,
consider the following Logtalk version of a SICStus Objects [4] example:

:- object(ellipse(_RX, _RY, _Color)).

:- public([color/1, rx/1, ry/1, area/1]).

rx(Rx) :-

parameter(1, Rx).

ry(Ry) :-

parameter(2, Ry).

Paulo Moura 227

color(Color) :-

parameter(3, Color).

area(Area) :-

this(ellipse(Rx, Ry, _)),

Area is Rx*Ry*pi.

:- end_object.

:- object(circle(Radius, Color), % circles are ellipses

extends(ellipse(Radius, Radius, Color))). % where Rx = Ry

:- public(r/1).

r(Radius) :-

parameter(1, Radius).

:- end_object.

:- object(circle1(Color),

extends(circle(1, Color))).

:- end_object.

:- object(red_circle(Radius),

extends(circle(Radius, red))).

:- end_object.

A query such as:

| ?- red_circle(3)::area(Area).

Area = 28.274334

yes

will result in the following instantiation chain of the parametric object identifiers:

red_circle(3) -> circle(3, red) -> ellipse(3, 3, red)

Note that the predicate area/1 is declared and defined in the object representing
ellipses.

4 Programming Patterns

This section presents a comprehensive set of useful parametric object program-
ming patterns. These patterns build upon the basic idea that a parametric object
encapsulates a set of predicates for working with compound terms that share the
same functor and arity. Additional programming patterns will be described later

228 Knowledge Representation Using Logtalk Parametric Objects

in this paper when presenting the Logtalk concept of parametric object prox-
ies. The full source code of most examples is included in the current Logtalk
distribution.

4.1 Simplifying Object Interfaces

Parametric objects can simplify object interfaces by moving core object prop-
erties from predicate arguments to object parameters. This also makes the core
properties visible without requiring the definition of accessor predicates to re-
trieve them. Consider the following parametric object representing rectangles:

:- object(rectangle(_Width, _Height)).

:- public(area/1).

area(Area) :-

this(rectangle(Width, Height)),

Area is Width*Height.

:- public(perimeter/1).

perimeter(Perimeter) :-

this(rectangle(Width, Height)),

Perimeter is 2*(Width + Height).

:- end_object.

The rectangle properties width and height are always accessible. The two rect-
angle predicates, area/1 and perimeter/1, have a single argument returning the
respective computed values.

Assume that our application would also need to compute areas and perime-
ters of circles, triangles, pentagons, and other (regular or non-regular) polygons.
The alternative of using non parametric objects to encapsulate the same func-
tionality would require adding extra arguments to both predicates that would
depend on the type of shape. We could use instead a single data argument
that would accept a compound term representing a shape but that would re-
sult in a awkward solution for encapsulating the knowledge about each type of
shape in its own object. Another alternative would be to use predicates such
as area circle/1 and perimeter triangle/1 but this solution is hard to extend
to new shapes, to new predicates over shapes, and would hinder processing of
heterogenous collections of shapes. Parametric objects provide us with a simple,
clean, logical, and easily extensible knowledge representation solution.

4.2 Data-Centric Programming

Parametric objects can be seen as enabling a more data-centric programming
style where data is represented by instantiations of parametric object identifiers.

Paulo Moura 229

Instead of using a term as a predicate argument, predicates can be called by
sending the corresponding message to the term itself.

To illustrate this idea we will use the well-known example of symbolic dif-
ferentiation and simplification of arithmetic expressions, which can be found in
[5]. The L&O [6] system also uses this example to illustrate parametric theo-
ries. The idea is to represent arithmetic expressions as parametric objects whose
name is the expression operator with greater precedence, and whose parame-
ters are the operator sub-expressions (that are, themselves, objects). In order to
simplify this example, the object methods will be restricted to symbolic differen-
tiation of polynomials with a single variable and integer coefficients. In addition,
we will omit any error-checking code. The symbolic simplification of arithmetic
expressions could easily be programmed in a similar way.

For an arithmetic expression reduced to a single variable, x, we will have the
following object:

:- object(x,

implements(diffp)). % protocol (interface) declaring a diff/1

% symbolic differentiation predicate

diff(1).

:- end_object.

Arithmetic addition, x+ y, can be represented by the parametric object ’+’(X,

Y) or, using operator notation, X + Y. Taking into account that the operands can
either be numbers or other arithmetic expressions, a possible definition will be:

:- object(_ + _,

implements(diffp)).

diff(Diff) :-

this(X + Y),

diff(X, Y, Diff).

diff(I, J, 0) :-

integer(I), integer(J), !.

diff(X, J, DX) :-

integer(J), !, X::diff(DX).

diff(I, Y, DY) :-

integer(I), !, Y::diff(DY).

diff(X, Y, DX + DY) :-

X::diff(DX), Y::diff(DY).

:- end_object.

The object definitions for other simple arithmetic expressions, such as X - Y or X

* Y, are similar. The expression xn can be represented by the parametric object
X ** N as follows:

230 Knowledge Representation Using Logtalk Parametric Objects

:- object(_ ** _).

:- public(diff/1).

diff(N * X ** N2) :-

this(X ** N),

N2 is N - 1.

:- end_object.

By defining a suitable parametric object per arithmetic operator, any polynomial
expression can be interpreted as an object identifier. For example, the polynomial
2*x**3 + x**2 - 4*x (2x3 + x2 − 4x) will be interpreted as (2*x**3) + (x**2 -

4*x) ((2x3) + (x2 − 4x)). Thus, this expression is an instantiation of the X + Y

parametric object identifier, allowing us to write queries such as:

| ?- (2*x**3 + x**2 - 4*x)::diff(D).

D = 2* (3*x**2)+2*x**1-4*1

yes

The resulting expression could be symbolically simplified using a predicate de-
fined in the same way as the diff/1 differentiation predicate.

4.3 Restoring Shared Constraint Variables

Object parameters can be used to restore shared variables between sets of con-
straints that are encapsulated in different objects. We illustrate this idea using
an example that is loosely based in the declarative process modeling research
project ESProNa [7]. Each process can be described by a parametric object, im-
plementing a common protocol (reduced here to a single predicate declaration
for the sake of this example):

:- protocol(process_description).

:- public(domain/2).

:- mode(domain(-list(object_identifier), -callable), one).

:- info(domain/2, [

comment is ’Returns the process dependencies and constraints.’,

argnames is [’Dependencies’, ’Constraints’]]).

% other process description predicates

:- end_ protocol.

Part of the process description is a set of finite domain constraints describing
how many times the process can or must be executed. An object parameter
is used to provide access to the process constraint variable. For example, the
following process, a(), can be executed two, three, or four times:

Paulo Moura 231

:- object(a(_),

implements(process_description)).

domain([], (A #>= 2, A #=< 4)) :-

parameter(1, A).

:- end_object.

Processes may depend on other processes. These dependency relations can be
described using a list of parametric object identifiers. For example:

:- object(b(_),

implements(process_description)).

domain([a(A)], (B #>= A, B #=< 3)) :-

parameter(1, B).

:- end_object.

:- object(c(_),

implements(process_description)).

domain([a(A), b(B)], (C #= B + 1, C #= A + 1)) :-

parameter(1, C).

:- end_object.

The object parameters allows us to restore shared constraint variables at runtime
in order to model sets of inter-dependent processes. For example (using Logtalk
with GNU Prolog, with its native finite domain solver, as the back-end compiler):

| ?- process_model::solve([c(C)], Dependencies).

C = _#59(3..4)

Dependencies = [b(_#21(2..3)),a(_#2(2..3)),c(_#59(3..4))]

yes

The predicate solve/2 (the code of the process model object is omitted due
to the lack of page space) computes this answer by retrieving and solving the
conjunction of the constraints of processes a(), b(), and c().

4.4 Logical Updates of Object State

Parametric objects provide an alternative to represent object dynamic state.
This alternative supports logical updates, undone by backtracking, by repre-
senting object state using one or more object parameters. A similar solution was
first used in the OL(P) system [8]. Logtalk supports this solution using a pure
logical subset implementation of assignable variables [9], available in the library

232 Knowledge Representation Using Logtalk Parametric Objects

assignvars.1 This library defines setter and getter methods (<=/2 and =>/2, re-
spectively) and an initialization method (assignable/2) to work with assignable
variables.

Consider the following simple example, where a parametric object is used to
describe a geometric rectangle. The object state is comprised by its read-only
dimensions, width and height, and by its dynamically updatable position:

:- object(rectangle(_Width, _Height, _Position),

imports(private::assignvars)).

:- public([init/0, area/1, move/2, position/2]).

init :-

parameter(3, Position),

::assignable(Position, (0, 0)).

area(Area) :-

this(rectangle(Width, Height, _)),

Area is Width*Height.

move(X, Y) :-

parameter(3, Position),

::Position <= (X, Y).

position(X, Y) :-

parameter(3, Position),

::Position => (X, Y).

:- end_object.

A sample query could be:

| ?- rectangle(2, 3, _)::(init, area(Area), position(X0, Y0),

move(1, 1), position(X1, Y1), move(2, 2), position(X2, Y2)).

Area = 6

X0 = Y0 = 0

X1 = Y1 = 1

X2 = Y2 = 2

yes

Using object parameters for representing mutable state provides a solution that
supports clean and logical application semantics, backtracking over state changes,
and better performance than using assert and retract operations to update an
object dynamic database.

1 This library is implemented as a category [1], a fine-grained unit of code reuse that
can be virtually imported by any object without code duplication.

Paulo Moura 233

5 Parametric Object Proxies

Compound terms with the same functor and arity as a parametric object iden-
tifier may act as proxies to a parametric object. Proxies may be stored on the
database as Prolog facts and be used to represent different instantiations of a
parametric object identifier. This representation can be ideal to minimize appli-
cation memory requirements in the presence of a large number of data objects
whose state is immutable. As a simple example, assume that our data represents
geometric circles with attributes such as an identifier, the circle radius and the
circle color:

% circle(Id, Radius, Color)

circle(’#1’, 1.23, blue).

circle(’#2’, 3.71, yellow).

circle(’#3’, 0.39, green).

circle(’#4’, 5.74, black).

We can define the following parametric object for representing circles:

:- object(circle(_Id, _Radius, _Color)).

:- public([id/1, radius/1, color/1, area/1, perimeter/1]).

id(Id) :-

parameter(1, Id).

radius(Radius) :-

parameter(2, Radius).

color(Color) :-

parameter(3, Color).

area(Area) :-

parameter(2, Radius),

Area is 3.1415927*Radius*Radius.

perimeter(Perimeter) :-

parameter(2, Radius),

Perimeter is 2*3.1415927*Radius.

:- end_object.

The circle/3 parametric object provides a simple solution for encapsulating a
set of predicates that perform computations over circle properties, as illustrated
by the area/1 and perimeter/1 predicates.

Logtalk provides a convenient notational shorthand for accessing proxies rep-
resented as Prolog facts when sending a message:

| ?- {Proxy}::Message.

234 Knowledge Representation Using Logtalk Parametric Objects

In this case, Logtalk proves Proxy as a Prolog goal and sends the message to the
resulting term, interpreted as the identifier of a parametric object.2 This con-
struct can either be used with a proxy argument that is sufficiently instantiated
in order to unify with a single Prolog fact or with a proxy argument that unifies
with several facts. Backtracking over the proxy goal is supported, allowing all
matching object proxies to be processed by e.g. a simple failure-driven loop. For
example, in order to construct a list with the areas of all the circles we can write:

| ?- findall(Area, {circle(_, _, _)}::area(Area), Areas).

Areas = [4.75291, 43.2412, 0.477836, 103.508]

yes

In non-trivial applications, data objects, represented as object proxies, and the
corresponding parametric objects, are tied to large hierarchies representing tax-
onomic knowledge about the application domain. An example is the LgtSTEP
application [10] used for validating STEP files, which is a format for sharing
data models between CAD/CAM applications. A typical data model can con-
tain hundreds of thousands of geometrical objects, which are described by a set
of hierarchies representing geometric concepts, data types, and consistency rules.
In its current version, the LgtSTEP application hierarchies define 252 geometric
or related entities, 78 global consistency rules, 68 data types, and 69 support
functions. STEP files use a simple syntax for geometrical and related objects.
Consider the following fragment:

#1=CARTESIAN_POINT(’’,(0.E0,0.E0,-3.38E0));

#2=DIRECTION(’’,(0.E0,0.E0,1.E0));

#3=DIRECTION(’’,(1.E0,0.E0,0.E0));

#4=AXIS2_PLACEMENT_3D(’’,#1,#2,#3);

The first line above defines a cartesian point instance, whose identifier is #1,
followed by an empty comment and the point coordinates in a 3D space. Similar
for the other lines. This syntax is easily translated to Prolog predicate facts that
are interpreted by Logtalk as object proxies:

cartesian_point(’#1’, ’’, (0.0, 0.0, -3.38)).

direction(’#2’, ’’, (0.0, 0.0, 1.0)).

direction(’#3’, ’’, (1.0, 0.0, 0.0)).

axis2_placement_3d(’#4’, ’’, ’#1’, ’#2’, ’#3’).

