Semantics of normal logic programs with
embedded implications

Fernando Orejas’ Edelmira Pasarella!-? Elvira Pino'

Abstract

The aim of our work is the definition of a model-theoretic semantics of nor-
mal logic programs with embedded implications. We first propose a quite sim-
ple operational semantics for this class of programs whose negation mechanism
is the constructive negation. This semantics is used to prove the adequacy of
the model-theoretic semantics. Then we define a declarative semantics for this
class of programs in terms of Beth models and show that in the model class
associated to every program there is a least model that can be seen as the
semantics of the program, which may be built upwards as the least fixpoint of
a continuous immediate consequence operator. Finally, it is proved that the
operational semantics is sound and complete with respect to the least fixpoint
semantics.

1 Introduction

There are two main approaches to decompose large logic programs into manage-
able units [2]. On the one hand, different kinds of modular units, similar to the
module notions existing in other programming paradigms, have been proposed and
studied together with the corresponding composition operations. This kind of mod-
ularization can be considered “external” to the logic programming paradigm, since
it is based on the use of constructions which are, to a certain extent, independent
of any programming formalism [10]. Conversely, the second approach provides a
structuring mechanism in terms of a logical connective. In particular, this approach
originated in the work of Miller [9]. The idea is that intuitionistic implication may
be used to structure a logic program into blocks, as it is done in imperative pro-
gramming languages. For more details on the use of this connective the reader may
look, for instance, at [2].

Providing semantics to normal logic programming units is, in general, a difficult
task, due to the non-monotonic nature of negation that hinders the definition of
a compositional semantics. Nevertheless, a certain amount of work has been done

'Dpto de L.S.I., Universidad Politécnica de Catalunya,Campus Nord, Modul C6, Jordi Girona
1-3, 08034 Barcelona, Spain, email: {pino,orejas}@Ilsi.upc.es

?Dpto de Computacién y Tecnologia de la Informacién, Universidad Simén Bolivar, Aptdo
Postal 89000, Caracas 1089, Venezuela, email: edelmira@Isi.upc.es

Arria-uLr-ronuvpon 2001

for defining the semantics of normal logic program modules according to the first
approach mentioned above (see, e.g., [6, 4]). This is not quite true for the second
approach. To our knowledge, only [1] and [7] consider this case. The reason for this
lack of work is, probably, the apparent difficulty in mixing two semantically very
different connectives such as negation and intuitionistic implication. Intuitionistic
connectives seem to ask for intuitionistic models, like Kripke or Beth models, while
negation seems to ask for some kind of 3-valued models. The semantics presented in
[1] and [7] is defined in terms of some sort of Kripke models. The results presented in
[1] are very restrictive. Only the case of negation as failure is considered, programs
must be stratified and signatures may only contain predicate symbols, i.e. function
symbols are not allowed. The work presented in [7] also deals with negation as
failure, but the other restrictions are not present. In addition, we found the model-
theoretic semantics quite ad-hoc. The kind of Kripke models used are not really
intuitionistic: first, the interpretation associated to a given world is a three-valued
structure and, second and more importantly, the order relation between worlds is not
monotonic, in contrast with the intuition underlying intuitionistic Kripke models.
This means that if an atom is satisfied by the interpretation associated to a given
world, then it may not be satisfied by the interpretation associated to a greater
world.

In [8] we defined a new declarative compositional semantics for a general class
of normal logic program units, in terms of a class of models that we called ranked.
As we pointed out in that paper, ranked models are, intuitively, quite close to Beth
models. This lead us to think that both connectives could have a natural and
reasonably simple semantics in terms of intuitionistic (Beth) models. Moreover,
this semantics would make more explicit the intuitionistic nature of negation in
logic programming already pointed out by other authors (e.g. [12]). In this paper
we follow these ideas. We first propose a quite simple operational semantics for this
class of programs whose negation mechanism is the constructive negation [3, 5, 13].
This semantics is used to prove the adequacy of the model-theoretic semantics. Then
we define a declarative semantics for this class of programs in terms of Beth models
and show that in the model class associated to every program there is a least model
that can be seen as the semantics of the program, which may be built upwards as
the least fixpoint of a continuous immediate consequence operator. Finally, it is
proved that the operational semantics is sound and complete with respect to the
least fixpoint semantics.

This paper is organized as follows. In the following section we present some ba-
sic concepts and notation used in the paper. Section 3 introduces the operational
semantics of our programs. Section 4 defines the Beth models used in the paper
and their associated forcing relation. The next section introduces the immediate
consequence operator showing that it is monotonic and continuous. Section 6, de-
fines an ordering relation on the class of models of a program and shows that the
least model coincides with the least fixpoint of the immediate consequence operator.
Finally, in Section 7, the operational semantics is proved to be sound and complete
with respect to the least model semantics.

