An Embedding of Calculi for Negation as Failure
into Linear Logic

Giorgio Delzanno and Maurizio Martelli
Dipartimento di Informatica e Scienze dell’Informazione, Universita di Genova
via Dodecaneso 35, 16146 Genova, Italy
email: {giorgio,martelli}@disi.unige.it

Abstract

We propose a new linear logic completion with the aim of filling the gap
between previous works relating linear logic and negation as failure [2, 4, 7] and
sequent calculi used to encode the evaluation of normal programs [13, 9, 14].
More precisely, via an embedding of the SLDNF calculus of Lifschitz in Forum
[12], we present a linear logic completion that provides us both a declarative
(via the resulting Forum theory) and an operational (via the notion of goal-
driven proofs peculiar of Forum) description of negation as failure.

Keywords. Negation as failure, sequent calculi, linear logic.

1 Introduction

The negation as finite failure rule of Clark [5] is defined as follows. Given a ground
atom A, —A succeeds if and only if A finitely fails, i.e., every SLD-derivation for A
is finite and does not end with the empty clause. Symmetrically, —A finitely fails
if and only if A succeeds. The corresponding extension of SLD-resolution, namely
SLDNF-resolution, has to deal with a formalization of derivation-trees much more
complex with respect to the one for SLD-resolution. A precise definition of SLDNF-
trees has been stated by Martelli and Tricomi [11] and Apt and Doets [1]. A different
approach to the formalization of negation as failure is based on calculi a la Gentzen.
Examples of sequent-calculi for SLD and SLDNF have been given by Mints [13],
Sheperdson [14], and Lifschitz [9] among the others. These presentations are more
intuitive than the original definition of [5, 10]. Furthermore, they simplify the proof
of soundness and completeness results that can now be proved by induction on the
structure of proof-trees.

In this paper we investigate the problem of finding general purpose logical systems
in which to embed the above mentioned proof calculi for negations as failure. As
case-study, we show that the Lifschitz’s proof calculus [9] can be embedded in a
proof-theoretical presentation of linear logic, namely Forum [12]. The reasons for
choosing Forum are:

Arria-GuLr-rnuvpyr ZUuUl

(1) the notion of formulas as resources peculiar of linear logic allows us to naturally
encode several types of provability relations at the object level (e.g. two kind
of sequents that depend on the polarity of goals as in Lifschitz [9]);

(2) Forum provides an interpretation of linear logic formulas in terms of programs
and goals that is close to the usual notions we fnd in logic programming lan-
guages. This interpretation of linear logic theories simplifies the encoding of
the operational aspects related to SLDNF resolution.

Our encoding of Lifschitza calculus in Forum shares some similarities with previous
works relating linear logic and negation as failure [2, 4, 3], and, in particular, with
the work of Jeavons in [7]. Specifically, in our encoding we use the linear logic
connectives with a semantics close to that used in [7]. However, our approach
tries to fill the gap between the logic formalization in [7] of negation as failure,
and the operational description of the approaches such as [13, 14, 9]. Forum is
a logical tool that seems suitable to achieve this goal. In fact, Forum provability
is given via an extension of the notion of uniform proofs [12] to multi-conclusion
sequent calculi. Intuitively, uniform proofs correspond to cut-free, goal-driven proofs,
a notion at the basis of the operational interpretation of logic programming. The
power of linear logic allows us to represent an SLDNF derivation by using a single
Forum proof. In fact, the combination of multiplicative dijsunction and additive
disjunction allows us to naturally represent special constructors (like the one used
in [11]) to keep track of alternating OR and AND branches (needed to check whether
a derivation can finitely fail) within a single SLD derivation. As a consequence the
linear logic completion presented in this paper turns out to be both a declarative
(the Forum theory encoding the completion) and an operational description (the
uniform proofs associated to a given general goal) of negation as failure, with a
formal correspondance with the SLDNF calculus of Lifschitz.

Plan of the paper. In Section 2 we will introduce some preliminary notions
(negation as failure, linear logic programming and Forum) needed in the sequel of
the paper. In Section 3 we will introduce the Lifschitz calculus for negationa as
failure. In Section 4 we will present the embedding of Lifschitz calculus into Forum,
and we will study its properties. In Section 5 we will address some conclusions.