Complemented by the corresponding parametric objects, object proxies provide
a source level representation solution whose space requirements are roughly
equal to those of the original STEP file. An alternative representation using
one Logtalk object per STEP object results in space requirements roughly equal
to 2.2 times the size of the original STEP file in our experiments.3 For example,
the cartesian point above could be represented by the object:
2 The {}/1 functor was chosen as it is already used as a control construct to

bypass the Logtalk compiler in order to call Prolog predicates.
3 Logtalk object representation is currently optimized for execution time performance,

not memory space requirements.

Paulo Moura 235

:- object(’#1’,

instantiates(cartesian_point)).

comment(’’).

coordinates(0.0, 0.0, -3.38).

:- end_object.

For simple, immutable data objects, Logtalk object representation provides little
benefit other than better readability. Object proxies and parametric objects
allows us to avoid using a Logtalk object per data object, providing a bridge
between the data objects and the hierarchies representing the knowledge used
to reason about the data, while optimizing application memory requirements.

6 Using Both Object Proxies and Regular Objects

While object proxies provide a compact representation, complex domain objects
are often better represented as regular objects. Moreover, while in object proxies
the meaning of an argument is implicitly defined by its position in a compound
term, predicates with meaningful names can be used in regular objects. In some
applications it is desirable to be able to choose between object proxies and regular
objects on a case-by-case basis. An example is the L-FLAT [11] application, a
full rewrite in Logtalk of P-FLAT [12], a Prolog toolkit for teaching Formal
Languages and Automata Theory. L-FLAT is a work in progress where one of
the goals is to allow users to use both object proxies and regular objects when
representing Turing machines, regular expressions, finite automata, context free
grammars, and other concepts and mechanisms supported by L-FLAT. This
flexibility allows users to represent e.g. a simple finite automaton with a small
number of states and transitions as an object proxy:

% fa(Id, InitialState, Transitions, FinalStates)

fa(fa1, 1, [1/a/1, 1/a/2, 1/b/2, 2/b/2, 2/b/1], [2]).

It also allows users to represent e.g. a complex Turing machine with dozens of
transitions as a regular object:

:- object(aibiciTM,

instantiates(tm)).

initial(q0).

transitions([

q0/’B’/’B’/’R’/q1,

q1/a/’X’/’R’/q2, q1/’Y’/’Y’/’R’/q5, q1/’B’/’B’/’R’/q6,

q2/a/a/’R’/q2, q2/’Y’/’Y’/’R’/q2, q2/b/’Y’/’R’/q3,

q3/b/b/’R’/q3, q3/’Z’/’Z’/’R’/q3, q3/c/’Z’/’L’/q4,

q4/a/a/’L’/q4, q4/b/b/’L’/q4, q4/’Y’/’Y’/’L’/q4,

q4/’Z’/’Z’/’L’/q4, q4/’X’/’X’/’R’/q1,

236 Knowledge Representation Using Logtalk Parametric Objects

q5/’Y’/’Y’/’R’/q5, q5/’Z’/’Z’/’R’/q5, q5/’B’/’B’/’R’/q6

]).

finals([q6]).

:- end_object.

The transparent use of both object proxies and regular objects requires that all
predicates expecting e.g. a regular expression object accept both an object iden-
tifier and an object proxy as argument. While this may sound as an additional
hurdle, the solution is simple. Given that an object proxy is also an instantiation
of the identifier of a parametric object, it suffices to define the corresponding
parametric object. If, for example, we want to represent some finite automata
as instances of a class fa and other finite automata as object proxies, we simply
define a parametric object as an instance of the class fa. The object parame-
ters will be the properties that might be unique for a specific finite automaton.
The parametric object define the predicates that give access to these properties.
These predicates would be the same used in class fa to define all predicates that
must access to finite automaton properties:

:- object(fa(_Id, _Initial, _Transitions, _Finals),

instantiates(fa)).

initial(Initial) :-

parameter(2, Initial).

transitions(Transitions) :-

parameter(3, Transitions).

finals(Finals) :-

parameter(4, Finals).

:- end_object.

Thus, using both object proxies and regular objects is simple, fully transparent,
and just a matter of defining the necessary parametric objects.

7 Related Work

Logtalk parametric objects are based on L&O [6] parametric theories and SICS-
tus Objects [4] parametric objects. The three systems provide similar function-
ality, with the exception of object proxies. One notable difference is parameter
accessing. While Logtalk parameter values are accessed using the parameter/1

and this/1 built-in methods, the scope of the parameters in L&O and SICStus
Objects is the whole object. Logtalk parametric objects are also partially based
in the OL(P) system [8] representation of object instances.

Paulo Moura 237

7.1 L&O Parametric Theories

In L&O, parametric objects are known as parametric theories. A theory is iden-
tified by a label, a term that is either a constant or a compound term with
variables. L&O uses as example a parametric theory describing trains:

train(S, Cl, Co):{

colour(Cl).

speed(S).

country(Co).

journey_time(Distance, T) :-

T = Distance/S.

}

The label variables are universally quantified over the theory. A specific train
can be described by instantiating the label variables:

train(120, green, britain)

Messages can be sent to labels, which act as object identifiers. For example, the
following message:

train(120, green, britain):journey_time(1000, Time)

will calculate a journey time using the value of the label first parameter as the
speed of the train.

7.2 SICStus Parametric Objects

SICStus parametric objects are similar to L&O parametric theories, with param-
eters acting as global variables for the parametric object. The SICStus Objects
manual contains the following example, describing ellipses and circles:

ellipse(RX, RY, Color) :: {

color(Color) &

area(A) :-

:(A is RX*RY*3.14159265)

}.

circle(R, Color) :: {

super(ellipse(R, R, Color))

}.

red_circle(R) :: {

super(circle(R, red))

}.

SICStus Objects uses the predicate super/1 to declare the ancestors of an ob-
ject. This example illustrates parameter-passing between related objects in a
hierarchy, a feature common to both L&O and Logtalk.

238 Knowledge Representation Using Logtalk Parametric Objects

7.3 OL(P) Object Instances

OL(P) is a Prolog object-oriented extension that represents object instances
using a notation similar to parametric objects. An instance I of an object
named Object is represented as Object(I). The term I is a list of attributes
and attribute-value pairs. Instance state changes can be accomplished by con-
structing a new list with the updated and unchanged attributes. The OL(P)
system documentation offers the following example:

| ?- rect(I)::area(A), rect(I)::move(5, 5, J).

The method move/3 will return, in its third argument, the attribute list J result-
ing from the update of the attribute list I. In addition, OL(P) provides a nice
notation for accessing and updating attributes. This solution for object state
changes implies the use of extra arguments for methods that update attributes.
Nevertheless, it is an interesting technique, which preserves the declarative se-
mantics found on pure Prolog programs. We can easily apply this solution to
Logtalk programs by using parametric objects. Moreover, we are not restricted
to using a list of attributes. If the number of attributes is small, an identifier
with the format Object(V1, V2, ..., Vn) will provide a more efficient solution.

8 Conclusions

The main contributions of this paper are a survey of useful parametric object
programming patterns and the concept of object proxies.

Parametric objects enable useful programming patterns that complement
Logtalk encapsulation and reuse features. Parametric objects may be used to
encapsulate a set of predicates for reasoning about compound terms sharing the
same functor and arity, to simplify object interfaces, to restore shared variables
between sets of constraints stored in different objects, to enable a more data-
centric style of programming, and to provide a logical alternative to the use of
an object dynamic database for representing mutable state. It is also possible to
use the instantiations of a parametric object identifier to represent the history
of object state changes.

Logtalk extends the usefulness of parametric objects by introducing the con-
cept of object proxies, which provide a bridge between Logtalk objects and com-
pact plain Prolog representations. Some applications need to represent a large
number of immutable objects. These objects typically represent data that must
be validated or used for data mining. This kind of data is often exported from
databases and must be converted into objects for further processing. The ap-
plication domain logic is usually represented by a set of hierarchies with the
data objects at the bottom. Although data conversion is most of the time easily
scriptable, the resulting objects take up more space than a straightforward rep-
resentation as plain Prolog facts. By using object proxies, application memory
footprint can be minimized while still taking full advantage of Logtalk object-
oriented features for representing and reasoning with taxonomic knowledge. The
concept of object proxies can be easily adopted and used in other languages
supporting parametric objects.

Paulo Moura 239

Acknowledgements. This work is partially supported by the FCT research
project MOGGY – PTDC/EIA/70830/2006. We are grateful to Paul Crocker for
helpful suggestions in improving Logtalk support for object proxies. We thank
also José Silva, Sara C. Madeira, and the anonymous reviewers for their com-
ments and help in revising this paper.

References

1. Moura, P.: Logtalk 2.6 Documentation. Technical Report DMI 2000/1, University
of Beira Interior, Portugal (July 2000)

2. Moura, P.: Logtalk - Design of an Object-Oriented Logic Programming Language.
PhD thesis, Department of Computer Science, University of Beira Interior, Portu-
gal (September 2003)

3. Moura, P.: Logtalk 2.37.2 User and Reference Manuals. (June 2009)
4. Swedish Institute for Computer Science: SICStus Prolog 4.0 User Manual. (April

2009)
5. Clocksin, W.F., Mellish, C.S.: Programming in Prolog. Springer-Verlag, New York

(1987)
6. McCabe, F.G.: Logic and Objects. Series in Computer Science. Prentice Hall

(1992)
7. Igler, M., Joblonski, S.: ESProNa – Engine for Semantic Process Navigation.

http://www.ai4.uni-bayreuth.de/ (2009)
8. Fromherz, M.: OL(P): Object Layer for Prolog. ftp://parcftp.xerox.com/ftp/

pub/ol/ (1993)
9. Kino, N.: Logical assignment of Prolog terms. http://www.kprolog.com/en/

logical_assignment/ (2005)
10. Moura, P., Marchetti, V.: Logtalk Processing of STEP Part 21 Files. In Etalle,

S., Truszczyński, M., eds.: Proceedings of the 22nd International Conference on
Logic Programming. Number 4079 in Lecture Notes in Computer Science, Berlin
Heidelberg, Springer-Verlag (August 2006) 453–454

11. Moura, P., Dias, A.M.: L-FLAT: Logtalk Toolkit for Formal Languages and Au-
tomata. http://code.google.com/p/lflat/ (2009)

12. Wermelinger, M., Dias, A.M.: A Prolog Toolkit for Formal Languages and Au-
tomata. In: ITiCSE ’05: Proceedings of the 10th Annual SIGCSE Conference on
Innovation and Technology in Computer Science Education, New York, NY, USA,
ACM (2005) 330–334

240 Knowledge Representation Using Logtalk Parametric Objects

Adaptive Reasoning for Cooperative Agents

Luı́s Moniz Pereira and Alexandre Miguel Pinto
(lmp|amp)@di.fct.unl.pt

Centro de Inteligência Artificial - CENTRIA
Universidade Nova de Lisboa

Abstract. Using explicit affirmation and explicit negation, whilst allowing for
a third logic value of undefinedness, can be useful in situations where decisions
have to be taken on the basis of scarce, ambiguous, or downright contradictory in-
formation. In a three-valued setting, we consider an agent that learns a definition
for both the target concept and its opposite, considering positive and negative ex-
amples as instances of two disjoint classes. Explicit negation is used to represent
the opposite concept, while default negation is used to ensure consistency and to
handle exceptions to general rules. Exceptions are represented by examples cov-
ered by the definition for a concept that belong to the training set for the opposite
concept.
One single agent exploring an environment may gather only so much information
about it and that may not suffice to find the right explanations. In such case, a
cooperative multi-agent strategy, where each agent explores a part of the envi-
ronment and shares with the others its findings, might provide better results. We
describe one such framework based on a distributed genetic algorithm enhanced
by a Lamarckian operator for belief revision. The agents communicate their can-
didate explanations — coded as chromosomes of beliefs — by sharing them in a
common pool. Another way of interpreting this communication is in the context
of argumentation. In the process of taking all the arguments and trying to find
a common ground or consensus we might have to change, or review, some of
assumptions of each argument.
The resulting framework we present is a collaborative perspective of argumen-
tation where arguments are put together at work in order to find the possible
2-valued consensus of opposing positions of learnt concepts in an evolutionary
pool in order to find the “best” explanation to the observations.

1 Introduction

Expressing theories as Logic Programs has become more natural and common as the
field of Computational Logic has grown mature and other fields started to use its tools
and results. Theories are usually expressed as a set of ‘if-then’ rules and facts which
allow for the derivation, through the use of logic inference, of non-obvious results.
When writing such rules and facts, explicit negation, just like explicit affirmation, can
be used to formalize sure knowledge which provides inevitable results.

Theories can be further refined by adding special rules taking the form of Integrity
Constraints (ICs). These impose that, whatever the assumptions might be, some condi-
tions must be met. One implicit constraint on every reasonable theory is overall consis-
tency, i.e, it must not be possible to derive one conclusion and its opposition.

