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Abstract

Industrial furnaces consume large amounts of energy and their operating
points have a major influence on the quality of the final product. Design-
ing a tool that analyzes the combustion process, fluid mechanics and heat
transfer and assists the energy audit work is then of the most importance.

This work proposes a hybrid composite model for such a tool, having,
as its base, two white-box models, namely a detailed Computational Fluid
Dynamics (CFD) model and a simplified Reduced-Order (RO) model,
plus a black-box model developed using Artificial Neural Networks. The
preliminary results presented in this paper show that this composite model
is able to improve the accuracy of the RO model without having the high
computational load of the CFD model.

1 Introduction

Industrial furnaces are important heating equipment. They have a major
influence on the quality of the final product and consume large amounts
of energy. The objective of this work is to develop a tool that analyzes
the combustion process, fluid mechanics and heat transfer and assists the
work done by energy auditors in the data analysis and the definition of
measures for improving energy efficiency. This tool should have a high
degree of accuracy without a high computational cost and be able to be
applied to a variety of furnace geometries.

This paper presents a preliminary work carried out under the "Au-
dit Furnace" project and is part of the prototype development of such a
tool. Primarily, two physics based models were built up for a specific bil-
let heating furnace [2]: a detailed Computational Fluid Dynamics (CFD)
model and a simplified Reduced-Order (RO) model. These two white-
box models constitute the base to build a black-box model developed us-
ing Machine Learning (ML) techniques. The main goal of such a hybrid
model is to further improve the accuracy of the RO model without the
computational cost of the CDF one. Since the acquisition of sufficient
furnace functioning points was not possible, the data generated by a vali-
dated CFD model was used as ground truth to train the ML model.

This work, which uses Artificial Neural Networks as the ML tech-
nique, follows the one presented in [4].

2 White-box models

Large industrial process heating furnaces are complex systems designed
to deliver heat to loads for many distinct processes. They are critical for
the final product quality and should run efficiently so that energy usage
and operation costs are kept the lowest possible.

Computational Fluid Dynamics model. Although using CFD models
to simulate furnaces is the approach that provides the most detailed in-
formation, it includes complex tasks, such as constructing a spatial dis-
cretization grid, and the computational cost is large. Additionally, due to
the diversity of processes and raw materials processed, the types of fur-
naces are numerous. Therefore, there is no universal model and the CFD
models must be adapted to each furnace to closely represent the physical
and chemical phenomena that take place.

The CFD model implemented aims at modelling an industrial furnace
that heats metal billets using liquefied propane gas as fuel. Its description
can be found in [2]. The 3-D, steady, differential, ensemble averaged
transport equations of mass, momentum, energy, and mass of chemical
species were numerically solved using the commercial software Fluent
v19.0 [1] and the model was validated against experimental data [3].

Since the CFD simulations of the complete furnace took too much
time (around 300 h each), the model presented in this paper was developed
to simulate only one furnace section.

Reduced Order model. Reduced Order models do not consider all the
details and complexity of the physical phenomena involved, but keep an
acceptable accuracy regarding the overall energy and mass balances. They
are based on physical principles and laws and constitute simplified mod-
els usually with extremely light computational load when compared with
CFD models. This gives them much faster response times, these models
being, also, more simple to build, at the expense of a decrease in the ac-
curacy. In this work, the developed RO model is based on the division of
the furnace into a relatively small number of zones and on solving energy
and mass balances for each of these zones.

3 Grey-box model

The proposed model gets data from the CFD and RO models and uses a
Machine Learning approach to further increase RO model accuracy, mak-
ing the new model closer to the CFD one. Thus, the approach can be seen
as a composite model of black-box and white-box models, consisting of
the RO generated output along with an adjustment generated by the ML
model. This grey-box composite model aims at being a trade-off between
the high complexity/more accurate CFD model and the much simpler/less
accurate RO model. Figure 1 presents this grey-box model composed by
the RO and ML models along with the CFD and RO only models.

Figure 1: CFD, RO and grey-box (composed by the RO and ML) models.

The training phase of ML approaches should have a large amount of
data and this data must be representative of all relevant situations of the
system. As such, it should include a diversity of operating regimes, as
well as, furnace characteristics. As already mentioned, we propose to
use the data generated by the detailed CFD model for training, aiming
to overcome the difficulty of obtaining real data from industrial furnaces
covering all the relevant situations (operation regimes and furnaces char-
acteristics). We are aware that the number of CFD simulations used could
still not be enough to develop an accurate and sound model.

The ML model. Artificial Neural Networks (ANN) is a ML algorithm
inspired by the human brain. It can be used in classification or regression
problems and can be very memory and CPU intensive because of matrix
multiplications and storage of weights, especially in deep neural networks
where there are more than one hidden layer.

A grid search algorithm was used to find the best combination of the
ANN hyper-parameters. One hidden layer was established to lighten the
computational load and the considered range for the parameters was: neu-
rons={3,5,7,9}, epochs={100,150,200}, batch size={5,10,20} activation
function={"elu","relu"}, and optimizer={"sgd","adam"}.