Semantics of normal logic programs with embedded implications

2 Preliminaries

A countable signature ¥ consists of a pair of sets (F Sy, PSy) of function and pred-
icate symbols with some associated arity. Terms, atoms or first order formulas
built by using functions and/or predicates from ¥ and, also, variables from a fixed
countable set X of variable symbols are called ¥-terms, Y-atoms and Y-formulas,
respectively. The Herbrand universe, denoted by Hsy, is the set of all ground X-
terms constructed by using Y-functions. Terms are denoted by ¢.s,..., predicate
symbols by p, q, ... and function symbols by f,g,.... Letters a,b denote atoms and
the character / is used for literals. A formula whose subterms are variables is called
a flat formula. ¢©" and ¢ are the universal and existential closure of o, respectively.
The logical constants are denoted by t and £. Programs are denoted by using the
letters P and (). In general, subscripts and superscripts will be used if needed and
a bar is used to denote (finite) sequences of objects. Normal logic programs with
embedded implications over a signature ¥ are finite sets of clauses a : — Gy, ..., Gy,
where a is a Y-atom and Vi € {1,... ,k}, G; is an intuitionistic L-literal, that is,
either a X-literal, b or —b, where b is a Y-atom; or an intuitionistic X -expression,
P, O G, where P; is a Y-program and G’ is an intuitionistic X-literal. The idea
behind this kind of goals is that, when evaluating G, one may use the definitions in
P; as auxiliary local definitions (in addition to other global definitions in the given
program). Clauses whose head is empty correspond to goals of this class of language,
called intuitionistic ¥ -goals.

Free variables in a clause are assumed to be implicitly quantified universally. This
means that the scope of a variable is the clause where it is defined. In particular,
given the goal {p(z).} D p(f(z)), x in p(x) is not considered to be bound to z in
p(f(z)) and, as a consequence, the goal should succeed.

We consider that clauses are written following the structure of constraint nor-
mal clauses with flat head. That is, p(¢i,...,t,) : — Gi,..., Gk is written as the
constrained clause p(zy,...,2,) :— Gy,...,Groxy = t1,..., 2, =,

Moreover, we suppose that the identical tuple x4,...,xz, of fresh variables occurs
in all clauses (in a program) with predicate p in its heads. Also, just to simplify,
clauses of the form a : — ot are written as a.

The set of definitions of a predicate p in a program P is defined as usual:

Def(P,p) = {p(z) :— G ac* € P}

Constraints occurring in programs are equality Y-constraints, that is, arbitrary first
order ¥-formulas in which the only relational symbol occurring in atoms is the
equality (formulas composing equality atoms with the connectives =, A, V, —, and
the quantifiers ¥, 3). Constraints are denoted by using the letters ¢ and d (possibly
with sub or super-scripts). We will handle constraints in a logical way, using logical
consequence of the free equality theory, FETy, (see, e.g., [12]).

A constraint ¢ is satisfiable (resp. unsatisfiable) if, and only if, FETs |= ¢ (resp.
FETs = —(c¥)); a constraint d is less general than c if, and only if, FETs, = (d —
¢)¥. A ground substitution T = ¥ (where #; are closed terms) is called a solution of
a constraint c if, and only if, FETs = (T =1 — ¢)¥.

Arria-uLr-ronuvpon 2001

A constrained Y-atom is a pair p(Z)oc(Z), where p € PSy and ¢(7) is a satisfiable
Y-constraint. The set of all the constrained ¥-atoms is denoted Lx(X).

3 Operational semantics

In this section we introduce an operational semantics for the class of normal logic
programs with embedded implication. This semantics is presented in terms of a
derivation relation over sequents of the form P F Goc, where P is a Y-program
and : — Goc is a Y-goal. It may be noted that our semantics is very simple, but
not very useful for practical purposes, since it is too non-deterministic to be directly
implemented. Its main aim is to show the adequacy of the model-theoretic semantics
defined below. In particular, our treatment of negation can be seen as a more
abstract and simple variation of [3, 5, 13]. Instead, we could have introduced an
operational semantics closer to implementation. For instance, a variation of the
BCN semantics [11]. However, the proofs for the main results of this paper would
have been slightly more complex.
The following mutually recursive definitions establish our semantics.

Definition 1 Let P be a S-program and : — Goc a S-goal. P+ Goc can be proved
with computed answer ¢ if and only if there exists a finite derivation of P F Gac,
that is, P = Goc ~ P F od, n > 0, FETs = ¢ where ~» corresponds to n
applications (derivation steps) of the relation ~> over sequents.

Definition 2 The derivation relation ~ over sequents is defined as follows:

1. P+ Gi,p(T),Goc ~ P+ Gi,G,Gyoc A d if there exists a (renamed apart)
clause p(T) : — God € Def(P,p) and FETs |= (c A d)?