Luis Moniz Pereira and Alexandre Miguel Pinto 241

Since in the real world the most common situation is one where there is incom-
plete and updatable information, any system making a serious attempt at dealing with
real situations must cope with such complexities. To deal with this issue, the field of
Computational Logic has also formalized another form of negation, Default Negation,
used to express uncertain knowledge and exceptions, and used to derive results in the
absence of complete information. When new information updates the theory, old con-
clusions might no longer be available (because they were relying on assumptions that
became false with the new information), and further new conclusions might now be
derived (for analogous reasons).

The principle we use is thus the Unknown World Assumption (UWA) where every-
thing is unknown or undefined until we have some solid evidence of its truthfulness or
falseness. This principle differs from the more usual Closed World Assumption (CWA)
where everything is assumed false until there is solid evidence of its truthfulness. We
believe the UWA stance is more skeptical, cautious, and even more realistic than the
CWA. We do not choose a fuzzy logic approach due to its necessity of specific thresh-
old values. For such an approach we would need to compute those values a priori,
possibly recurring to a probabilistic frequency-based calculation. Accordingly, we use
a 3-valued logic (with the undefined truth value besides the true and false ones) instead
of a more classical 2-valued logic.

We start by presenting the method for theory building from observations we use —
a 3-valued logic rule learning method, — and in the following section we focus on a
method to analyze observations and to provide explanations for them given the learned
theory. We show how the possible alternative explanations can be viewed as arguments
for and against some hypotheses, and how we can use these arguments in a collaborative
way to find better consensual explanations. Conclusions and outlined future work close
this paper.

2 Theory building and refinement

Complete information about the world is impossible to achieve and it is necessary to
reason and act on the basis of the available partial information coming from distinct
agents. In situations of incomplete knowledge, it is important to distinguish between
what is true, what is false, and what is unknown or undefined.

Such a situation occurs, for example, when each agent incrementally gathers infor-
mation from the surrounding world and has to select its own actions on the basis of
acquired knowledge. If the agent learns in a two-valued setting, it can encounter the
problems that have been highlighted in [10]. When learning in a specific to general
way, it will learn a cautious definition for the target concept and it will not be able to
distinguish what is false from what is not yet known. Supposing the target predicate rep-
resents the allowed actions, then the agent will not distinguish forbidden actions from
actions with a still unknown outcome and this can restrict the agent’s acting power. If
the agent learns in a general to specific way (i.e., the agent starts with a most general
concept and progressively restricts it by adding exceptions as he learns), instead, it will
not know the difference between what is true and what is unknown and, therefore, it
can try actions with an unknown outcome. Rather, by learning in a three-valued setting,

242 Adaptive Reasoning for Cooperative Agents

it will be able to distinguish between allowed actions, forbidden actions, and actions
with an unknown outcome. In this way, the agent will know which part of the domain
needs to be further explored and will not try actions with an unknown outcome unless
it is trying to expand its knowledge.

In [25] the authors showed that various approaches and strategies can be adopted
in Inductive Logic Programming (ILP, henceforth) for learning with Extended Logic
Programs (ELP) — including explicit negation — under an extension of well-founded
semantics. As in [18, 19], where answer-sets semantics is used, the learning process
starts from a set of positive and negative examples plus some background knowledge
in the form of an extended logic program. Positive and negative information in the
training set are treated equally, by learning a definition for both a positive concept p
and its (explicitly) negated concept ¬p.

Default negation is used in the learning process to handle exceptions to general
rules. Exceptions are examples covered by the definition for the positive concept that
belong to the training set for the negative concept or examples covered by the definition
for the negative concept that belong to the training set for the positive concept.

In this work, we consider standard ILP techniques to learn a concept and its op-
posite. Indeed, separately learned positive and negative concepts may conflict and, in
order to handle possible contradiction, contradictory learned rules are made defeatable
by making the learned definition for a positive concept p depend on the default negation
of the negative concept ¬p, and vice-versa, i.e., each definition, possibly arising from
distinct agents, is introduced as an exception to the other.

The learned theory will contain rules of the form:

p(X)← Body+(X) ¬p(X)← Body−(X)

for every target predicate p, where X stands for a tuple of arguments. In order to
satisfy the completeness requirement, the rules for p will entail all positive examples
while the rules for ¬p will entail all (explicitly negated) negative examples. The consis-
tency requirement is satisfied by ensuring that both sets of rules do not entail instances
of the opposite element in either of the training sets.

The ILP techniques to be used depend on the level of generality that we want to have
for the two definitions: we can look for the Least General Solution (LGS) or the Most
General Solution (MGS) of the problem of learning each concept and its complement.
In practice, LGS and MGS are not unique and real systems usually learn theories that are
not the least nor most general, but closely approximate one of the two. In the following,
these concepts will be used to signify approximations to the theoretical concepts.

2.1 Strategies for Combining Different Generalizations

The generality of concepts to be learned is an important issue when learning in a three-
valued setting. In a two-valued setting, once the generality of the definition is chosen,
the extension (i.e., the generality) of the set of false atoms is automatically decided,
because it is the complement of the true atoms set. In a three-valued setting, rather, the
extension of the set of false atoms depends on the generality of the definition learned for
the negative concept. Therefore, the corresponding level of generality may be chosen

Luis Moniz Pereira and Alexandre Miguel Pinto 243

independently for the two definitions, thus affording four epistemological cases. The
adoption of ELP allows case combination to be expressed in a declarative and smooth
way.

When classifying an as yet unseen object as belonging to a concept, we may later
discover that the object belongs to the opposite concept. The more we generalize a
concept, the higher is the number of unseen atoms covered by the definition and the
higher is the risk of an erroneous classification. Depending on the damage that may
derive from such a mistake, we may decide to take a more cautious or a more confident
approach. If the possible damage from an over extensive concept is high, then one
should learn the LGS for that concept, if the possible damage is low then one can
generalize the most and learn the MGS. The overall risk will depend also on the use of
the learned concepts within other rules: we need to take into account the damage that
may derive from mistakes made on concepts depending on the target one.

The problem of selecting a solution of an inductive problem according to the cost
of misclassifying examples has been studied in a number of works. PREDICTOR [15]
is able to select the cautiousness of its learning operators by means of meta-heuristics.
These meta-heuristics make the selection based on a user-input penalty for prediction
error. In [33] Provost provides a method to select classifiers given the cost of misclas-
sifications and the prior distribution of positive and negative instances. The method is
based on the Receiver Operating Characteristic (ROC) [16] graph from signal theory
that depicts classifiers as points in a graph with the number of false positives on the
X axis and the number of true positive on the Y axis. In [28] it is discussed how the
different costs of misclassifying examples can be taken into account into a number of
algorithms: decision tree learners, Bayesian classifiers and decision list learners.

As regards the confidence in the training set, we can prefer to learn the MGS for
a concept if we are confident that examples for the opposite concept are correct and
representative of the concept. In fact, in top-down methods, negative examples are used
in order to delimit the generality of the solution. Otherwise, if we think that examples
for the opposite concept are not reliable, then we should learn the LGS.

2.2 Strategies for Eliminating Learned Contradictions

The learned definitions of the positive and negative concepts may overlap. In this case,
we have a contradictory classification for the objective literals1 in the intersection. In
order to resolve the conflict, we must distinguish two types of literals in the intersection:
those that belong to the training set and those that do not, also dubbed unseen atoms.

In the following we discuss how to resolve the conflict in the case of unseen literals
and of literals in the training set. We first consider the case in which the training sets are
disjoint, and we later extend the scope to the case where there is a non-empty intersec-
tion of the training sets, when they are less than perfect. From now onwards, X stands
for a tuple of arguments.

For unseen literals, the conflict is resolved by classifying them as undefined, since
the arguments supporting the two classifications are equally strong. Instead, for literals

1 An ‘objective literal’ in a Logic Program is just an atom, possibly explicitly negated.

244 Adaptive Reasoning for Cooperative Agents

in the training set, the conflict is resolved by giving priority to the classification stipu-
lated by the training set. In other words, literals in a training set that are covered by the
opposite definition are considered as exceptions to that definition.

Contradiction on Unseen Literals For unseen literals in the intersection, the unde-
fined classification is obtained by making opposite rules mutually defeasible, or “non-
deterministic” (see [3, 6]). The target theory is consequently expressed in the following
way:

p(X)← p+(X), not ¬p(X) ¬p(X)← p−(X), not p(X)

where p+(X) and p−(X) are, respectively, the definitions learned for the positive and
the negative concept, obtained by renaming the positive predicate by p+ and its ex-
plicit negation by p−. From now onwards, we will indicate with these superscripts the
definitions learned separately for the positive and negative concepts.

We want both p(X) and ¬p(X) to act as an exception to the other. In case of
contradiction, this will introduce mutual circularity, and hence undefinedness according
to WFSX. For each literal in the intersection of p+ and p−, there are two stable models,
one containing the literal, the other containing the opposite literal.

Contradiction on Examples Theories are tested for consistency on all the literals of the
training set, so we should not have a conflict on them. However, in some cases, it is
useful to relax the consistency requirement and learn clauses that cover a small amount
of counterexamples. This is advantageous when it would be otherwise impossible to
learn a definition for the concept, because no clause is contained in the language bias
that is consistent, or when an overspecific definition would be learned, composed of
many specific clauses instead of a few general ones. In such cases, the definitions of the
positive and negative concepts may cover examples of the opposite training set. These
must then be considered exceptions, which are then due to abnormalities in the opposite
concept.

Let us start with the case where some literals covered by a definition belong to the
opposite training set. We want of course to classify these according to the classification
given by the training set, by making such literals exceptions. To handle exceptions to
classification rules, we add a negative default literal of the form not abnormp(X)
(resp. not abnorm¬p(X)) to the rule for p(X) (resp. ¬p(X)), to express possible
abnormalities arising from exceptions. Then, for every exception p(t), an individual
fact of the form abnormp(t) (resp. abnorm¬p(t)) is asserted so that the rule for p(X)
(resp. ¬p(X)) does not cover the exception, while the opposite definition still covers
it. In this way, exceptions will figure in the model of the theory with the correct truth
value. The learned theory thus takes the form:

p(X)← p+(X), not abnormp(X), not ¬p(X) (1)
¬p(X)← p−(X), not abnorm¬p(X), not p(X) (2)

3 Explaining Observations and Meta-Learning

After a theory is built it can now be used to analyze observations and to provide ex-
planations for them. Such explanations are sets of abductive hypotheses which, when

Luis Moniz Pereira and Alexandre Miguel Pinto 245

assumed true under the theory at hand, yield the observations as conclusions. There can
be, of course, many different possible explanations. In the end, most of the times, we
want to find the single “best” explanation for the observations, and hence we must have
some mechanism to identify the “best” solution among the several alternative ones.

3.1 Abduction

Deduction and abduction differ in the direction in which a rule like “a entails b” is used
for inference. Deduction allows deriving b as a consequence of a ; i.e., deduction is the
process of deriving the consequences of what is known. Abduction allows deriving a as
a hypothetical explanation of b.

3.2 Finding alternative explanations for observations

Trying to find explanations for observations can be implemented by simply finding the
alternative abductive models that satisfy both the theory’s rules and the observations.
The latter can be coded as Integrity Constraints (ICs) which are added to the theory
thereby imposing the truthfulness of the observations they describe.

Example 1. Running example
We will use this running example throughout the rest of the chapter.
Consider the following Logic Program consisting of four rules. According to this

program a ‘professional’ is someone who is a regular employee or someone who is a
boss in some company. Also, a non-employee is assumed to be a student as well as all
those who are junior (all children should go to school!).

professional(X)← employee(X)
professional(X)← boss(X)

student(X)← not employee(X)
student(X)← junior(X)

For now keep this example in mind as we will use it to illustrate the concepts and
methods we are about to describe. Assume that ‘employee/1’, ‘boss/1’, and ‘junior/1’
are abducible hypotheses.

Adding one single IC to the theory might yield several alternative 2-valued models
(sets of abductive hypotheses) satisfying it, let alone adding several ICs.

In the example above, adding just the Integrity Constraint
‘⊥ ← not professional(john)’ — coding the fact that John is a professional —
would yield two alternative abductive solutions: {employee(john)} and {boss(john)}.

When the information from several observations comes in at one single time, several
ICs must be added to the theory in order to be possible to obtain the right explanations
for the corresponding observations.

Our concern is with finding explanations to observations. In a nutshell, we split the
set of observations into several smaller subsets; then we create several agents and give
each agent the same base theory and a subset of the observations coded as ICs. We
then allow each agent to come up with several alternative explanations to its ICs; the
explanations need not be minimal sets of hypotheses.

246 Adaptive Reasoning for Cooperative Agents

Going back again to our running example, if we also know that John is a student,
besides adding the ‘⊥ ← not professional(john)’ IC we must also add the ‘⊥ ←
not student(john)’ IC.

Finding possible alternative explanations is one problem; finding which one(s) is(are)
the “best” is another issue. In the next section we assume “best” means minimal set of
hypotheses and we describe the method we use to find such best.

3.3 Choosing the best explanation

One well known method for solving complex problems widely used by creative teams
is that of ‘brainstorming’. In a nutshell, every agent participating in the ‘brainstorm’
contributes by adding one of his/her ideas to the common idea-pool shared by all the
agents. All the ideas, sometimes clashing and oppositional among each other, are then
mixed, crossed and mutated. The solution to the problem arises from the pool after a
few iterations of this evolutionary process.