Using 80% of the dataset and a 10 fold cross-validation procedure,
the optimal combination of hyper-parameters (for both architectures) was
found to be 9 neurons, 200 epochs, batch size=5, "relu" activation func-
tion and "adam" optimizer.
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4 Experiments and Results

Dataset. As previously mentioned, the data used to build the ML model
was generated by the validated CFD model for one section of a specific
furnace used in the metal industry.

The exhaust combustion gas temperature downstream, named TGO, is
one of the ten chosen continuous variables generated by the CFD model;
This variable is considered the dependent variable of the ML model (out-
put variable), while the other eight variables behave as input of the model.
These variables are also available to be used by the RO model. Besides
these CFD variables, the ML approach also uses variables generated by
the RO model. Thus, the generated dataset includes thirteen continuous
variables used as input plus one variable to be predicted. Since variables
have different scales, all were normalized to the interval [0,1]. The input
variables are presented in Table 1.

Name Meaning Source
SurplusAir Excess air CFD
T_IN Temperature at burner inlets CFD
M1_IN Mass flow rate at burner inlets CFD
T_ WG_UP Flue gas temperature CFD
M1_WG_UP Flue gas mass flow rate CFD
T_BILL Billet inlet temperature CFD
DTB Variation of billet temperature CFD
M1_WG Combustion gas mass flow rate CFD
FUEL_V Flow rate of fuel in the burners RO
AIR_V Flow rate of air in the burners RO
M_BILL Billet mass flow rate RO
TGI Combustion gas inlet temperature RO
TBO Billet output temperature RO

Table 1: Continuous variables used as input for the ML model.

Other variables generated by the CFD and RO models were also con-
sidered but discarded after analysing their interdependence.

A total of 100 pairs input-output (that correspond to different furnace
working settings) were generated by the CFD and the input values of the
RO model were adjusted to the CFD inputs in order for both outputs to be
comparable.

Experiments. The proposed method was tested according to two dif-
ferent architectures: (a) RO+NN, where the estimated exhaust combus-
tion gas temperature from the RO model is added to the NN output; (b)
RO2NN, where the estimated exhaust combustion gas temperature from
the RO model is used as an input variable to the NN.

In the first proposed architecture, RO+NN, the ANN aims at predict-
ing the difference between the RO model output and the CFD output (the
RO model prediction error). This difference enables the adjustment of
the RO model output to a value closer to the CFD output. In the second
case, RO2NN, the ANN receives as input, the estimated exhaust combus-
tion gas temperature (TGO) from the RO model, besides the remaining
fourteen attributes, and directly aims at predicting the TGO value given
by the CFD model.

Results. To evaluate the ANN prediction power two measures were
used: the root mean square error (RMSE) and the mean absolute percent-
age error (MAPE). Table 2 presents the results obtained for both evalua-
tion measures1 and proposed architectures; the first column presents the
results given by the RO model. As can be seen, when compared to the RO
model, a grey-box model (for any of the proposed architectures) signifi-
cantly reduces the error to less than one third in both mesasures. On the
other hand, the errors obtained with both RO+NN and RO2NN architec-
tures are similar.

Measures RO model RO+NN RO2NN
RMSE 144.73 41.55 41.23

MAPE (%) 12.24 3.77 3.23

Table 2: RMSE and MAPE results of the different models.

1Note that while MSE and RMSE are calculated over absolute differences, MAPE is a nor-
malized measure.

Figure 2 presents, for each test example, the RO2NN model data
points: the difference of the TGO predicted value to the actual one (the
CFD output). For the 20 points (with TGO values varying between around
750 and 1050 K), 4 have a difference higher than 50, and 12 have a dif-
ference less than 25.

Figure 2: RO2NN TGO predicted values vs. actual ones for the test set.

The RO+NN model presents similar results (8 points with a difference
less than 25). Given the similarity, it is difficult to argue which architec-
ture is better able to predict values closer to the real ones. New findings
should emerge with a bigger dataset.

5 Conclusions and Future Work

Although the presented work is still a work in progress and being aware
that the amount of data used to build the model is not enough, these exper-
iments seem to demonstrate the effectiveness of the approach. The results
show that the proposed ML approach based on ANN is adequate to help
on the mathematical models built for energy audits. It also demonstrates
that physically based RO models complemented with black-box models
can generate a composite model with increased accuracy while keeping a
low computational running load.

We should also note that this strategy with CFD generated data helps
to overcome the difficulty of obtaining rich experimental data from indus-
trial furnaces.

In order to support these conclusions, we intend, as future work, to
test this approach using more CFD simulations and other furnaces. These
will increase and enrich the dataset and enable the development of more
accurate models applicable also to different furnaces. Also, we intend to
apply genetic algorithms to better fine tune the ANN hyper parameters.
Moreover, the proposed model will be incorporated into a computer tool
that will allow a rapid analysis of furnaces in the scope of energy audits.
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