2. P+ Gy,—p(T),Gyoc ~ P+ Gy,Gync if for every (renamed apart) clause
p(Z) : — G1,...,Gnod there exists J C {1,...,m} such that ¥Vj € J : P I
=Gjod can be proved with computed answer d; and FETs, = (¢ — —dV
Vjejdj)v'

3. P+ Gi,Q O G,Gyoc ~ P F Gy,Gyoc if PUQ F Goe can be proved with

computed answer c.

4. PFG,—(Q D G),Gyoc ~ P+ Gy,Gync if PUQ F —~Goc can be proved with

computed answer c.

We assume that whenever a constrained ¥-atom ——aoc occurs in the right part
of a sequent, it denotes aoc.

Example 3 Given the programs P = {p(z) : — p(z)ox = a,q(z) : — ox = a} and
Q= {r:—p(z),~q()}
PFQ D —r~ PF ot because (def. 2.3):
PU@QF-r~ PUQF ot (def. 2.2)
PUQF —p(z)~ PUQF oz +#a (def. 2.2) and
PUQFgqg(z)~ PUQlFox=a (def 2.1)
and FETs = (t wz#aVz=a)"

Semantics of normal logic programs with embedded implications

4 Model theory semantics

In this section, we introduce a class of Beth models, and an associated forcing
relation, to define the semantics of our programs. Beth models and Kripke models
are based on a similar intuition [14]. Both kinds of models are defined as a family
of logical structures, where each structure, (corresponding to a world) denotes the
amount of knowledge one has at a certain moment. Worlds are (partially) ordered,
where the ordering relation denotes the increase of knowledge. In these models a
forcing relation plays the role of satisfaction. Forcing is defined for each world and
defines what one can expect to be true in the given world. The key difference between
Kripke and Beth models is in the definition of the forcing relation. In Kripke models
an atomic formula is forced in a world w if it is satisfied by the associated structure.
In Beth models, an atomic formula is forced in w if we may be sure that it will be
satisfied in the future. This is formalized saying that the formula is satisfied by all
the structures in a bar for that world. Where a bar for w is a set of worlds such that
any increasing sequence of worlds starting in w would contain a world in the bar.

In our case, worlds are pairs (P, L), where P is a program and L is a set of
constrained atoms. The structure associated to a world is also represented (as a
variation of Herbrand structures) as a set of constrained atoms. The intuition is
that for a given world (P, L), assuming that the given program includes all the
clauses in P, we know that the atoms in L are false and the ones in the associated
structure are true. Worlds can be seen as stages in computation, where additional
computation provides additional knowledge. The idea is that the atoms in L, for a
world (P, L), should be supported by the given program and by the knowledge in
the previous worlds. In this context, forcing should be defined like for Beth models:
an atomic formula is forced in a world if it will hold in the future.

Example 4 To illustrate the ideas above, given P = {p : — =q,q : — —r,s : — =p},
a model for P may include, for instance, the worlds: (4,0),(0,{r}), (0, {p,r}) with
the associated structures (0), ({q}), ({q, s}) In this model, the world (0, {r}) together
with its associated structure {q} represent that, at certain stage, we may know that
q 1s true but r is not. The fact that the program in these worlds is empty means
that we may have this knowledge without assuming that we have additional clauses
(others than the ones in P). However, we may consider that the atom s is forced in
this world, because it holds in the following (larger) world.

Definition 5 A Y-world w is a pair (P, L,) where P, is a Y-program up to vari-
able renaming and L, C Ls(X). The set of all Z-worlds is denoted Wy. A X-
structure is a 3-tuple B = (W, =, 1), where W C Wy and

1. For every Y-program P, (P,0) € W

2. = s a partial order on W, such that Vv,w € W : v =< w tf, and only if,
P, =P, and L, C L,,. The strict order associated to < is denoted <.

3. The interpretation function I : W — 22X satisfies the following properties:

(a) Vv € W, toc € I(v) if FETs |= 3

Arria-uLr-ronuvpon 2001

(b) (Monotonicity) Yv,w € W, if v < w then I(v) C I(w)

The collection of the all E-structures defined in this way is denoted Struct(X).
In addition, we consider that, Vo € W, the sets of constrained atoms L,, and I(w)
are closed under renaming of variables, disjunction of constraints and less general
constraints. Also, B(P) = (W(P),=,I(P)) corresponds to the ordered structure
associated to P occurring in B such that W(P) = {w € W | (P,0) < w} and
I(P) = {I(w) | w € W(P)}.

For simplicity, we will assume the following notational conventions: ¢oc € (I(w),
L,) means aoc € I(w) if { = a, and aoc € L, if £ = —a. Conversely, we write
—loc € (I(w), L,) to denote aoc € L, if { = a, and aoc € I(w) if { = —a.