2 Preliminaries

2.1 General programs

A literal is an atom or its negation. A positive literal is an atom and a negative
literal is a negated atom. A general goal is a finite conjunction of literals. The
empty goal is denoted by 0. A general clause is an implication A:-G where G is a
general goal. When the body is empty the clause is called a fact. A general program
is a set of general clauses. A clause C defines a predicate p if C' = p():-G for some
t and some G. Hence, a program P defines a predicate p if a clause of P defines
p. In the sequel we will use ¢ to denote vectors of terms ¢4, ...,t,, and = to denote

An Embedding of Calculi for Negation as Failure into Linear Logic

equality constraints between terms. The expression T = ¢ denotes the conjunction
1 :tl/\.../\ﬂin:tn.

2.2 Negation as failure

Many efforts have been spent in order to formalize the operational meaning of
SLDNF-resolution. SLDNF-resolution is an extension of SLD-resolution to gen-
eral programs and goals, stating that —A suceeeds iff A finitely fails, and that —A
finitely fails iff A succeeds.

Differently from the case of SLD-derivation, where the search space is represented
by a tree and a derivation by a path in the tree, in the case of SLDNF-resolution
a derivation is a tree itself. Consider the program P = {A:-B, A:-C'} then, an
SLD-derivation for —A is given as follows:

fail fail
T 1
B C O

OV
A+— A

In fact, it is necessary to inspect the SLDNF-tree for A to be able to answer to the
query —A. Thus, SLDNF-derivations and SLDNF-trees interleave in the derivation
of a general goal. In the sequel of the paper we will restrict ourselves to ground
SLDNF-resolution. In particular, we will adopt instantiation instead of unification
in resolution steps. The reason is that we will mainly focus on the relationships
between SLDNF-derivations and Linear Logic proofs.

2.3 Linear Logic Programming

Forum [12] is a presentation of Linear Logic based on a uniform multi-conclusion
sequent calculus. Forum represents a well-founded environment in which studying
Linear Logic extensions of Logic programming. Following [6], in the sequel of the
paper we will employ a higher-order logic programming language having the follow-
ing features. Diffently from standard logic programming, in Forum it is possible to
define programs consisting of multi-conclusion clauses of the form:

or

for k > 0 and n > 0, where A; for¢: 1,...,n is an atomic formula, G, for j : 1,... k
is a goal formula in which B, &, V, T, D —o G and D = G may occur (D should
have clausal form and G is, in turn, a goal formula). In the following, [D] denotes
the set of instances of a formula D. Two zone-sequents are used to distinguish
bewteen unbounded (i.e. program clauses) and bounded (clauses or goals) resources.
Formally, a sequent has the form P;I" — A, where P is set of reusable program
clauses, I' is a multiset of clauses each one usable only once, and, finally, A is a

Arria-GuLr-rnuvpyr ZUuUl

multiset of goals. A Forum derivation consists of a proof of a Forum sequent based
on the goal-driven uniform proof system described in [12]. Intuitively, a Forum
proof is built by first decomposing all goals in the right-hand side, then by applying
clauses from P or from the bounded context in the left-hand side A, and so on, until
an axiom is encountered. Goal formulas consisting of %, &, and V can be reduced
deterministically to the corresponding subgoals. Specifically, proving G; ® G5, A
reduces to proving G, Gs, A; G1&G5, A reduces to the two subproofs G, A and
Go, A; finally, Vx.G, A reduces to the goal G[d/z], A with the proviso that d is a
new constant not occurring in the current sequent. For the left rules, we will consider
here proofs in which it is possible to focus on one single program clause, as specified
by the following derived backchaining rule (an extension of SLD resolution to our

clauses):
prP, —G, ...P, —G, P, I' —G,A

bc
P;I' —P A A

where (G1& ... &Gy) = (A1 ®...BA, o— G) € [D],and A= {Ay,...,A,}. Note
that GGy, ..., G can be viewed as conditions under which the multiset rewriting rule
rewrite Ay, ..., A, into G can be executed. The selection of the clause D on which
we focus on is specified by the following rules:

D,P.T —P A P —P A

decide; decides
D, P — A pP.I'\D— A

provided that A is a multiset of atomic formulas. Finally, note that, in case the
selected rule has no body, we have the rule:

P, —G
P, —>DA1,...,A,,L

be

where G = (A; ®... B8 A,) € [D]. The last rule correspond to the application of a
conditional fact.