The evolution of alternative ideas and arguments in order to find a collaborative
solution to a group problem is the underlying inspiration of this work.

Evolutionary Inspiration Darwin’s theory is based on the concept of natural selection:
only those individuals that are most fit for their environment survive, and are thus able
to generate new individuals by means of reproduction. Moreover, during their lifetime,
individuals may be subject to random mutations of their genes that they can transmit
to offspring. Lamarck’s [21] theory, instead, states that evolution is due to the process
of adaptation to the environment that an individual performs in his/her life. The results
of this process are then automatically transmitted to his/her offspring, via its genes. In
other words, the abilities learned during the life of an individual can modify his/her
genes.

Experimental evidence in the biological kingdom has shown Darwin’s theory to be
correct and Lamarck’s to be wrong. However, this does not mean that the process of
adaptation (or learning) does not influence evolution. Baldwin [4] showed how learning
could influence evolution: if the learned adaptations improve the organism’s chance of
survival then the chances for reproduction are also improved. Therefore there is selec-
tive advantage for genetically determined traits that predisposes the learning of specific
behaviors. Baldwin moreover suggests that selective pressure could result in new in-
dividuals to be born with the learned behavior already encoded in their genes. This is
known as the Baldwin effect. Even if there is still debate about it, it is accepted by most
evolutionary biologists.

Lamarckian evolution [22] has recently received a renewed attention because it can
model cultural evolution. In this context, the concept of “meme” has been developed. A
meme is the cognitive equivalent of a gene and it stores abilities learned by an individual
during his lifetime, so that they can be transmitted to his offspring.

In the field of genetic programming [20], Lamarckian evolution has proven to be a
powerful concept and various authors have investigated the combination of Darwinian
and Lamarckian evolution.

In [24] the authors propose a genetic algorithm for belief revision that includes, be-
sides Darwin’s operators of selection, mutation and crossover, a logic based Lamarckian

Luis Moniz Pereira and Alexandre Miguel Pinto 247

operator as well. This operator differs from Darwinian ones precisely because it mod-
ifies a chromosome coding beliefs so that its fitness is improved by experience rather
than in a random way. There, the authors showed that the combination of Darwinian
and Lamarckian operators are useful not only for standard belief revision problems,
but especially for problems where different chromosomes may be exposed to different
constraints, as in the case of a multi-agent system. In these cases, the Lamarckian and
Darwinian operators play different roles: the Lamarckian one is employed to bring a
given chromosome closer to a solution (or even find an exact one) to the current belief
revision problem, whereas the Darwinian ones exert the role of randomly producing
alternative belief chromosomes so as to deal with unencountered situations, by means
of exchanging genes amongst them.

Evolving Beliefs Belief revision is an important functionality that agents must exhibit:
agents should be able to modify their beliefs in order to model the outside world. What’s
more, as the world may be changing, a pool of separately and jointly evolved chromo-
somes may code for a variety of distinct belief evolution potentials that can respond to
world changes as they occur. This dimension has been explored in [24] with specific
experiments to that effect. Mark that it is not our purpose to propose here a competi-
tor to extant classical belief revision methods, in particular as they apply to diagno-
sis. More ambitiously, we do propose a new and complementary methodology, which
can empower belief revision — any assumption based belief revision — to deal with
time/space distributed, and possibly intermittent or noisy laws about an albeit varying
artifact or environment, possibly by a multiplicity of agents which exchange diversified
genetically encoded experience. We consider a definition of the belief revision problem
that consists in removing a contradiction from an extended logic program by modifying
the truth value of a selected set of literals corresponding to the abducible hypotheses.
The program contains as well clauses with falsum (⊥) in the head, representing ICs.
Any model of the program must ensure the body of ICs false for the program to be non-
contradictory. Contradiction may also arise in an extended logic program when both a
literal L and its opposite ¬L are obtainable in the model of the program. Such a prob-
lem has been widely studied in the literature, and various solutions have been proposed
that are based on abductive logic proof procedures. The problem can be modeled by
means of a genetic algorithm, by assigning to each abducible of a logic program a gene
in a chromosome. In the simplest case of a two valued revision, the gene will have the
value 1 if the corresponding abducible is true and the value 0 if the abducible is false.
The fitness functions that can be used in this case are based on the percentage of ICs
that are satisfied by a chromosome. This is, however, an over-simplistic approach since
it assumes every abducible is a predicate with arity 0, otherwise a chromosome would
have as many genes as the number of all possible combinations of ground values for
variables in all abducibles.

Specific Belief Evolution Method In multi-agent joint belief revision problems, agents
usually take advantage of each other’s knowledge and experience by explicitly commu-
nicating messages to that effect. In our approach, however, we introduce a new and
complementary method (and some variations of it), in which we allow knowledge and

248 Adaptive Reasoning for Cooperative Agents

experience to be coded as genes in an agent. These genes are exchanged with those of
other agents, not by explicit message passing but through the crossover genetic opera-
tor. Crucial to this endeavor, a logic-based technique for modifying cultural genes, i.e.
memes, on the basis of individual agent experience is used.

The technique amounts to a form of belief revision, where a meme codes for an
agent’s belief or assumptions about a piece of knowledge, and which is then diversely
modified on the basis of how the present beliefs may be contradicted by laws (expressed
as ICs). These mutations have the effect of attempting to reduce the number of unsatis-
fied constraints. Each agent possesses a pool of chromosomes containing such diversely
modified memes, or alternative assumptions, which cross-fertilize Darwinianly amongst
themselves. Such an experience in genetic evolution mechanism is aptly called Lamar-
ckian.

Since we will subject the sets of beliefs to an evolutionary process (both Darwinian
and Lamarckian) we will henceforth refer to this method as “Belief Evolution” (BE)
instead of the classical “Belief Revision” (BR).

General Description of the Belief Evolution Method Each agent keeps a population of
chromosomes and finds a solution to the BE problem by means of a genetic algorithm.
We consider a formulation of the distributed BE problem where each agent has the same
set of abducibles and the same program expressed theory, but is exposed to possibly
different constraints. Constraints may vary over time, and can differ because agents
may explore different regions of the world. The genetic algorithm we employ allows
each agent to cross over its chromosomes with chromosomes from other agents. In this
way, each agent can be prepared in advance for situations that it will encounter when
moving from one place to another.

The algorithm proposed for BE extends the standard genetic algorithm in two ways:

– crossover is performed among chromosomes belonging to different agents,
– a Lamarckian operator called Learn is added in order to bring a chromosome closer

to a correct revision by changing the value of abducibles

The Structure of a Chromosome In BR and BE, each individual hypothesis is described
by the truth value of all the abducibles. In our present setting, however, each gene
encodes a ground literal, i.e., all its variables are bound to fixed values.

So, we represent a chromosome as a list of genes and memes, and different chromo-
somes may contain information about different genes. This implies a major difference
to traditional genetic algorithms where every chromosome refers exactly to the same
genes and the crossover and mutation operations are somewhat straightforward.

The memes in a chromosome will be just like genes — representing abducibles
— but they will have extra information. Each meme has associated with it a counter
keeping record of how many times the meme has been confirmed or refuted. Each time
a meme is confirmed this value is increased, and each time it is refuted the value de-
creases. This value provides thus a measure of confidence in the corresponding meme.

Example 2. Running example (cont.)

Luis Moniz Pereira and Alexandre Miguel Pinto 249

Continuing with our running example, let us assume that both professional(john)
and student(john) have been observed. We can create two agents, each with the same
rule-set theory, and split the observations among them. We would have thus

Agent 1: Agent 2:
← not professional(john) ← not student(john)

Agent 1 and Agent 2:
professional(X)← employee(X)
professional(X)← boss(X)
student(X) ← not employee(X)
student(X) ← junior(X)

In the simplest case where a gene encodes an abductive ground literal Agent 1 would
come up with two alternative abductive solutions for its IC
‘⊥ ← not professional(john)’: {employee(john)} and {boss(john)}. Moreover,
Agent 2 would come up with two other alternative abductive solutions for its IC ‘⊥ ←
not student(john)’: {not employee(john)} and {junior(john)}.

Crossover Since each agent knows only some ICs the abductive answer the algorithm
seeks should be a combination of the partial answers each agent comes up with. In
principle, the overlap on abducibles among two chromosomes coming from different
agents should be less than total — after all, each agent is taking care of its own ICs
which, in principle, do not refer to the exact same abducibles. Therefore, crossing over
such chromosomes can simply turn out to be the merging of the chromosomes, i.e., the
concatenation of the lists of abducibles.

If several ICs refer to the exact same abducibles the chromosomes from different
agents will contain either the same gene — in which case we can see this as an ‘agree-
ment’ between the agents as far as the corresponding abducible is concerned — or
genes stating contradictory information about the same abducible. In this last case if
the resulting concatenated chromosome turns out to be inconsistent in itself the fitness
function will filter it out by assigning it a very low value.

Example 3. Running example (cont.)
Continuing with our running example, recall that Agent 1 would come up with two

alternative abductive solutions for its IC
‘⊥ ← not professional(john)’: {employee(john)} and {boss(john)}. Moreover,
Agent 2 would come up with two other alternative abductive solutions for its IC ‘⊥ ←
not student(john)’: {not employee(john)} and {junior(john)}.

The crossing over of these chromosomes will yield the four combinations
{employee(john), not employee(john)}, {employee(john), junior(john)},
{boss(john), not employee(john)}, and {boss(john), junior(john)}.

The first resulting chromosome is contradictory so it will be filtered out by the
fitness function. The second chromosome correspond to the situation where John is a
junior employee who is still studying — a quite common situation, actually. The third
chromosome corresponds to the situation where John is a senior member of a company
— a ‘boss’ — who is taking some course (probably a post-graduation study). The last

250 Adaptive Reasoning for Cooperative Agents

chromosome could correspond to the situation of a young entrepreneur who, besides
owning his/hers company, is also a student — this is probably an uncommon situation
and, if necessary, the fitness function can reflect that “unprobability”.

Mutation When considering a list of abducible literals the mutation operation resembles
the standard mutation of genetic algorithms by changing one gene to its opposite; in this
case negating the truth value of the abducted literal.

Example 4. Running example (cont.)
In the example we have been using this could correspond to mutating the chromo-

some {not employee(john)} to {employee(john)}, or to mutating the chromosome
{junior(john)} to {not junior(john)}.

The Lamarckian Learn operator The Lamarckian operator Learn can change the val-
ues of variables of an abducible in a chromosome ci so that a bigger number of con-
straints is satisfied, thus bringing ci closer to a solution. Learn differs from a normal
belief revision operator because it does not assume that all abducibles are false by CWA
before the revision but it starts from the truth values that are given by the chromosome
ci. Therefore, it has to revise the values of variables of some abducibles and, in the par-
ticular case of an abducible without variables, from true to false or from false to true.
This Lamarckian Learn operator will introduce an extra degree of flexibility allowing
for changes to a chromosome to induce the whole belief evolution algorithm to search
a solution considering new values for variables.

In the running example this could correspond, for example, to changing the chro-
mosome {junior(john)} to {junior(mary)}, where ‘mary’ is another value in the
domain range of the variable for abducible junior/1.

The Fitness Functions Various fitness functions can be used in belief revision. The
simplest fitness function is the following Fitness(ci) = (ni/n)/(1 +NC), where ni

is the number of integrity constraints satisfied by chromosome ci, n is the total number
of integrity constraints, and NC is the number of contradictions in chromosome ci. We
will call it an accuracy fitness function.

4 Argumentation

In [12], the author shows that preferred maximal scenarios (with maximum default
negated literals — the hypotheses) are always guaranteed to exist for NLPs; and that
when these yield 2-valued complete (total), consistent, admissible scenarios, they coin-
cide with the Stable Models of the program. However, preferred maximal scenarios are,
in general, 3-valued. The problem we address now is how to define 2-valued complete
models based on preferred maximal scenarios. In [31] the authors took a step further
from what was achieved in [12], extending its results. They did so by completing a pre-
ferred set of hypotheses rendering it approvable, ensuring whole model consistency and
2-valued completeness.

The resulting semantics thus defined, dubbed Approved Models [31], is a conserva-
tive extension to the widely known Stable Models semantics [14] in the sense that every

Luis Moniz Pereira and Alexandre Miguel Pinto 251

Stable Model is also an Approved Model. The Approved Models are guaranteed to exist
for every Normal Logic Program, whereas Stable Models are not. Concrete examples in
[31] show how NLPs with no Stable Models can usefully model knowledge, as well as
produce additional models. Moreover, this guarantee is crucial in program composition
(say, from knowledge originating in divers sources) so that the result has a semantics.
It is important too to warrant the existence of semantics after external updating, or in
Stable Models based self-updating [1].

For the formal presentation and details of the Approved Models semantics see [31].

4.1 Intuition

Most of the ideas and notions of argumentation we are using here come from the Ar-
gumentation field — mainly from the foundational work of Phan Minh Dung in [12].
In [31] the Reductio ad Absurdum reasoning principle is also considered. This has been
studied before in [29], [30], and [32]. In this paper we consider an argument (or set of
hypotheses) as a set S of abducible literals of a NLP P .