Definition 6 (forcing) Let B = (W, =<,1) be a Z-structure. We say that B C W
s @ bar w.r.t. a world v € W iff for each <-increasing chain of worlds vy, vy,... in
W such that vg = v, there exists k > 0 and w € B such that vy = w = vgpry. The
bar B is strict iff Vo,w € B, v A w and w A v. Then, the forcing relation I, on a
Y-structure B 1s inductively defined for every world as follows. Let v € W:

1. For all satisfiable constraints ¢ and d: v,B It cod, iff I(v) = (¢ A d)3.

2. v,B Ik loc, iff there exists a bar B C W with respect to v such that for all
w € B : loc € (Ig(w), Ly).

3. v,BIFGy,Gyoc iff v,BIF Gioc, v, B IF Gyoc.

4. v,BIF =(Gy,...,Gn)oc iff v,BIF =Gjoc; for some 5 € J C {1,...,m} and
FETE |: (C — VjEJ Cj)v.

5. v,B I+ P D Goc iff there exists a satisfiable constraint ¢, FETs = (¢ — ¢)¥
such that (P, U P,0), B IF Gaoc

6. v,B Ik =(P D Guc) iff there exists a satisfiable constraint ¢/, FETs = (¢ —
c)¥ such that (P, U P,0), B IF =Goc

7. v,BIF p(T) : — God iff Vw = v if w, B Ik God then w, B IF p(T)od.

A program P can be seen as an intuitionistic theory. As a consequence, one could
just define the class of models defined by P as the subclass of all the structures such
that P is forced by the world (0,0) (or, perhaps, by the world (P,0)). However,
this i1s not satisfactory for our purposes. Many models in that class would not agree
with the computational interpretation of our models discussed above. According to
the definition below, a structure is a model of a program P if two conditions are
satisfied. The first one is that the structure associated to a world (P’, L) should
satisfy all the consequences that could be computed from the clauses in P and in P’
and the negative information in L. The second condition states that the negative
information, L, in a world (P’, L) must be supported by the clauses in P and in P’
and the information included in previous worlds.

Now, in order to formalize these intuitions we will define a notion of local forcing,
which can be seen as a kind of local satisfaction on a given world. There are two

Semantics of normal logic programs with embedded implications

key ideas in this definition. The first one is to consider that a positive literal ¢ is
locally forced in a world w if £ is in the interpretation of w, and a negative literal
¢ is locally forced in w = (P, L) if £ is in L. The second idea is to consider that a
formula P" D £ is locally forced in a world w = (P, L) if £ is locally forced in a bar
for the world (P U P’,() consisting of worlds (P U P’,L') where L’ is included in
L. This means that in L we have enough negative information to compute £. The
extension to other kind of formulas is the obvious one.

Definition 7 (Local forcing) The local forcing relation, Ik, on a X-structure B =
(W, <, 1) is inductively defined for every world as follows. Let v € W, then:

b~

. v, Bk lac iff boc € (I(v), Ly,).

2. v,BlF P' O ... D P" D loc iff there exists a satisfiable constraint ¢, FETs |=
(¢ — ¢)¥ and there ezists a bar B w.r.t. (P, UP'U...U P" Q) such that
Vo' € B, L,y C L, and loc’ € (I(v'), Ly).

3. v,BlF=(P'D>...DP" D lociffv,BIF P'D...D P" D —loc.
4. v,B Ik Gy, Gonc iff v, BIF Gioc, v, B Ik Gsoe.

5. v,BIF p(z) : — God iff Vw = v if w, B I+ Gad then w, B Ik p(T)od.
The relation I is included in IF, i.e. if v, B IF; Gac then v, B IF Gac.

Definition 8 (Models) B € Struct(X) is a model of P, written B |=4 P, if, and
only if, Vw € Wy, the following two conditions hold:

1. Vp(z) :—God € PU P, : w,B b p(T) : — God

2. Supported worlds: if poc € Ly, then Vp(T) : — G1,...,Gpod € Def(P U Py, p),
there exist satisfiable constraints {d;}jes, J C {1,...,m} such that Vj € J
Jv € WB, v <w with U,B H‘l _|G]‘|:|Clj and FETE |: (C — =dV VjEJ d]‘)v.

For every program P, we define Mod(P) as the class of all its models.

Example 9 Consider the program P = {r:—{p:— —q} D s, s : —p}. A model of
P could include any of the structures By or By described below, where the sets at the
right hand side of the worlds in By or By denote their interpretation.

(@, {p, q, s}){r}
(@, {gD){p, &, r}
By = (@, {p, a}){r} ({p:—= =g}, {at){p, r &} By = |
(8,0){p, s, 7} ({p:—= =4}, 0){p, ¢, r s}
(8,0)0 ({p:— =g}, 0)0

Arria-uLr-ronuvpon 2001

5 Least fixpoint semantics

In this section, we define an immediate consequence operator Tp that can be used,
as usual, to build (bottom-up) a least fixpoint of the operator, which is shown to be
a model of the given program P. This fixpoint will be shown to be the least model
in Mod(P), with respect to an ordering that will be defined in the following section.
Moreover, the operational semantics defined above will be shown to be sound and
complete with respect to that model. However, Tp is not defined on all ¥-structures
as one would expect, since the class Struct(X) includes some structures that are
not constructive. Instead, Tp is defined on the subclass of Noetherian ¥-structures,
which is enough for our purposes. In particular, we show that our operator is
monotonic and continuous for this subclass.