3 The Lifschitz Calculus for Negation as Failure

Let P be a set of predicate symbols, F a set of function symbols. We will consider
general programs as defined by the following grammar:

Clauses

C:=A:-G|VC.
G ::= true | false | A | =G | Gy A Gs.

Programs
P:=C,P|C.

Let £ be the resulting language. Given a program P, we aim at finding a proof of
a goal (G, in the following indicated by the sequent - G, or of a goal -G, indicated by

An Embedding of Calculi for Negation as Failure into Linear Logic

Laws for Laws for I+

FG FA I
L E-G. A IF -G, A
LG A IFG,A ... IFG,, A
I bc™
FAA I-A,A
if 3G s.t. A-G € [P]. for all A:-G4,..., A:-G, € [P].

Common Laws

> A > G, Gy A
—— red ———— Af/-
» true, A » Gi NGy, A

Figure 1: The NAJF proof system

the sequent |- G. In order to formalize this notion of provability we will introduce a
set of rules which generalize ground S LD-resolution with negation as failure. More
precisely, we will consider sequents having the form - A and IF A, where A is a
multiset of atomic formulas p(%), or true. We will use » A to denote properties
which apply both to - A and IF A. The proof system in Fig. 1 describes the
operational meaning of the considered logic. By considering a goal Gy A ... A G,
as a multiset (see rule AT/ ~), it is possible to express a successful refutation of a
positive goal as the simple axiom (az™), namely all the subgoals have been reduced
to the empty clause, by including the rule (red). The rule (bc*) allows to compute
ground resolvents of a given goal. The rule (bc™) represents the counterpart of (az™)
and (bc™). In fact, in case there are no clauses with head A the rule becomes the
axiom for IF A, A, i.e., the goal finitely fails selecting A. Otherwise, the goal finitely
fails if all the possible ground resolvents finitely fail. The rule (=) tries to prove
G finitely failed, in this case the result of the proof depends on A, whereas the rule
(=) tries to find a refutation for G in order for the whole goal to fail. Here are
some properties of the above proof system.

Proposition 3.1 The following properties hold:
i) The sequents & false, A and |- true are not provable in NAF.

ii) If the sequent - G is provable, then I+ G is not provable. The contrary does
not hold.

iii) If the sequent |- G is provable, then = G is not provable. The contrary does
not hold.

iv) If the sequent = —G is provable, then |- G is provable, and if the sequent I+ -G
s provable, then - G is provable.

Arria-GuLr-rnuvpyr ZUuUl

Proof 3.1 By an inspection of the proof system. The counter examples for the
reverse implications (i1) and (iii) are given by the program p:-p and the sequents
IF —=p and - p, respectively.

3.1 A variation of the calculus

It is possible to further refine the previous calculus by including the connective V
in the logic and assuming some restrictions on program definitions. Let us consider
programs generated by the following grammar:

Clauses

C:=p(x):-M|VC.
M:I:M1VM2|G.
G = true | false | A| A | G; A Gs.

Programs
P:=C,P|C.

Furthermore, consider now the class of programs obtained by P-formulas with the
following restrictions:

i) each predicate q € P is defined by at most one clause of P.
ii) for each predicate q € P which is not defined in P we add a clause Vp(Z):-false.

iii) V can only occur in clauses having the form
VZ.po(2):-p1(2) V...V pi()
where p and p; have the same arity, and p; # p; for i # j.

Conditions i) and #) imply that each predicate in P is defined exactly by one
clause. Condition %) ensures that V is just used to re-introduce non-deterministic
definitions of predicates as we will shown below. We will call the resulting language
L'. The aim of introducing £’ is to refine the proof system in Fig. 1, moving the
universal quantification (for all clauses ...) in the side condition of rule bc from
the meta level to the object level (there exists a ‘completed’ clause ...). Actually,
we need a further refinement to represent failure of matching steps. Given a clause
defining the predicate p, p(t):-G let cp|[Z] be the formula 3y. z1 =t; A ... 2, =1y,
where g are the variables in #, T are new variables. Let —c,; be the negation of
cp(p)- Furthermore, assume that = —cy (5] iff § = £ is not solvable. According to the
new assumptions we can reformulate the proof system of Fig. 1 as depicted in Fig.
2. It is clear now from the new rule (V™) that allowing V to occur in the body of
clauses mitigates the effects of restriction 7). In fact, a program in £ can be encoded
in £' and viceversa. This can be achieved as follows. A predicate p defined by n
C-clauses:

p(£1)=-Gh, .., pltn):-Gin

An Embedding of Calculi for Negation as Failure into Linear Logic

Laws for +

FA FA Gy A ,
— axt —— ot —— Vvt e {1,2}
= A, A Gy V Go, A

Laws for I+

— ar~ ——— match if = ey [3] A -
IF false, A Ik p(5), A IF—=A,A

-G, A IF Gy, A
IF Gy V Gy, A

V-

Common Laws

»A >017027A ’G,A
—— red —— At/-
» true, A » G NGy, A » A A

be if 3G s.t. A-G € [P]