We have seen before examples of Extended Logic Programs — with explicit nega-
tion. In [8] the authors show that a simple syntactical program transformation applied
to an ELP produces a Normal Logic Program with Integrity Constraints which has the
exact same semantics as the original ELP.

Example 5. Transforming an ELP into a NLP with ICs
Taking the program

dangerous neighborhood ← not ¬dangerous neighborhood
¬dangerous neighborhood← not dangerous neighborhood

we just transform the explicitly negated literal ¬dangerous neighborhood into the
positive literal dangerous neighborhood−, and the original
dangerous neighborhood literal is converted into dangerous neighborhood+

Now, in order to ensure consistency, we just need to add the IC
⊥ ← dangerous neighborhood+, dangerous neighborhood−. The resulting trans-
formed program is

dangerous neighborhood+ ← not dangerous neighborhood−

dangerous neighborhood− ← not dangerous neighborhood+

⊥ ← dangerous neighborhood+, dangerous neighborhood−

Now know that we can just consider NLPs with ICs without loss of generality and
so, henceforth, we will assume just that case. NLPs are in fact the kind of programs
most Inductive Logic Programming learning systems produce.

4.2 Assumptions and Argumentation

Previously, we have seen that assumptions can be coded as abducible literals in Logic
Programs and that those abducibles can be packed together in chromosomes. The evo-
lutionary operators of genetic and memetic crossover, mutation and fitness function

252 Adaptive Reasoning for Cooperative Agents

applied to the chromosomes provide a means to search for a consensus of the initial
assumptions since it will be a consistent mixture of these.

Moreover, the 2-valued contradiction removal method presented in subsection 2.2
is a very superficial one. That method removes the contradiction between p(X) and
¬p(X) by forcing a 2-valued semantics for the ELP to choose either p(X) or ¬p(X)
since they now are exceptions to one another. It is a superficial removal of the contra-
diction because the method does not look into the reasons why both p(X) and ¬p(X)
hold simultaneously. The method does not go back to find the underlying assumptions
supporting both p(X) and ¬p(X) to find out which assumptions should be revised in
order to restore overall consistency. Any one such method must fall back into the prin-
ciples of argumentation: to find the arguments supporting one conclusion in order to
prevent it if it leads to contradiction.

4.3 Collaborative Opposition

In [12] the author shows that the Stable Models of a NLP coincide with the 2-valued
complete Preferred Extensions which are self-corroborating arguments.

The more challenging environment of a Semantic Web is one possible ‘place’ where
the future intelligent systems will live in. Learning in 2-values or in 3-values are open
possibilities, but what is most important is that knowledge and reasoning will be shared
and distributed. Different opposing concepts and arguments will come from different
agents. It is necessary to know how to conciliate those opposing arguments, and how
to find 2-valued consensus as much as possible instead of just keeping to the least-
commitment 3-valued consensus. In [31] the authors describe another method for find-
ing such 2-valued consensus in an incremental way. In a nutshell, we start by merging
together all the opposing arguments into a single one. The conclusions from the theory
plus the unique merged argument are drawn and, if there are contradictions against the
argument or contradictions inside the argument we non-deterministically choose one
contradicted assumption of the argument and revise its truth value. The iterative repeti-
tion of this step eventually ends up in a non-contradictory argument (and all possibilities
are explored because there is a non-deterministic choice).

In a way, the evolutionary method we presented in subsection 3.3 implements a
similar mechanism to find the consensus non-contradictory arguments.

5 Conclusions

The two-valued setting that has been adopted in most work on ILP and Inductive Con-
cept Learning in general is not sufficient in many cases where we need to represent real
world data.

Standard ILP techniques can be adopted for separate agents to learn the definitions
for the concept and its opposite. Depending on the adopted technique, one can learn the
most general or the least general definition and combine them in different ways.

We have also presented an evolution-inspired algorithm for performing belief revi-
sion in a multi-agent environment. The standard genetic algorithm is extended in two

Luis Moniz Pereira and Alexandre Miguel Pinto 253

ways: first the algorithm combines two different evolution strategies, one based on Dar-
win’s and the other on Lamarck’s evolutionary theory and, second, chromosomes from
different agents can be crossed over with each other. The Lamarckian evolution strategy
is obtained be means of an operator that changes the genes (or, better, the memes) of
agents in order to improve their joint fitness.

We have presented too a new and productive way to deal with oppositional concepts
in a cooperative perspective, in different degrees. We use the contradictions arising from
opposing agents’ arguments as hints for the possible collaborations. In so doing, we ex-
tend the classical conflictual argumentation giving a new treatment and new semantics
to deal with the contradictions.

References

1. Alferes, J. J., Brogi, A., Leite, J. A., and Pereira, L. M. Evolving logic programs. In S. Flesca
et al., editor, JELIA, volume 2424 of LNCS, pages 50–61. Springer, 2002.

2. Alferes, J. J., Damásio, C. V., and Pereira, L. M. (1994). SLX - A top-down derivation proce-
dure for programs with explicit negation. In Bruynooghe, M., editor, Proc. Int. Symp. on Logic
Programming. The MIT Press.

3. Alferes, J. J. and Pereira, L. M. (1996). Reasoning with Logic Programming, volume 1111 of
LNAI. Springer-Verlag.

4. http://www.psych.utoronto.ca/museum/baldwin.htm
5. Baral, C., Gelfond, M., and Rushton, J. Nelson. Probabilistic reasoning with answer sets.

In Vladimir Lifschitz and Ilkka Niemelä, editors, LPNMR, volume 2923 of Lecture Notes in
Computer Science, pages 21–33. Springer, 2004.

6. Baral, C. and Gelfond, M. (1994). Logic programming and knowledge representation. Journal
of Logic Programming, 19/20:73–148.

7. Damásio, C. V., Nejdl, W., and Pereira, L. M. (1994). REVISE: An extended logic program-
ming system for revising knowledge bases. In Doyle, J., Sandewall, E., and Torasso, P., editors,
Knowledge Representation and Reasoning, pages 607–618. Morgan Kaufmann.

8. Damásio, C. V. and Pereira, L. M. Default Negated Conclusions: Why Not?. In ELP’96, pages
103–117. Springer, 1996

9. De Raedt, L. and Bruynooghe, M. (1989). Towards friendly concept-learners. In Procs. of the
11th Intl. Joint Conf. on Artificial Intelligence, pages 849–856. Morgan Kaufmann.

10. De Raedt, L. and Bruynooghe, M. (1990). On negation and three-valued logic in interactive
concept learning. In Procs. of the 9th European Conf. on Artificial Intelligence.

11. De Raedt, L. and Bruynooghe, M. (1992). Interactive concept learning and constructive
induction by analogy. Machine Learning, 8(2):107–150.

12. Dung, P. M. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artif. Intell., 77(2):321–358, 1995.

13. Esposito, F., Ferilli, S., Lamma, E., Mello, P., Milano, M., Riguzzi, F., and Semeraro, G.
(1998). Cooperation of abduction and induction in logic programming. In Flach, P. A. and
Kakas, A. C., editors, Abductive and Inductive Reasoning, Pure and Applied Logic. Kluwer.

14. Gelfond, M. and Lifschitz, V. (1988). The stable model semantics for logic programming.
In Kowalski, R. and Bowen, K. A., editors, Procs. of the 5th Int. Conf. on Logic Programming,
pages 1070–1080. MIT Press.

15. Gordon, D. and Perlis, D. (1989). Explicitly biased generalization. Computational Intelli-
gence, 5(2):67–81.

16. Green, D.M., and Swets, J.M. (1966). Signal detection theory and psychophysics. New
York: John Wiley and Sons Inc.. ISBN 0-471-32420-5.

254 Adaptive Reasoning for Cooperative Agents

17. Greiner, R., Grove, A. J., and Roth, D. (1996). Learning active classifiers. In Procs. of the
Thirteenth Intl. Conf. on Machine Learning (ICML96).

18. Inoue, K. (1998). Learning abductive and nonmonotonic logic programs. In Flach, P. A. and
Kakas, A. C., editors, Abductive and Inductive Reasoning, Pure and Applied Logic. Kluwer.

19. Inoue, K. and Kudoh, Y. (1997). Learning extended logic programs. In Procs. of the 15th
Intl. Joint Conf. on Artificial Intelligence, pages 176–181. Morgan Kaufmann.

20. Koza, J.R. (1992). Genetic Programming: On the Programming of Computers by Means of
Natural Selection MIT Press

21. Jean Baptiste Lamarck: http://www.ucmp.berkeley.edu/history/lamarck.html
22. Grefenstette, J. J., (1991). Lamarckian learning in multi-agent environments
23. Lamma, E., Riguzzi, F., and Pereira, L. M. (1988). Learning in a three-valued setting. In

Procs. of the Fourth Intl. Workshop on Multistrategy Learning.
24. Lamma, E., Pereira, L. M., and Riguzzi, F. Belief revision via lamarckian evolution. New

Generation Computing, 21(3):247–275, August 2003.
25. Lamma, E., Riguzzi, F., and Pereira, L. M. Strategies in combined learning via logic pro-

grams. Machine Learning, 38(1-2):63–87, January 2000.
26. Lapointe, S. and Matwin, S. (1992). Sub-unification: A tool for efficient induction of recur-

sive programs. In Sleeman, D. and Edwards, P., editors, Procs. of the 9th Intl. Workshop on
Machine Learning, pages 273–281. Morgan Kaufmann.

27. Lavrač, N. and Džeroski, S. (1994). Inductive Logic Programming: Techniques and Appli-
cations. Ellis Horwood.

28. Pazzani, M. J., Merz, C., Murphy, P., Ali, K., Hume, T., and Brunk, C. (1994). Reducing
misclassification costs. In Procs. of the Eleventh Intl. Conf. on Machine Learning (ML94),
pages 217–225.

29. Pereira, L. M. and Pinto, A. M. Revised stable models - a semantics for logic programs. In
G. Dias et al., editor, Progress in AI, volume 3808 of LNCS, pages 29–42. Springer, 2005.

30. Pereira, L. M. and Pinto, A. M. Reductio ad absurdum argumentation in normal logic
programs. In Argumentation and Non-monotonic Reasoning (ArgNMR’07) workshop at LP-
NMR’07, pages 96–113, 2007.

31. Pereira, L. M. and Pinto, A. M. Approved Models for Normal Logic Programs. In LPAR,
pages 454–468. Springer, 2007.

32. Pinto, A. M. Explorations in revised stable models — a new semantics for logic programs.
Master’s thesis, Universidade Nova de Lisboa, February 2005.

33. Provost, F. J. and Fawcett, T. (1997). Analysis and visualization of classifier performance:
Comparison under imprecise class and cost distribution. In Procs. of the Third Intl. Conf. on
Knowledge Discovery and Data Mining (KDD97). AAAI Press.

34. Quinlan, J. (1990). Learning logical definitions from relations. Machine Learning, 5:239–
266.

35. Vere, S. A. (1975). Induction of concepts in the predicate calculus. In Procs. of the Fourth
Intl. Joint Conf. on Artificial Intelligence (IJCAI75), pages 281–287.

36. Whitley, D., Rana, S., and Heckendorn, R.B. (1998) The Island Model Genetic Algorithm:
On Separability, Population Size and Convergence

Luis Moniz Pereira and Alexandre Miguel Pinto 255

256

Runtime Verification of Agent Properties

Stefania Costantini1, Pierangelo Dell’Acqua2, Luı́s Moniz Pereira3, and
Panagiota Tsintza1

1 Dip. di Informatica, Università di L’Aquila, Coppito 67100, L’Aquila, Italy
stefcost@di.univaq.it

2 Dept. of Science and Technology - ITN, Linköping University, Norrköping, Sweden
pierangelo.dellacqua@itn.liu.se

3 Departamento de Informática, Centro de Inteligência Artificial (CENTRIA), Universidade
Nova de Lisboa, 2829-516 Caparica, Portugal

lmp@di.fct.unl.pt

Abstract. In previous work, we have proposed a multi-level agent model with
at least a meta-level aimed at meta-reasoning and meta-control. In agents, these
aspects are strongly related with time and therefore we retain that they can be
expressed by means of temporal-logic-like rules. In this paper, we propose an
interval temporal logic inspired by METATEM, that allows properties to be veri-
fied in specific time interval situated either in the past or in the future. We adopt
this logic for definition and run-time verification of properties which can imply
modifications to the agent’s knowledge base.

1 Introduction

Agents are by definition software entities which interact with an environment, and thus
are subject to modify themselves and evolve according to both external and internal
stimuli, the latter due to the proactive and deliberative capabilities of the agent them-
selves (whenever encompassed by the agent model at hand). In past work, we defined
semantic frameworks for agent approaches based on logic programming that account
for: (i) the kind of evolution of reactive and proactive agents due to directly dealing
with stimuli, that are to be coped with, recorded and possibly removed [1]; and (ii) the
kind of evolution related to adding/removing rules from the agent knowledge base [2].
These frameworks have been integrated into an overall framework for logical evolv-
ing agents (cf. [3, 4]) where every agent is seen as the composition of a base-level (or
object-level) agent program and one or more meta-levels. In this model, updates related
to recoding stimuli are performed in a standard way, while updates involving the addi-
tion/deletion of sets of rules, related to learning, belief revision, etc. are a consequence
of meta-level decisions.