Although the definition of Tp may look complex, the intuition is quite simple.
Given a Y-structure A, Tp(A), on one hand, for every world (P’, L) in A, Tp builds
a new world, and the corresponding interpretation, where all the immediate negative
consequences (w.r.t. the information we have at this point and the clauses in P and
P') are added to L and all the immediate positive consequences are added to its
interpretation. On the other hand, additional worlds can be added including the
negative information that is supported by the existing worlds in A. The interpreta-
tion of these additional worlds just includes the positive information that we have
at this point.

Definition 10 For all A € Struct(X), Tp(A) = (Wrp(ay, =2 Ip(ay) is the structure
in Struct(X) defined as follows for every L-program P':

1. Wrpay(P') = {tp(v) | v € Wa(P')} U{Succp:/(v)|v is mazimal in Wa(P')}
where tpi(v) = (P, Ly,) and Succp/(v) = (P’ Loy, (v)) are defined as
follows for every v € Wy,

L,y = {poc| forall p(Z):—G4,...,Gpod € PU P,
there exist satisfiable constraints {d;};cs, and
for every 3 € J C {1, oo, ml,
v’ € W4 (P') with v' < v such that
V', Ak =Gjed;, and FETs | (e = =dV Vo, d 7}

Lsucepi(wy = {poc| for all p(Z):—Gy,...,Gpod € PU P,
there exist satisfiable constraints {d;};cs, and
for every 5 € J C{1,...,m},
v, AlF =G odj, and FETE F(c—=dV Ve, d 7}

2. Itpa

P

is defined as follows. If w € tp/(W(P')):

I, a4)(w) ={poc| there is {p(T) .~ G'udk |1<k<n}CPUP, and
Vi, 1 <k <n,3v € Wu(P'), w=tp(v) such that
v, AlF; G'od* and FETs |= (c — \/7_, d*)¥}

Semantics of normal logic programs with embedded implications

If we Succp (Wa(P')), Itpay(w) = {poc€ It ay(w') | w' Sw}.

Example 11 Let us see the construction of the least fizrpoint of the program P given
in example 9. The bottom X-structure is just a structure where, for every program
P', we just have a world (P',0)) whose interpretation is the empty set of atoms.
Then, the least fizpoint is Tp(L):

(0, {p, q,5})0
(@, {p,q})0 ({p:— g}, {q})0 |
Tp(l) = T3(1) = (@, {p,q})0 ({p: =g}, {aD) {r}
(0,0)0 ({p:——q},0)0 | |
(8,0)0 ({p:— g}, 0)0
(0, {p, qu s {r} (@, {p, qu s {r}
TE(1) = { (@, {p,lq}){r} ({p:— ﬂq}l,{q}){py s} } TA(L) = { (@, {p, a1 {r} ({p: =g}, {a}){p, 7, s} }
(0,0)0 ({p:——q},0)0 (0,0)0 ({p:— g}, 0)0

Y-structures can be ordered according to the amount of information they contain.
In particular, given two structures A and B, we consider that A <p B if there is some
mapping from the worlds in A to the worlds in B such that the positive and negative
information in a world w in A is included in the positive and negative information
of the corresponding worlds in B. In general, this mapping may associate to each w
in A, not just a world in B, but a set of worlds. In addition, we ask this mapping to
be downward surjective, which means that the worlds in A are surjectively mapped
into a prefix of the set of worlds in B.

Definition 12 For all A and B € Struct(X), A <g B if, and only if, for every
S-program P, there exists a map fp : Wa(P) — 2V8(P) which is:

i) Monotonic: Yw € W4(P)Vv € fp(w),w < v and I4(w) C Ig(v), and

ii) Downward surjective: Yw € W4(P)Vw' € Wg(P) such that Vv € fp(w),w’ < v
then Fw"” € W4(P) with w" < w and w' € fp(w").

Remark 13 For every S-program P, if Tp is applied to a Y-structure A such that
for every P', WA(P') is a totally ordered structure, then tpr : Wa(P') — Wr,4)(P')
in Definition 10, is a downward surjective embedding. In addition, all tp: defined by
the powers of Tp on L, {T&(L)]0 = k}, are monotonic.

The previous relation is not an ordering when defined over the class of all X-
structures. The problem is that antisymmetry may fail when considering non-
constructive structures where there are infinite descending sequences of worlds.
However, the following theorem shows that this relation is indeed an ordering when
restricted to the subclass of Noetherian Y-structures i.e. structures that do not
include infinite descending sequences of worlds.

Theorem 14 <y is a complete partial order on Noetherian Y -structures.