Figure 2: The NAJF proof system

can be defined by a CV clause (and n auxiliary C-clauses) by splitting p into n
subpredicates:

P(Z)=pr(Z) V...V pu(T), p1(t1):=-G1, .. pp(tn)=-Gn.
The following proposition holds.

Proposition 3.2 Let P be an L-program, G an L-goal, and P',G' be their corre-
sponding L' images. Then, = G (IF G) is provable in the system of Fig. 1 if and
only if H G' (IF G") is provable in the system of Fig. 2.

Proof 3.2 The main point is to show the laws for |- are equivalent in the two
systems. Intuitively, for each p there always exists one definition for p, and either
the current goal p(5) is not unifiable with the clause defining it, i.e. = —cyp (3],
or the body of the definition is false, or, finally, the body is a goal G which must
finitely fail, and then the rule bc must be applied.

4 Representing NAJ in Linear Logic

The above introduced calculus can be encoded in a direct way in Linear Logic. The
main points in the definition of the encoding are as follows:

e A derivation tree can be expressed in terms of a Forum proof by exploiting the
sophisticate structure of Forum sequents and proofs. The encoding maps A
into %, V™ into &, and VT into &.

Arria-GuLr-rnuvpyr ZUuUl

Encoding of programs : [P]
[C,P] = [Cl& [P].

Encoding of clauses :

[vC] = VvIC]
[l = [C1" & el

[A-M]t = (ABH) o— ([M]*T)
[A-M]~ = [A-M]7 & [A-M];

where
[p(D)-M]7 = (p(t) 38) o— ([M]~ =5).
p@:-Ml; = Ve [l = () 35) o false 36).

[=epits,ty|@ts s za]]l = Vi(zi=t1 B ... B2,=t, B B),
where g are the free variables in ¢q,...,t,.

Encoding of goals :

[MyV M)t = [Mi]t @ [Ma]™.
[MyVv My~ = [Mi] & [Ms] .
[G1AG]® = [G]™ = [Go]™.
[GI" = G
for G one of A, A, true, false;
B one of +, —.

Figure 3: Encoding Programs in LL.

e The two types of sequents - A;,..., A, and IF Ay, ..., A, can be represented
by a LL sequent in which the atomic formulas HH and H denote the polarity of
the sequent. Precisely, the encoding is as follows: Npp;— A; B... B A, BE
and N7r;— A1 B... B A, 88, where N7, will be introduced in the sequel.

e Switching the polarity of sequents from H to H and viceversa can be achieved
by using a clause combining o— and =-.

The two atomic formulas HH and H denoting the polarity of sequents, must not be
confused with the boolean constants ¢rue and false. The encoding of programs as
in Section 3 is defined formally in Fig. 3. The LL theory that assigns a meaning to
the non-logical constants true, false, = of Fig. 3 is given in Fig. 4. The encoding
of NAF-sequents into Forum sequents is defined in Fig. 4, too. Let us describe the
intuition behind the encoding defined in Fig. 3. We first recall that in Section 3
we have considered a restricted class of the programs built using the connective V.
Let p(t):-G be a clause defining p. Furthermore, suppose that V does not occur in
G. Then, [Vp(t):-G] is a &-conjunction (i.e. a Forum program) consisting of the
following three clauses:

An Embedding of Calculi for Negation as Failure into Linear Logic

oV (p(t) ®B) o [G] =mE.
o V (pt) ®E) o [G]T mE.
o V [cp[Z]] = p(T) BB o false BE.

Since V does not occur in G, it follows that [G]~ = [G]". Thus, the previous
program is equivalent to:

 Vp(t) - [G]".
o V[-pnlzll = (®Z) B8)o- false.