As agent systems are more widely used in real-world applications, the issue of ver-
ification is becoming increasingly important (see [5] and the many references therein).
In computational logic, two common approaches to the verification of computational
systems are model checking [6] and theorem proving. There are many attempts to adapt
these techniques to agents (see again [5]). In this paper, we address the problem con-
cerning the monitoring of agent behavior against desired properties, or with respect to a

Stefania Costantini, Pierangelo Dell’Acqua, Luis Moniz Pereira and Panagiota
Tsintza

257

certain specification, in a different way. We assume defined, possibly both at the object
and at the meta-level, axioms that determine properties to be respected or enforced, or
simply verified, whenever a property is desirable but not mandatory. We assume these
properties to be verified at runtime. Upon verification of a property (which is evaluated
within a context instantiated onto the present circumstances), suitable actions can be un-
dertaken, that we call in general improvement action. Improvements can imply revision
of the agent knowledge, or tentative repair of malfunctioning, or tentative improvement
of future behavior, according to the situation at hand. Our approach is to some extent
similar to that of [7] for evolving software.

As many of the properties to be defined and verified imply temporal aspects, we
have considered to adopt the temporal logic METATEM [8, 9] as this logic is specially
tailored to an agent context. Since properties should often be defined on certain inter-
vals, we define a variant of METATEM, that we call I-METATEM, where connectives
are defined over intervals. We do not adopt the full power of METATEM rules, where
connectives are interpreted as modalities, and semantics provided accordingly. Instead,
we remain within the realm of logic programming, and interpret the temporal axioms in
the context of the above-mentioned semantic framework. Therefore, we should better
call our axioms “temporal-logic-like” axioms. However, to simulate to some extent the
power of modal logic, improvements can imply the removal/addition of new temporal-
logic-like axioms. The addition of new ones determines their immediate operational
use. In this way, we stay within our semantic framework, where we are able to pro-
vide a full declarative semantics and an efficient corresponding operational semantics,
as demonstrated by the existing implementations ([2, 10]), though the whole proposed
approach has not been fully implemented yet.

The plan of the paper is as follows. In Section 2 we summarize the features of the
agent model our framework is based upon. This model is general, and many existing
agent-oriented logic languages can be easily rephrased in terms of it. In Section 3 we
shortly summarize the METATEM temporal logic, and then introduce the proposed
extension. In Section 4 we show how we mean to use temporal-logic-like rules for
defining properties, how these properties are meant to be verified, and we establish our
notion of improvement. Then we conclude.

2 Layered Agent (Meta-)Model

We do not mean to restrict the proposed approach to one single agent model/language.
Therefore, we refer to an abstract agent model (we might say, meta-model). In this
way, the approach can be adapted to any specific agent formalism which can be seen
as an instance of this meta-model. We therefore refer to the abstract multi-layer meta-
framework for agents proposed in [3, 4]. In this framework, an agent is considered to be
composed of two distinct interacting levels: the BA (standing for Base-Agent) and one
or more meta-levels. BA is the base level, whereas MA (Meta-Agent) along with IEA
(Information Exchange Agent) constitute the two meta-levels. Here we assume that BA
is a logic program and make the additional assumption that its semantics may ascribe
multiple models to BA in order to deal with “uncertainty”. For the semantics of logic

258 Runtime Verification of Agent Properties

programs we can adopt one of those reported in the survey [11] and for the semantics
dealing with “uncertainty” we can adopt the Answer Set Semantics [12].

The meta-level, by means of both components MA and IEA, performs various kinds
of meta-reasoning and is responsible for supervising and coordinating the BA’s activ-
ities. MA is in charge of coordinating all activities and takes decisions over the BA.
More precisely, the MA level will be the one up to decide which modifications have to
be undertaken onto the BA level, in order to correct or improve inadequacies and unex-
pected behavior. The IEA level instead decides and evaluates when an interaction with
the society is necessary in order to exchange knowledge: in fact, agents are in general
not entities standing alone but, rather, are part of possibly several groups to form a soci-
ety. Below we do not give any formal definition of BA, MA and IEA as their actual form
depends upon the various possible concrete instances of the meta-framework. Rather,
we specify the requirements they have to obey. We also define the overall architecture,
and outline a possible semantic account.

2.1 Agent Model: operational behavior

To define the operational behavior of the agent meta-model we exploit our previous
work reported in [3, 4]. Each agent is considered as a logic program that will evolve
interacting with the environment. In fact, the interaction triggers many agent activities
such as response, goals identification, decisions on recording and pruning the gathered
information. Of course, these activities will be affected by the belief, desire and inten-
tion control that is part of MA. Note that this component will itself evolve and change
in time as a result of the interaction with the society. In this paper, we consider the evo-
lution of the initial agent into subsequent related versions of the agent itself. Therefore,
we consider that each interaction will, eventually, determine the evolution of the initial
agent in terms of successive transformations.

We start by providing a more formal view of agent evolution. We consider a generic
instance of our agent meta-model that we refer to as M. The agent model M will
have to provide an agent-oriented programming language and a control mechanism.
For example, if M provides a prolog-like programming language, C may be a meta-
interpreter, and CI may be a set of directives to the interpreter. Below we describe
the operational behavior of our meta-model thus providing a specification to which
M should conform, whatever its specific functioning, to be seen as an instance of our
framework.

Definition 1. An agent program is a tuple 〈BA,MA, C, CI〉 of software components
where BA and MA are logic programs, C is the control component and CI is the
component containing control information.

Specifically, the control component C takes as input both the logic programs BA and
MA and the control information CI. The CI component has the role of customizing
the run-time behavior of the agent. For example, CI may contain directives stating the
priorities among different events/goals that the agent has to cope with.

In the following, we clarify how the control C and control information CI com-
ponents are enabled to actually affect the operational behavior of agents. In fact, both
components are taken as input by an underlying control mechanism U that implements

Stefania Costantini, Pierangelo Dell’Acqua, Luis Moniz Pereira and Panagiota
Tsintza

259

the operational counterpart of the agent model. For example, if the agent model pro-
vides a prolog-like programming language the underlying control mechanism may be
either an interpreter or a virtual machine related to a compiler. The underlying con-
trol mechanism U that is able to put into operation the various components of an agent
modelM, is a transformation function starting fromA0 and transforming it step by step
into A1,A2, . . . The transition from a generic step Ai into the next step Ai+1 is defined
as follows.

Definition 2. Let Ai = 〈BAi,MAi, Ci, CIi〉 be an agent program at step i. Then, the
underlying control mechanism U is a binary function defined as:

Ai→U(Ci,CIi,wi)〈BAi+1,MAi+1, Ci+1, CIi+1〉.

It is important to notice that, given an initial step A0, subsequent steps Ais in general
do not follow deterministically. The reason is that each step depends both on the inter-
action with the society wi (external environment) and on the internal choices of each
agent that are based on its previous knowledge and “experience”. The underlying con-
trol mechanism U can operate in two different ways by providing: (i) either different
parallel threads for BA and MA, or (ii) an interleaving of control between the two levels.
In the former case, MA continuously monitors BA. In the latter case control must some-
how pass between the two levels, for instance as follows. Control will shift up from BA
to MA periodically (and/or upon certain conditions) by means of an act called upward
reflection. When controls shifts up, MA will revise the BA’s activities, which may imply
constraints and condition verification. Vice versa, control will shift down from MA to
BA by performing an act called downward reflection. Forms of control based on reflec-
tion in computational logic are formally accounted for in [13]. The frequency as well as
the conditions of each type of shift is defined in the control information component CIi

and therefore can be encoded as a subset of directives included in this component. A
declarative semantics for evolving agents that fulfills the above-proposed meta-model
is presented in [1]. Dynamic changes that MA can operate on BA can be semantically
modeled by means of the approach of Evolving Logic Programs [14]. In the following,
we will assume these formalizations as the semantic bases of the approach proposed
here.

The meta-model and its operational behavior are consistent at least with the KGP
([15–17]) and DALI ([10, 18, 19]) agent-oriented languages.

3 I-METATEM: Temporal Logic in the proposed framework

In the previous section, we discussed the non determinism of states that can be reached
by agents during their evolution. For defining temporal-logic-like rules while keeping
the complexity under control, we are going to adapt the approach of METATEM, a
propositional Linear-time Temporal Logic (LTL), that implicitly quantifies universally
upon all possible paths. LTL logics are called linear because, in contrast to branching
time logics, they evaluate each formula with respect to a vertex-labeled infinite path
s0s1 . . .where each vertex si in the path corresponds to a point in time (or “time instant”
or “state”). In order to model the dynamic behavior of agents, we propose an extension

260 Runtime Verification of Agent Properties

to the well-established METATEM logic called I-METATEM, an acronym standing for
Interval METATEM.

3.1 METATEM

In this subsection, we present the basic elements of propositional METATEM logic [8,
9]. Its language is based both on the classical propositional logic enriched by temporal
connectives and on the direct execution of temporal logic statements. The symbols used
by METATEM are: (i) a set AC of propositions controlled by the component which
is being defined, (ii) a set AE of propositions controlled by the environment (where
AC ∩ AE = ∅), (iii) the alphabet of propositional symbols AP = AC ∪ AE , (iv)
a set of propositional connectives such as true, false, ¬, ∧, ∨, ⇒ and ⇔, and (v) a
set of temporal connectives. The set of temporal connectives is composed of a number
of unary and binary connectives referring to future-time and past-time. A METATEM
program is a set of temporal logic rules of the form:

past time antecedent→ future time consequent

where the past time antecedent is considered as a temporal formula concerning the
past while the future time consequent is a temporal formula concerning the present and
future time. Therefore, a temporal rule is the one determining how the process should
progress through stages.

3.2 I-METATEM

The purpose of this extension is to allow properties and anomalous behavior in agent
evolution to be checked at run-time. Since agent evolution can be considered as an
infinite sequence of states, it is often not possible (and not suitable) to verify properties
on the entire sequence. Sometimes it is not even desirable, since one needs properties to
hold within a certain time interval. Thus we propose the extension I-METATEM to the
METATEM logic. Specifically, we introduce the new connectives Fm,n,Gm,n,G〈m,n〉,
Nm,n, Em,n, Ĝm,n and Ĝ〈m,n〉.

Future-time connectives of I-METATEM (Assume m < n)

X (next state). Xϕ states that ϕ will be true at next state.
G (always in future). Gϕ means that ϕ will always be true in every future state.
F (sometime in future). Fϕ states that there is a future state where ϕ will be true.
W (weak until). ϕWψ is true in a state s if ψ is true in a state t, in the future of state

s, and ϕ is true in every state in the time interval [s,t) where t is excluded.
U (strong until). ϕUψ is true in a state s if ψ is true in a state t, in the future of state
s, and ϕ is true in every state in the time interval [s,t] where t is included.

N (never). Nϕ states that ϕ should not become true in any future state.
τ (current state). τ(i) is true if si is the current state.

Xm (future m-state). Xmϕ states that ϕ will be true in the state sm+1.

Stefania Costantini, Pierangelo Dell’Acqua, Luis Moniz Pereira and Panagiota
Tsintza

261

Fm (bounded eventually). Fmϕ states that ϕ eventually has to hold somewhere on the
path from the current state to sm.

Fm,n (bounded eventually in time interval). Fm,nϕ states that ϕ eventually has to hold
somewhere on the path from state sm to sn.

Gm,n (always in time interval). Gm,nϕ states that ϕ should become true at most at state
sm and then hold at least until state sn.

G〈m,n〉 (strong always in time interval). G〈m,n〉ϕ states that ϕ should become true just in
sm and then hold until state sn, and not in sn+1.

Nm,n (bounded never). Nm,nϕ states that ϕ should not be true in any state between sm

and sn.
Em,n (sometime in time interval). Em,nϕ states that ϕ has to occur one or more times

between sm and sn.

Past-time connectives of I-METATEM (Assume m < n)

X̂ (last state). X̂ϕ states that if there is a last state, then ϕ was true in that state.
F̂ (some time in the past). F̂ϕ states that ϕ was true in some past state.
Ĝ (always in the past). Ĝϕ states that ϕ was true in all past states.
Ẑ (weak since). ϕẐψ is true in a state s if ψ was true in a state t (in the past of state
s), and ϕ was true in every state of the time interval [t,s).

Ŝ (since). ϕẐψ is true in a state s if ψ was true in a state t (in the past of state s), and
ϕ was true at every state in the time interval [t,s].

X̂m (last m-state). X̂mϕ states that ϕ was true in the past state sm−1.
F̂m (bounded some time in the past). F̂mϕ states that ϕ was true in some past state

before sm included.
Ĝm,n (always in time interval in the past). Ĝm,nϕ states that ϕ was true in the past state

sm and then it remained true at least until the past state sn.
Ĝ〈m,n〉 (strong always in time interval in the past). Ĝ〈m,n〉 states that ϕ became true just

in the past state sm and then remained true exactly until the past state sn.