Arria-uLr-ronuvpon 2001

Proof = is trivially reflexive. It is transitive because i) and 1) are preserved
under composition. To show that it is antisymmetric we use parallel induction over
the Noetherian order, <, of worlds of ¥-structures, to prove that, if there exist
monotonic and downward surjective maps fp : Wa(P) — 2"W5(P) and gp : Ws(P) —
2Wa(P) then their compositions are the corresponding identities.

The bottom is L = (W, =<,,1,), where W, = {(P,0) | P is a ¥ — program},
<1={(w,w)|w e W} and Vw € W,, I, (w) = {toc| FETs |= ¢?}. Note that this
bottom is trivially Noetherian.

Finally, the least upper bound for every increasing chain of structures A; <pg
A; =F ..., can be described as a “world-by-world union” where the correspondence
between them is established by the maps Wy, (P) — W4, (P) — B

Theorem 15 Tp, when restricted to the class of Noetherian X-structures, is mono-
tonic and continuous with respect to <p so, it has a least fixpoint Tp T w.

Proof First of all, monotonicity is proved by showing that VA, B € Struct(X)
such that A <p B and, Vfp : W4(P') — 2"5(P) satisfying Definition 12, the map
gpr - Wra)(P') — 2W7e (8 (P) defined as follows, also satisfies definition 12:

o YVw e WTP(.A)(P/)a if w= tp/(v) then gp/(tp/(v)) = tp/(fp/(v))

o Yw € Wr,a)(P'), if w = Succp/(v) then gp(Succp:(v)) = Succp(fpi(v))

Then, since Tp is monotonic, to prove continuity it is enough to prove that Tp
is finitary, that is for any infinite chain of ¥-structures A, <p Ay <p ..., we have
that Tp(UA;) <r UTp(A;). The proof proceeds in the standard way. First, one can
show that any immediate consequence in Tp(LIA;) is obtained using a finite set of
literals /;od; from a finite set of worlds in UA4;. Then, there will be a least upper
bound A, in the chain {4;}, including all these literals. B

6 Least model semantics

In this section we will prove that the least fixpoint of the immediate consequence
operator Tpfw is the least model in Mod(P) with respect to a proper notion of or-
dering. The key issue here is to define an ordering relation in Mod(P), which we will
denote by C, such that it adequately captures the intuition that the “best model”
is the least one. The definition of this ordering is based, first, on the definition of
an ordering between ordered structures associated to a given program P. Then this
ordering is extended to compare Y-structures by comparing the ordered structures
included.

One may notice that, in an ordered structure associated to P, (if this structure
is part of a model of a program P’) the negative information associated to a given
world will contain, at most, the negative information supported by the worlds be-
low. Similarly, the positive information associated to a given world will contain, at
least, all the consequences that can be computed from the clauses in P and in P’
and the negative information in the world. In this sense, one may consider that

Semantics of normal logic programs with embedded implications

the “best ordered structure” is one in which the negative and positive information
associated to each world is, respectively, the maximum and the minimum amount
of possible information. This means that the ordering between ordered structures
should be based on an extension of the, so-called, standard ordering of 3-valued
structures. However, given two ordered structures B;(P) and Bz(P), we should not
try to compare pairwise all the worlds in one structure with the associated worlds
in the other. For instance, let us suppose that P consists of the clause r : — =¢ and
P’ is empty. If ¢ is not included in the interpretation of the world (P,#) in By(P)
then the world above may be (P, {¢}) and its interpretation would include r. How-
ever, if ¢ is included in the interpretation of (P,) in By(P) then the world above
can be (P,{r}). Bi(P) should be considered better than By(P). This can be done
by defining this ordering among ordered structures as some kind of lexicographic
extension of the standard ordering.

However, the fact that ordered structures may be not linear poses some small
additional difficulty: two worlds may be incomparable but, at the same time, be de-
fined over the same set of worlds. Nevertheless, with the intuition discussed above,
to compare By(P) and By(P) we proceed as follows. First, we look for two bars Bl
and B2 in By(P) and By(P), respectively, in each structure, such that all the worlds
and interpretations below coincide and such that all the worlds and/or interpreta-
tions in both bars are different. Then, if all the worlds and interpretations in Bl
are smaller (w.r.t. the standard ordering) than all the worlds and interpretations in
B2, then we consider B;(P) smaller than By(P). The following definitions capture
these intuitions:

Definition 16 Given a T-structure B = (W, =<,1), a S-program P and a strict bar
B CW w.r.t. (P,0), we define Bl= (Wpgy, =, Ip) such that Wg, = {v e W(P)|3w €
B and v <w} and Ig, = {I(w) | w € Wg}.

Let By and By be Y-structures, P a X-program, B1(P) and By(P) the ordered
structures associated to P in By and Bs, respectively. Let B; C W;(P), 1 € {1,2}
be strict bars w.r.t. (P,0). Then, By and By are separator bars w.r.t. Bi(P) and
By(P) if, and only if, Bil= Byl and for any other strict bars B, C W;(P) w.r.t.
(P,0) such that Yv; € B; Jv} € Bl: v; < vl, i € {1,2}, Bil# Bil.