The former clause allows us to simulate the NAJF-rule bc. The latter one instead
allows us to explicitly express failure due to non-matching between the selected
atomic goal and the head of the considered clause, i.e., the condition [—cy[Z]]
states that (the encoding of) the conjunction z; = t; A... Az, = t, should fail in
order for the latter rule to be applied. (The Forum laws defining the predicate =
are given in Fig. 4).

More in general, if V occurs in G, then V-subformulas are mapped to &- or &-
formulas depending on the polarity of the considered sequent.

Given a program P, let us denote with Ny the Forum theory [P],L*, L7, L=
obtained by applying the encoding of Fig. 3 to P, and by enriching [P] with the
laws of Fig. 4. Furthermore, given a multiset of M-formulas A = M;,..., M,,
let [A]™ be the multiset [M;]",...,[M,]"™ for m one of +,—. As shown in Fig. 5
and Fig. 6, the NAF-rules can be derived in Forum by exploiting the LL theory
Nrr- The counterpart of rule bc derives from the above mentioned property of
the encoding of clauses without V in the body (they can be used both in negative
and positive sequents). A particular attention must be paid to the encoding of the
match rule that models the failure due to the non-matching of arguments passed
to a predicate: for a sequent with negative polarity, it is always possible to apply
the clause [p(t):-G]~ to an atomic formula p(s). In this case we have the following
sequence of rules:

NLL;—>81 :tll,...,Sn :t;l,E
P Vet B -
NLL; — |[_|Cp(g) [ﬂ]l, =) NLL; — false, [[A]], =)
bc

Neo; ' s p(s), [A], B
NLL; — p(g)a I[A]la EI

decide;

where t| is obtained from t; by substituting each universally quantified variables
with a newly introduced constant according to the right-introduction rule V, of the
universal quantifier in Forum. To complete the reconstruction of the match rule, we
need the following lemma.

Lemma 4.1 Let 5 be a tuple of ground terms and t be a tuple of terms with free
variables §. Let d be a tuple of new constants not occurring in L= and lett' =t [d/7)].
Then, L=;— sy =t} ®... Bs, =t ,8 is provable in Forum if and only if 5 does
not match t.

Arria-GuLr-rnuvpyr ZUuUl

Laws for F: LT

H. (az™)
true o— L. (red)
(A®H) = (-ARE o— H). (-1)

Laws for I+: L~

false BB o—T. (az™)
(ARHE) = (-ARB). ()

Laws for equality : L=

(¢ = ¢) o— true, for each constant c.
VX1 .. X0, Vi ... Y
(F(X o Xa) = g(Viy V) o false. for f #g.
VX, ... X, Y4, ..., Y.
(f(Xy,.. ., X)) = f(Y},...,) o= (X1=V)2%R...8(X,=Y,).
VX,V,C. (X =C)B(Y =C) o— (X =C) B(Y = X).

Encoding of sequents : [»A]

[F A] = [P], &+, L, — [A]*, .
[F A] = [P], &%, 0,6 — [A]-,B.

Figure 4: The LL theory for NAZF.

Proof 4.1 (sketch) Let us consider the multiset s; = ¢{,...,s, = t,, Applying the
rules of L=, each equation s; = t; can be reduced in a finite number of steps to a
multiset ¢y, ..., ¢ s.t.: ¢; is false or ¢; is the atomic formula w = d where d is one of
the constants in d. At this point, we can apply the last laws of £= which allows us
to substitute w for d in all other equations having form v = d, yielding the equation
v = w. Repeating this algorithm, we end up either in false (5 and ¢ do not match),
in the empty multiset (i.e., they unify), or in the multiset w; = dy, ..., w, = d, with
d; # dj, i.e., the sequent is not provable (we cannot prove that they do not unify).

The above lemma allows us to check whether the actual parameters match the
arguments of a predicate by checking the provability of the encoding of —c,g)[5]
against the theory L= on a separate branch of a Forum proof. More precisely, we
can state the following theorem.

Theorem 4.1 (Completeness of Ny) Let P be a program as in Section 3, A a
multiset of goals. Then, »A has a NAF-proof iff [»A] has a Forum+Np-proof.