The syntax of I-METATEM temporal formulae is given by the following definition.

Definition 3. Formulae of I-METATEM logic are defined inductively in the usual way:

ϕ ::= p | true | ¬ϕ1 | ϕ1 ∧ ϕ2 | τ(i)
ϕ ::= Xϕ1 | ϕ1 Uϕ2 | X̂ϕ1 | ϕ1 Ŝ ϕ2

ϕ ::= ϕ1 Um,n ϕ2 | ϕ1 Ŝm,n ϕ2

ϕ ::= (ϕ1)

where p ∈ AP , and ϕ1 and ϕ2 are formulae of I-METATEM.

Semantics of I-METATEM After having introduced the syntax of I-METATEM, we
present the semantics of I-METATEM formulae. To do so, we first recall the notion
of model structures to be used in the interpretation of temporal formulae. In the fol-
lowing, let σ be a sequence of states s0s1... and i a time instant. A structure is a pair

262 Runtime Verification of Agent Properties

〈σ, i〉 ∈ (N → 2AP) x N where AP is the alphabet of propositional symbols. Given
some moment in time, represented by a natural number j, σ(j) is the set of proposi-
tions drawn from the alphabet AP and denotes all the propositions that are true at time
j. The satisfaction relation ² gives the interpretation to temporal formulae in the given
model structure.

Definition 4. (Semantics of I-METATEM temporal formulae) Let 〈σ, i〉 be a structure.
The semantics of I-METATEM temporal logic is defined as follows.

Propositions and propositional connectives

〈σ, i〉 ² p iff p ∈ σ(i)
〈σ, i〉 ² true
〈σ, i〉 ² ¬ϕ iff 〈σ, i〉 6² ϕ
〈σ, i〉 ² ϕ ∧ ψ iff 〈σ, i〉 ² ϕ and 〈σ, i〉 ² ψ
〈σ, i〉 ² τ(i)

Temporal connectives

〈σ, i〉 ² Xϕ iff 〈σ, i+1〉 ² ϕ
〈σ, i〉 ² ϕUψ iff ∃k ∈ N 〈σ, i+k〉 ² ψ and ∀j (0 ≤ j < k) 〈σ, i+j〉 ² ϕ
〈σ, i〉 ² X̂ϕ iff if i > 0, then 〈σ, i−1〉 ² ϕ
〈σ, i〉 ² ϕŜψ iff ∃k (1 ≤ k ≤ i) 〈σ, i−k〉 ² ψ and ∀j (1 ≤ j < k) 〈σ, i−j〉 ² ϕ

Temporal connectives in time intervals

〈σ, i〉 ² ϕUm,n ψ iff i ≤ m ≤ n, ∃k (m− i ≤ k ≤ n− i) 〈σ, i+ k〉 ² ψ and
∀j (0 ≤ j < k − i) 〈σ, i+ j〉 ² ϕ

〈σ, i〉 ² ϕ Ŝm,n ψ iff m ≤ n < i, ∃k (i−m ≤ k ≤ i− n) 〈σ, i− k〉 ² ψ and
∀j (1 ≤ j < k) 〈σ, i− j〉 ² ϕ

In addition, we use the following abbreviations:

false =̂ ¬true
ϕ ∨ ψ =̂ ¬(¬ϕ ∧ ¬ψ)
ϕ⇒ ψ =̂ ¬ϕ ∨ ψ

Fϕ =̂ true Uϕ
Gϕ =̂ ¬F¬ϕ

ϕWψ =̂ ϕUψ ∨Gϕ
Nϕ =̂ ¬Fϕ

Stefania Costantini, Pierangelo Dell’Acqua, Luis Moniz Pereira and Panagiota
Tsintza

263

F̂ϕ =̂ true Ŝ ϕ

Ĝϕ =̂ ¬F̂¬ϕ
ϕẐψ =̂ ϕŜψ ∨ Ĝϕ

Xmϕ =̂ Gm+1,m+1ϕ

Fmϕ =̂
∨m

i=1(τ(i) ∧ trueUi,m ϕ)
Gm,nϕ =̂ ¬(true Um,n ¬ϕ)
G〈m,n〉ϕ =̂ ¬Fmϕ ∧Gm,nϕ ∧Gn+1,n+1¬ϕ
Em,nϕ =̂ ¬Gm,nϕ ∧ ¬Nm,nϕ

X̂mϕ =̂ Ĝm−1,m−1ϕ

F̂mϕ =̂
∨m−1

i=1 (τ(i) ∧ true Ŝm,i−1 ϕ)

Ĝm,nϕ =̂ ¬(true Ŝm,n ¬ϕ)

Ĝ〈m,n〉ϕ =̂ Ĝ0,m¬ϕ ∧ Ĝm,nϕ ∧ Ĝn+1,n+1¬ϕ
Let σ ² ϕ be an abbreviation for 〈σ, 0〉 ² ϕ. We call σ a model of ϕ iff σ ² ϕ.

4 I-METATEM for defining and verifying properties in logical
agents

In our framework, agents are supposed to live in an open society where they interact
with each other and with the environment, and where they can learn either by observing
other agents behavior or by imitation. Given the evolving nature of learning agents, their
behavior has to be checked from time to time and not (only) “a priori”. Model checking
and other “a priori” approaches are static, since the underlying techniques require to
write an ad-hoc interpreter and this operation cannot be re-executed whenever the agent
learns a new piece of information. Note that in case of re-execution this operation would
in principle be required a huge number of times, adding a further cost to the system.
Moreover, an a priori full validation of agent’s behavior would have to consider all
possible scenarios that are not known in advance. These are the reasons why we propose
(also) a run-time control on agent behavior and evolution, for checking correctness
during agents activity, rather than a model checking control.

To do so, we add to the underlying logic programming agent-oriented language
the possibility of specifying rules including I-METATEM connectives. These rules can
be defined both at the object level and at the meta-level to determine properties to be
respected. These rules will be attempted, and whenever verified they may determine
suitable modifications to the program itself. In the rest of this section, we first define
the syntax of I-METATEM connectives in the context of logic programs, and then we
define I-METATEM basic rules, I-METATEM contextual rules, and I-METATEM rules
with improvements. Along with the explanation we provide some examples.

264 Runtime Verification of Agent Properties

In our framework, we consider I-METATEM rules to be applied upon universally
quantified formulae. Note that the negation connective not is interpreted in our setting
as negation by default. To increase readability in I-METATEM rules, we write any tem-
poral connective of the form Om,n as O(m,n). Sometimes, we omit the connective
arguments when implied from the context, and in these cases we write O instead of
O(m,n). Also, as a special case, when we do not care about the starting point of an
interval, we introduce the special constant start where O(start, n) means that O is
checked since the “beginning of time” up to n, where the beginning of time coincides
with the agent’s activation time. We also introduce the shorthand now standing for the
time t for which τ(t) holds.

4.1 I-METATEM rules

In this section we present rules with an associated remedial action to be performed any
time the rule is violated. We start by introducing the notion of basic rule and contextual
rule.

I-METATEM basic rules We start by first introducing the basic form of rules.

Definition 5. Any I-METATEM formula ϕ is a rule.

Whenever checked, an I-METATEM rule is verified (or succeeds) whenever ϕ holds,
otherwise the rule is violated. In the case of I-METATEM connectives (or their nega-
tion), this means that the related property holds either in the specified interval (if elapsed)
or up to now. According to the semantic framework of [1], where special formulas can
be designated to be periodically executed, I-METATEM rules will be periodically at-
tempted (we also say “checked”). We assume some default frequency whenever not
explicitly defined. As a first example of an I-METATEM rule, consider the following:

N(goal(g) ∧ deadline(g, t) ∧ now(T) ∧ T ≤ t ∧ not achieved(g) ∧ dropped(g))

We assume predicates goal , achieved and dropped to be suitably defined in the agent’s
knowledge base. Informally: goal(g) means that g is the goal that has to be achieved;
achieved(g) is deemed true when the plan for reaching the goal g has been successfully
completed; dropped(g) means that agent has dropped any attempt to achieve g . The rule
states that it cannot be the case that a given goal not accomplished up to now but not
expired yet (the deadline t for this goal has not been met), is dropped by the agent.
There are in principle different ways to exploit this rule: (i) as an “a priori” check to be
performed whenever a drop action is attempted; if the check fails, then the action is not
allowed and (ii) as an “a posteriori” check on the agent behavior; in case of violation,
some repair action should presumably been undertaken, as discussed below.

Notice that for performing this kind of evaluation we have to consider ground rules.
In the above rule in fact, the only variable is the present time T , which is however
instantiated by the predefined connective now . Below we generalize to the non-ground
case.

Stefania Costantini, Pierangelo Dell’Acqua, Luis Moniz Pereira and Panagiota
Tsintza

265

I-METATEM contextual rules For the sake of generality, and in view of a changing
environment, we propose a further extension of rule syntax to include variables instan-
tiated by an evaluation context associated to each rule.

Definition 6. A contextual I-METATEM rule is a rule of the form χ⇒ ϕ where:

– χ is the evaluation context of the rule, and consists of a conjunction of logic pro-
gramming literals;

– every variable occurring in ϕ must occur in the context χ.

From Definition 6 it follows that the evaluation of a contextual rule becomes feasible
only when grounded from the context. In order to clarify the syntax of a contextual
I-METATEM rule, consider the following example:

[goal(Goal), priority(Goal ,Pr), timeout(Pr ,T out)]⇒
F (T out) achieved(Goal)

In this rule, the goal Goal is established by the context, which also contains the atoms
priority and timeout. Informally, the rule requires that a goal with timeout T out (set
according to the priority Pr of the goal itself), should actually be accomplished before
the timeout. This contextual rule can be verified whenever instantiated to a specific goal
g. In general, the rule will be repeatedly checked until it either succeeds, if g will be
achieved in time, or it fails because the timeout will have elapsed.

I-METATEM rules with improvement Whenever an instance of an I-METATEM rule
succeeds, it either expresses a desirable property or not. In the former case, some kind
of “positive” action may be undertaken; in the latter case, a repair action will in general
be required. We call the corresponding modification of the program an improvement
or remedial action. Program modification/evolution is accounted for by the EVOLP
semantics [2, 14].

We now extend the definition of contextual I-METATEM rules to specify a corre-
sponding improvement action.

Definition 7. Let A be an atom. An I-METATEM rule with improvement is a rule of the
form χ⇒ ϕ:A where χ⇒ ϕ is a contextual rule, and A is its improvement action.

Given a rule χ⇒ ϕ : A, whenever its monitoring condition χ⇒ ϕ holds, then the rule
is checked and the corresponding improvement actionA is attempted. The improvement
action is specified via an atom that is executed as an ordinary logic programming goal.
Consider again the previous example which monitors the achievement of goals, but
extended to specify that, in case of violation, the current level of commitment of the
agent to its objectives has to be increased. This can be specified as:

[goal(Goal), deadline(Goal ,T),now(T2),T2 ≤ T]⇒
G (¬ achieved(Goal) ∧ dropped(Goal)) : inc comt(T2)

incr comt(T2) ← commitment level(T ,L),
increase level(L,L2),
assert(not commitment level(T ,L)),
assert(commitment level(T2 ,L2))

266 Runtime Verification of Agent Properties

Suppose that at a certain time t the monitoring condition
G (¬ achieved(Goal) ∧ dropped(Goal))

holds for some specific goal g. Upon detection, the system will attempt the improvement
action consisting in executing the goal inc comt(t). Its execution will allow the system
to perform the specified run-time re-arrangement of the program that attempts to cope
with the unwanted situation: in the example, the module defining the rules that specify
the level of commitment to which the agent obeys is retracted and substituted by a new
one corresponding to a higher level.

Semantically, in our agent meta-model the execution of the improvement action
will determine the update of the current agent program Pi, returning a new agent pro-
gram Pi+1. The I-METATEM rules with improvements are to some extent similar to
METATEM rules, though here one does not state properties of the future but rather
specifies actions to be undertaken.

Based on this definition, we are able for instance to define rules that aim at detecting
various kinds of anomalous behavior of an agent (for a discussion of run-time anoma-
lies see, e.g., [20]). For example, we can introduce a rule for checking an unexpected
behavior such as omission, which occur whenever an agent fails to perform the desired
action/goal. The rule:

[goal(Goal),not achieved(Goal), dropped(Goal ,T3), confidence(G ,T3 ,C3)]⇒
G (confidence(G ,now ,C) ∧ C3 ≤ C) : re exec(Goal)

states how the agent has to behave in the case of a dropped goal. If, after dropping the
goal (because it has not been achieved in a given interval), the agent’s confidence in
being able to achieve the goal has increased, then the goal will be re-attempted.

To detect an anomalous behavior consisting of duplication or incoherence, i.e., an
agent performs more than once the same action/goal when not necessary, we introduce
the following rule:

[goal(Goal)]⇒ F̂0 times exec(Goal) > k : disable(Goal)

with the role of checking if a goal/plan has been executed more times than a given
threshold: if so, further execution of the goal will be disabled.