Separator bars are the bars, discussed above, that define where the differences in
two ordered structures start. Separator bars are uniquely determined:

Lemma 17 Let By = (Wi, =, 11) and By = (Wy, =X, I3) be T-structures, P a 2-
program and By (P), By(P) the ordered structures associated to P in By and By, and
By, By separator bars w.r.t. Bi(P) and By(P). Then By and By are unique.

Notice that given a Y-structure B, each bar B w.r.t. (P,0) in B(P) induces a
substructure (W, U B, <,Ig, U{I(w) | w € B}) which corresponds to an initial
segment of the ordered structure B(P). For simplicity, in what follows, we will refer
to this substructure as B| UB.

Definition 18 Let By and By be E-structures, P a X-program and B1(P) and By(P)

the ordered structures associated to P in By and By, respectively.

Arria-uLr-ronuvpon 2001

1. Let B; C W;(P) be strict bars w.r.t (P,0), i € {1,2}, By = By if, and only if,
By = By andVw € By : I1(w) = I(w)

2. Given two strict bars B; C Wi(P) w.r.t (P,0), 1 € {1,2}, By Ty B, if, and
only if, By = By or one of the following conditions holds:

((1,) le € BIsz S Bz . Lw2 C Lw1
(b) By = By andVw € By : I}(w) C L(w).

The strict order associated to this definition is denoted Cp.

3. Bi(P) T, By(P) tif, and only if, there exist separator bars B; C W;(P), i €
{1,2} w.r.t. B1(P) and By(P) such that (a) or (b) holds:

((1,) Bl = Bg and BZ(P) = BI\L UBl
(b) Bl Eb Bg

The strict order associated to this definition is denoted C,.

Theorem 19 The relation Ty over strict bars in ordered structures associated to a
Y-program in a L-structure is a partial order.

Proof Reflexivity is straightforward and transitivity is a quite direct consequence
of transitivity of C. To prove antisymmetry assume that B; C W;(P), 1 € {1,2} are
strict bars w.r.t (P,0), such that B; Ty By and By T By but they do not satisfy
By = B;. Then, B; and B; only can be comparable by 18.2a. Then, Yw; € B;Yw; €
By: L,, C Ly, and Ly, C L,,. This is a contradiction. l

Theorem 20 The relation T, over ordered structures associated to a X-program P
i a L-structures 1s a partial order.

Proof Reflexivity holds trivially. To prove antisymmetry suppose By(P) T, By(P)
and By(P) C, Bi(P). By lemma 17, both relationships are established by the
same separator bars By and By and B; T By and By Ty By. So, By = B and,
Bi(P) = B3(P) by 18.3a (B1(P) = Byl UB; and B,(P) = B3] UB,). Transitivity is

a consequence of lemma 17 and of transitivity of C,. B

Example 21 In Ezample 9, we can see that Bi(0) T, By(0). In this case, the
separator bars are By = {(0,{p,q})} and By, = {(0,{q})}, and B Ty B; because
{q} C {p,q} Also, Bi({p : — ~q}) C Ba({p : — —¢q}). Here, the separator bars are
By = B, ={({p:=~q},0)} and By T B; because I;(({p:——q},0)) =0 C L(({p:
- _'q}7®)) = {p,q,T,S}.

Now, we may define the order relation between Y-structures. One obvious possible
definition for such an ordering would consist in saying that By is smaller than By if
for every program P, B;(P) is smaller than By(P). However, this definition would
not be adequate. The problem is that, to decide what there should be in a given
world for a program P we may need to look what information is included in the

Semantics of normal logic programs with embedded implications

worlds associated to a different program P’. The reason is that a certain clause
in P may include an intuitionistic implication. This means that before comparing
the ordered structures associated to P one should compare the ordered structures
associated to P’. Again, this means that the ordering over X-structures should be
a kind of lexicographic extension of the ordering on the structures associated to
programs.

Definition 22 Given B; € Struct(X), « € {1,2}, By C By if, and only if, for every
Y-program P one of the following conditions holds:

1. Bi(P) C, By(P)
2. There exists a program P', P C P' C flat(P) such that B1(P') T, By(P’)

where flat(P) denotes the program consisting of all the clauses in P and in all the
programs flat(Q), where Q occurs in the left-hand-side of a clause in P.

Theorem 23 The relation T is a partial order in Struct(T).

Proof Reflexivity is a consequence of reflexivity of C,. To prove antisymmetry we
can consider the four cases resulting of combining 22.1 and 22.2. Combining just
22.1 directly leads to the equality of structures, and, it is not difficult to see that
any other case leads to a contradiction. Again we can consider the four cases to
prove transitivity. Now, combining just 22.2 let to a contradiction, and, the other
cases hold by transitivity of C,. H

Theorem 24 For any E-program P, Tpfw is the C-least model in Mod(P).