Proof 4.2 First we prove that if »A is provable then [»A] is provable. The proof
is by induction on the length of the proof of »A. The basis of the induction has
two subcases, namely (az™) and (axz~), which have a counterpart in Nypas shown
in Fig. 5 and Fig. 6. The inductive step easily follows by applying, case by case,

An Embedding of Calculi for Negation as Failure into Linear Logic

NATF rules N1, rules
be
(az™)
NLL; — H
—— decide;
(az™) Npp; — B
:NLL; — |[A]], | |
Nep;— L, [A],m
be
(red) Nrr; (red) true, [A],m
decidey

Npr; — true,[A],m
where m € {H,8}

NLL; — HGZ]], HA]], H
(v*) Nzr; — [Gi] @ [G2], [A], B

&, i€ {1,2}

NLL; — A, H
B
NLL;—)AQSE NLL;—)[[A]],EE

be
=)
NLLa ? _'Aa |[A:|]a &

(=) Nrr; — —A,[A], B

decide;

Figure 5: Deriving the NAJ rules in Forum+Ny,.(1).

the inductive hypothesis to the premises of the schemes in Fig. 5. and in Fig. 6.
Let us prove the other implication. The proof is now by induction on the length of
the Forum-proof for [»A] = N7, — [A]™, . First notice that [A] is a multiset
of formulas in which only the connectives @, &, %, T and the non-logical symbols
p € P, true, false, -, =, can occur. Thus, in a Forum-proof for [»A] only the right-
rules ®,, &,, B., T, can occur. Furthermore, the only left-rules applicable are bc
(over formulas in Ny;) and (decide;). To prove the base case we must consider two
subcases, one of length one, namely the counterpart of the rule (az"), one of length
two, namely the counterpart of rule (az™), since there are no formulas s.t. [F] =T.
In the first case [A] must be equal to Ny, — H, since the side condition of the
Forum bc rule requires the right hand side to match the fact B € Ny, ;, to be correctly
applied. Thus, A = () and F is provable. In the second case, A contains at least
false, since by hypothesis the proof results by a bc step over the rule false ZHo— T.
Thus, I+ false, A is provable by (az~). The inductive step is by cases on the last

Arria-GuLr-rnuvpyr ZUuUl

rule. If the last rule is a right-introduction rule, then it must be one of &,, &,, ..
For instance, if the last rule is @,, then, by definition, [»A] = [- G; V G5, T, i.e.,
Nip; — [G1]T @ [Ge] T, [T]F,B. The thesis now follows by applying the inductive
hypothesis to the premises of the counterpart of (V¥) in Fig. 5, which ensures the
existence of a proof for - G;, T for i € {1,2} and thus a proof for - G; V Go, T

Finally, if the last rule is a bc over a clause in N, we first notice that it must
be one of the scheme in Fig. 6. Now observe that in each scheme once a rule has
been selected, i.e., a decide; has been applied, the sequence of rule is determined as
far as the premises are introduced. For instance, let us consider the more complex
one, i.e., an application of (="), when the flag is set to H. By construction, [»A]
must be equal to [—A, '], i.e., Npp; — —A, [I']T, B. Now after the application of
decide; over the rule (=") we are forced, by the focusing property of Forum, to apply
a be step. This yields two premises, namely Npp; — A 8 and Ny ; — [[]*, B.
Now, by the uniformity of Forum proofs, we are forced to apply the right-rules to
the left premise obtaining Nyr; — A,B and Nyp; — [I']",H. These, in turn,
correspond, by definition, to [IF A] and [+ '], respectively. Thus, we can apply the
inductive hypothesis, and the NAF-rule (=") to obtain the thesis.

The other cases can be proved in a similar way.

The relationships between the two calculi become more evident if we collapse the
Forum-schemes of Fig. 5 and Fig. 6 as shown in Fig. 7. Here P is the program
which results by collapsing clauses with complex body (i.e., containing & and &)
and clauses with simple goals (i.e., whose goals contains at most the connective %),
similarly to the step perfomed in the Horn-Clause example.

5 Conclusions

Differently from previous works on negation as failure in linear logic, we have given
here a linear logic completion which has the following operational properties.

e The completion can be represented as a theory in Forum [12];

e an SLDNF derivation is represented via a Forum proof, that enjoys the prop-
erty of being uniform (goal-driven);

e thanks to the interpretation of Forum proofs as computations it comes natural
to give an operational interpretation of a general goal G w.r.t. a program P,
by using the corresponding Forum proof of its encoding [G] w.r.t. [P].

The approaches in [2, 4, 3] successively revised by Jeavons in [7] are based on a differ-
ent representation of goal and clauses. Goals are tensor of literals and the negation
is the involutive negation of linear logic. Our encoding follows instead the method-
ology suggested in [6], in order to exploit multiplicative disjunction to represent a
multiset of resources, & to create proofs with several independent branches.