The following example outlines the so-called anomaly of intrusion, i.e., the case of
an unexpected behavior, or unwanted consequence, arisen from the execution of a goal.
Whenever the constraint defined below succeeds, as a repair a new constraint is asserted
establishing that G cannot be further pursued, at least until a certain time has elapsed.
As soon as asserted, the new constraint will start being checked.

[now(T), goal(Goal), executed(Goal), consequence(Goal ,C)]⇒ F̂0 ,T ¬desired(C) :
assert([now(T), threshold(T1)]⇒ N(T, T1) exec(Goal))

I-METATEM connectives can be used to check the past behavior and knowledge of
the agent but also to influence its future behavior. The agent evolution entails also an
evolution of recorded information, which in turn may affect the evaluation of social fac-
tors such as trust and confidence. Consider for instance the following example, where
the level of trust is increased for agents that have proved themselves reliable in com-
munication during a test interval. The increase of the level of trust is modeled as an

Stefania Costantini, Pierangelo Dell’Acqua, Luis Moniz Pereira and Panagiota
Tsintza

267

improvement. Notice that the improvement is determined based on recorded informa-
tion, that is, every agent that will pass the test will have its trust level increased as soon
as the rule with improvement is executed.

[agent(Ag),now(T)]⇒ G(m,n) reliable(Ag) : assert(rel ag(Ag, T))
rel ag(Ag ,T)⇒ true : increase trust level(Ag)

5 Related Work

In this section we discuss other related approaches to verification starting by those using
declarative programming.

Alberti et al [21] addressed the problem of verifying system’s specifications by us-
ing abductive logic programming. In particular, they proposed the SCIFF framework, an
abductive logic programming language and proof system for the specification and run-
time verification of interaction protocols. The authors developed an abductive proof-
procedure (called g-SCIFF) which is used to prove properties at design time and to gen-
erate counter-examples of properties that do not hold. g-SCIFF is proven to be sound
and complete with respect to its declarative semantics [21]. In [22] the g-SCIFF proof
procedure is proved to be a valid alternative to other verification methods by experi-
mentally comparing its performance with the one of some well-known model checker.
The SCIFF proof-procedure is based on the notion of events, for example, sending a
message or starting an action. Events are associated with time points. SCIFF uses in-
tegrity constraints ICs to model relations among events and expectations about events.
Expectations are abducibles identified by the functors E (for positive expectations) and
EN (for negative expectations). Events and time variables are constrained by ICs tak-
ing the form body ⇒ head . The body is a conjunction of happened events, expectations
and constraints, whereas the head is a disjunction of conjunctions of positive and neg-
ative expectations. For example, the rule H(a, T)⇒ E(b, T2) ∧ T2 ≤ T + 300 states
that if a occurs, then the event b should occur no later than 300 time units after a. The
SCIFF approach is related to our proposed approach in a number of ways. Most of
our interval temporal connectives can be simply expressed by SCIFF rules except for
example the until connective. Moreover, in our logic (as well as in METATEM logic)
temporal connectives can be composed in several ways with both temporal and logi-
cal connectives, while this is not possible with E and EN abducibles. For example,
E (a ∧ (EN (b, T), T2)) cannot be expressed.

McIlraith et al consider the problem of planning and monitoring in dynamic and
uncertain domains (cf. [23–25]). To address real world planning problems, they ex-
tend classical planning to incorporate procedural control knowledge and temporally
extended user preferences into the specification of the planning problem. These prefer-
ences are somewhat similar to the METATEM connectives. For example, if a preference
establishes eventually(ϕ), they want the planner to choose actions that will lead to the
satisfaction of ϕ. However, their approach substantially differs from our since we con-
sider intervals over METATEM formulae.

Bauer et al [26, 27] consider runtime verification for realtime systems emitting
events at dedicated time points. A logic suitable for expressing properties of such a

268 Runtime Verification of Agent Properties

system is timed lineartime temporal logic (TLTL), which is a timed variant of LTL
(originally introduced by Raskin in [28]). TLTL allows one to express typical bounded
response properties, for example requiring that an event a occurs within three time units.
Note that such a property can be expressed in LTL with then formula ϕ ≡ XXX a.
However, as discussed in [26], this formulation presumes a direct correspondence of
discrete time delays with incoming events (that is, every time point corresponds to an
incoming event). In contrast, what we want to express is that the event a occurs after
three time units regardless of how many other events occur in between. Following [29]
the authors consider an TLTL logic that is a timed variant of LTL, called LTLec. Its
syntax includes the two new atomic formulae: /a ∈ I and .a ∈ I . The first asserts that
the time since the event a has occurred the last time lies within then interval I . Analo-
gously, .a ∈ I asserts that the time until a occurs again lies within I . For example, the
formula:

G (request → .acknowledge ∈ [0, 5])

means that if a request event arrives, then it must be handled with an acknowledge event
within 5 time units. These formulae can be expressed in I-METATEM by means of its
temporal operators in time intervals. The formula above can be expressed as:

[now(T)]⇒ G(request ⇒ F0,T+5 acknowledge).

Thus, I-METATEM logic is at least as expressive as the TLTL logic. Our conjecture
is that the two logics have the same expressive power. For example, the I-METATEM
connective Um,n can be represented in TLTL as follows:

〈σ, i〉 ² ϕUm,n ψ (i ≤ m ≤ n)

≡
〈σ, i〉 ²

∨n
x=m(.ψ ∈ [x, x] ∧ Γ)

where:

Γ =

{
true if x− 1 < i∧x−1

y=i (.ϕ ∈ [y, y]) otherwise

6 Concluding Remarks

We have introduced an approach to the definition and the run-time verification of prop-
erties of agent behavior that has elements of novelty: in fact, we adopt a temporal logic
with connectives defined on intervals in order to define and verify the run-time be-
havior of agents evolution; we are able to undertake suitable repairing actions based
on the verification of properties and, as the underlying abstract agent model includes
meta-level(s), these actions may imply modifications to the agent’s knowledge base.

At the moment, the implementation of the approach has not been completed yet.
Thus, we do not make any claim on its performance and complexity. Future work in-
cludes a full implementation of the approach, the development of suitable case-studies
in significant application realms such as, e.g., ambient intelligence, and theoretical de-
velopments aimed at coping with challenging contexts, e.g., learning.

Stefania Costantini, Pierangelo Dell’Acqua, Luis Moniz Pereira and Panagiota
Tsintza

269

References

1. Costantini, S., Tocchio, A.: About declarative semantics of logic-based agent languages. In
Baldoni, M., Torroni, P., eds.: Declarative Agent Languages and Technologies. LNAI 3904.
106–123

2. Alferes, J.J., Brogi, A., Leite, J.A., Pereira, L.M.: Evolving logic programs. In: Logics in
Artificial Intelligence, Proc. of the 8th Europ. Conf., JELIA 2002. LNAI 2424, Springer-
Verlag, Berlin (2002) 50–61

3. Costantini, S., Tocchio, A., Toni, F., Tsintza, P.: A multi-layered general agent model. In:
AI*IA 2007: Artificial Intelligence and Human-Oriented Computing, 10th Congress of the
Italian Association for Artificial Intelligence. LNCS 4733, Springer-Verlag, Berlin (2007)

4. Costantini, S., Dell’Acqua, P., Pereira, L.M.: A multi-layer framework for evolving and
learning agents. In M. T. Cox, A.R., ed.: Proceedings of Metareasoning: Thinking about
thinking workshop at AAAI 2008, Chicago, USA. (2008)

5. Fisher, M., Bordini, R.H., Hirsch, B., Torroni, P.: Computational logics and agents: a road
map of current technologies and future trends. Computational Intelligence Journal 23(1)
(2007) 61–91

6. Clarke, E.M., Lerda, F.: Model checking: Software and beyond. Journal of Universal Com-
puter Science 13(5) (2007) 639–649

7. Barringer, H., Rydeheard, D., Gabbay, D.: A logical framework for monitoring and evolving
software components. In: TASE ’07: Proceedings of the First Joint IEEE/IFIP Symposium
on Theoretical Aspects of Software Engineering, Washington, DC, USA, IEEE Computer
Society (2007) 273–282

8. Barringer, H., Fisher, M., Gabbay, D., Gough, G., Owens, R.: MetateM: A framework for
programming in temporal logic. In: Proceedings of REX Workshop on Stepwise Refine-
ment of Distributed Systems: Models, Formalisms, Correctness. LNCS 430, Springer-Verlag
(1989)

9. Fisher, M.: Metatem: The story so far. In Bordini, R.H., Dastani, M., Dix, J., Fallah-
Seghrouchni, A.E., eds.: PROMAS. LNCS 3862, Springer (2005) 3–22

10. Costantini, S., Tocchio, A.: The DALI logic programming agent-oriented language. In:
Logics in Artificial Intelligence, Proc. of the 9th European Conference, Jelia 2004. LNAI
3229, Springer-Verlag, Berlin (2004)

11. Apt, K.R., Bol, R.: Logic programming and negation: A survey. The Journal of Logic
Programming 19-20 (1994) 9–71

12. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Logic
Programming, Proc. of the Fifth Joint Int. Conf. and Symposium, MIT Press (1988) 1070–
1080

13. Barklund, J., Dell’Acqua, P., Costantini, S., Lanzarone, G.A.: Reflection principles in com-
putational logic. J. of Logic and Computation 10(6) (2000) 743–786

14. J.Alferes, J., Brogi, A., Leite, J.A., Pereira, L.M.: An evolvable rule-based e-mail agent. In:
Procs. of the 11th Portuguese Intl.Conf. on Artificial Intelligence (EPIA’03). LNAI 2902,
Springer-Verlag, Berlin (2003) 394–408

15. Bracciali, A., Demetriou, N., Endriss, U., Kakas, A., Lu, W., Mancarella, P., Sadri, F., Stathis,
K., Terreni, G., Toni, F.: The KGP model of agency: Computational model and prototype
implementation. In: Global Computing: IST/FET International Workshop, Revised Selected
Papers. LNAI 3267. Springer-Verlag, Berlin (2005) 340–367

16. Kakas, A.C., Mancarella, P., Sadri, F., Stathis, K., Toni, F.: The KGP model of agency. In:
Proc. ECAI-2004. (2004)

17. Stathis, K., Toni, F.: Ambient Intelligence using KGP Agents. In Markopoulos, P., Eggen, B.,
Aarts, E.H.L., Crowley, J.L., eds.: Proceedings of the 2nd European Symposium for Ambient
Intelligence (EUSAI 2004). LNCS 3295, Springer Verlag (2004) 351–362

270 Runtime Verification of Agent Properties

18. Tocchio, A.: Multi-Agent systems in computational logic. PhD thesis, Dipartimento di
Informatica, Università degli Studi di L’Aquila (2005)

19. Costantini, S., Tocchio, A.: A logic programming language for multi-agent systems. In:
Logics in Artificial Intelligence, Proc. of the 8th Europ. Conf.,JELIA 2002. LNAI 2424,
Springer-Verlag, Berlin (2002)

20. Costantini, S., Tocchio, A.: Memory-driven dynamic behavior checking in logical agents.
In: Electr. Proc. of CILC’06, Italian Conference of Computational Logic. (2006) URL:
http://cilc2006.di.uniba.it/programma.html.

21. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Verifiable agent
interaction in abductive logic programming: The SCIFF framework. ACM Trans. Comput.
Log. 9(4) (2008)

22. Montali, M., Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Veri-
fication from declarative specifications using logic programming. In Banda, M.G.D.L., Pon-
telli, E., eds.: 24th Int. Conf. on Logic Programming (ICLP). LNCS 5366, Udine, Italy,
Springer Verlag (December 2008) 440–454

23. Baier, J., Bacchus, F., McIlraith, S.: A heuristic search approach to planning with temporally
extended preferences. In: Proc. 20th Int. J. Conf. on Artificial Intelligence (IJCAI-07). (2007)
1808–1815

24. Baier, J.A., Fritz, C., Bienvenu, M., McIlraith, S.: Beyond classical planning: Procedural
control knowledge and preferences in state-of-the-art planners. In: Proc. 23rd AAAI Conf.
on Artificial Intelligence (AAAI), Nectar Track. (2008) 1509–1512

25. Fritz, C., McIlraith, S.A.: Monitoring policy execution. In: Proc. 3rd Workshop on Planning
and Plan Execution for Real-World Systems. (2007) (at ICAPS07).

26. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL. Techni-
cal Report TUM-I0724, Institut für Informatik, Technische Universität München (December
2007)

27. Bauer, A., Leucker, M., Schallhart, C.: Monitoring of real-time properties. In Arun-Kumar,
S., Garg, N., eds.: Proc. 26th Conf. on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS). LNCS 4337, Berlin, Heidelberg, Springer-Verlag (2006)

28. Raskin, J.F.: Logics, Automata and Classical Theories for Deciding Real Time. PhD thesis,
Institut d’Informatique, FUNDP, Namur, Belgium (1999)

29. D’Souza, D.: A logical characterisation of event clock automata. Int. J. Found. Comput. Sci.
14(4) (2003) 625–640

Stefania Costantini, Pierangelo Dell’Acqua, Luis Moniz Pereira and Panagiota
Tsintza

271