Proof The proof uses double induction on the iterations of Tp to prove that for
every B € Mod(P) and for every k € IN, Th(L) E B; and, then, on the C-
chain of programs (ordered structures) in the Y-structures TE(L) and B to prove
that conditions 22.1 and 22.2 hold. The base case is quite simple. The proof of
T;;H(J_) C B from Th(L) C B is a little long due to technicalities but the essential
idea is quite simple and direct: It is enough to consider that the definition of Tp for
worlds and interpretations are, respectively, if-and-only-if versions of the notions of
supported models and local forcing of clauses in Definition 7. B

7 Soundness and completeness

In this section we will prove the equivalence between the operational and the model-
theoretic semantics defined above. In particular this means showing the soundness
and completeness of the operational semantics of a program P with respect to the
least fixpoint of the immediate consequence operator Tp.

Theorem 25 (Sougdness) If P Goc can be proved with computed answer ¢,
then (0,0), Tptw IF Gac'.

Arria-uLr-ronuvpon 2001

Proof We prove that for every S-program Q, if P U Q F Goc can be proved with
computed answer ¢, then (Q,), Trtw IF Goc'. The proof proceeds by induction on
the number of derivation (plus subderivations) steps. The base step, when the -
expression in the goal is of the form ne, is trivial. To prove the inductive step there
are four cases to consider depending if the goal is negative and if it has embbeded
implication. The proofs for each of these cases are very similar and standard. Using
the corresponding operational rule, the inductive hypothesis and the definition of

Tp we conclude that (Q,0), Tptw IF Goc'. R

Theorem 26 (Completeness) If (), (), Tptw IF Goc, then P+ Goc can be proved
with computed answers c1,. .., ¢, such that FETs |= (¢ — \[_, i)Y,

Proof Asin the previous theorem, we prove that for every X-program @ if (@,), Tr1
w IF Goe, then P U Q F Goc can be proved with computed answers ¢, ..., ¢, such
that FETs = (¢ — V', ¢;)¥. Again the proof is very standard and uses induction
on the iterations of Tp. The base step, k = 0, is trivial. For proving the inductive
step (in the same four cases) it is enough to use the corresponding operational rule,
the inductive hypothesis and the definition of Tp. W

Acknowledgements This work has been partially supported by the CICYT project
HEMOSS (ref. TIC98-0949-C02-01) and CIRIT GRC 1999SGR-150.

References

[1] A. J. Bonner and L. T. McCarty. Adding negation-as-failure to intuitionis-
tic logic programming. In Proc. of the North American Conference on Logic

Programming (NACLP’90), pages 681-703, 1990.

[2] M. Bugliesi, E. Lamma, and Mello Paola. Modularity in logic programming.
Journal of Logic Programmaing, 19,20:443-502, 1994.

[3] W. Drabent. What is a failure? An approach to constructive negation. Acta
Informatica, 32:27-59, 1995.

[4] S. Etalle and F. Teusink. A compositional semantics for normal open programs.
In Proc. Int. Conf. and Symp. on Logic Programming’96. The MIT Press, 1996.

[5] F. Fages. Constructive negation by pruning. Journal of Logic Programming,

32:85-118, 1997.

[6] G. Ferrand and A. Lallouet. A compositional proof method of partial cor-
rectness for normal logic programs. In Int. Logic Programming Symp., pages

209-223. J. Lloyd, ed., 1995.

[7] L. Giordano and N. Olivetti. Combining negation as failure and embedded
implication in logic programs. The Journal of Logic Programming, (36):91-147,
1998.

Semantics of normal logic programs with embedded implications

8]

[10]

[11]

[12]

[13]

[14]

P. Lucio, F. Orejas, and E. Pino. An algebraic framework for the definition of
compositional semantics of normal logic programs. Journal of Logic Program-

ming, 40:89-123, 1999.

D. Miller. A logical analysis of modules in logic programming. Journal of Logic

Programming, 6:79-108, 1989.

F. Orejas, E. Pino, and H. Ehrig. Institutions for logic programming. Theoret-
ical Computer Science, 173:485-511, 1997.

E. Pasarella, E. Pino, and F. Orejas. Constructive negation without subsidiary
trees. In Alpuente M., editor, Proceedings of the 9th International Workshop on
Functional and Logic Programming, WFLP’2000., pages 195-209. Universidad
Politécnica de Valencia, Espana, 2000.

J.C. Shepherson. Negation in logic programming. In J. Minker, editor, Founda-
tions on Deductive Databases and Logic Programs, pages 19-88. Morgan Kauf-
mann, 1988.

P. J. Stuckey. Negation and constraint logic programmming. Information and
Computation, 118:12-23, 1995.

D. van Dalen. Intuitionistic logic. In D. Gabbay and F. Guenthner, editors,
Handbook of Philosophical Logic — Vol III, 1986.