As future work, it would be interesting to investigate the applicability of more
general proof calculi like the Calculus of Structures of [8] as possible reference logic
for negation as failure.

An Embedding of Calculi for Negation as Failure into Linear Logic

References

[1] K. R. Apt and K. Doets. A New Definition of SLDNF-resolution. Journal of Logic
Programming, 18(2):177-190, 1994.

[2] S. Cerrito. A Linear Semantics for Allowed Logic Programs. In Proceedings of the
5th Symposium on Logic in Computer Science, pages 219-227, Philadelphia, Penn-
sylvania, June 1990. IEEE Computer Society Press.

[3] S. Cerrito. A Linear Axiomatization of Negation as Failure. Journal of Logic Pro-
gramming, 12:1-24, 1992.

[4] S. Cerrito. Negation and Linear Completion. In L. Farinas del Cerro and M. Pent-
tonen, editors, Intensional Logic for Programming, pages 155-194. Clarendon Press,
1992.

[6] K. L. Clark. Negation as Failure. In H.Gallaire and J.Minker, editors, Logic and
Database, pages 293-232. Plenum, New York, 1978.

[6] G. Delzanno and M. Martelli. Proofs as Computations in Linear Logic. Theoretical
Computer Science, 258(1-2):269-297, 2001.

[7] J. Jeavons. An Alternative Linear Semantics for Allowed Logic Programs. Annals of
Pure and Applied Logic, 84:3-16, 1997.

[8] A. Guglielmi and L. Strassburger Non-commutativity and MELL in the Calculus of
Structures In Proc. CSL 01, 2001.

[9] V. Lifschitz. Foundations of Logic Programming. Technical report, Dept. of Computer
and Information Science, University of Texas, Austin, TX 78712, 1995.

[10] J. W. Lloyd. Foundation of Logic Programming. Symbolic Computation - Artificial
Intelligence. Springer Verlag, 1987.

[11] M. Martelli and C. Tricomi. A New SLDNF-tree. Information Processing Letters,
43(2):57-62, 1992,

[12] D. Miller. Forum: A Multiple-Conclusion Specification Logic. Theoretical Computer
Science, 165(1):201-232, 1996.

[13] G. Mints. Several Formal Systems of Logic Programming. Computers and Artificial
Intelligence, 9(1):19-41, 1990.

[14] J. C. Sheperdson. Mints Type Deductive Calculi for Logic Programming. Annals of

Pure and Applied Logic, 56:7-17, 1992.

Arria-GuLr-rnuvpyr ZUuUl

NATF rules N1 rules
Tr
NLL; — T, [[A]], H
B be
Nrr; (ﬂQ false, [A],B
decidey

(awi) NLL;_)fa'lsea[[A]]aEl

Nir;— [G1],[A],B Nriw;— [G2],[A], B
(V™) Nio; — [G1]&[G2], [A]. B

Npp;— A B

- be
Nz -4, (A8

(—'_) Nop; — —|A, |[A]],E|

decide;

Ny — [Gi], [Go], [A], W
(AH) Nir; — [G1] B[G2], [A], W

Nrr; — [M]%,[A],H

NLL; — |[M]]. "’8., HA]]

be

Ner; 14 A [ALm
(bc) NLL; — A, |[A]], |

decide;

where A M o— [M]™ 238 € [[C]] and W is one of H, 5.

Figure 6: Deriving the NAJ rules in Forum+Np,1(2).

An Embedding of Calculi for Negation as Failure into Linear Logic

Positive Polarity

NLL;—>A,E NLL;—)A,EH
— az*t —+
NLL;_) H NLL;—> ﬁA,A,Bﬂ

NLL; — G, A,EE
NLL; — A,A,EE
where A :- G € [P].

bet

Negative Polarity

NLL;—)A,EE
Nip:—s false, A8 Npp; — ~A, A B
NLL;—)Gl,A,E NLL;—>Gn,A,E
be™

Nro;— A, AB
where A :- G1,..., A - o— G, are all the clauses in [P] with head A.

Neutral Polarity

Nip;— G1,G2,A,m Npp;— A,m
A/ — red
NLL; — Gl QgGQ,A,. NLL; — true,A,l

Figure 7: The proof system Npp.

