
Boolean Functions for Finite-Tree Dependencies

Roberto Bagnara, Enea Zaffanella, Roberta Gori, Patricia M. Hill

Abstract

Several logic-based languages, such as Prolog II and its successors, SICS-
tus Prolog and Oz, offer a computation domain including rational trees that
allow for increased expressivity and faster unification. Unfortunately, the use
of infinite rational trees has problems. For instance, many of the built-in and
library predicates are ill-defined for such trees and need to be supplemented
by run-time checks whose cost may be significant. In a companion paper [3]
we have proposed a data-flow analysis called finite-tree analysis aimed at iden-
tifying those program variables (the finite variables) that are not currently
bound to infinite terms. Here we present a domain of Boolean functions,
called finite-tree dependencies that precisely captures how the finiteness of
some variables influences the finiteness of other variables. We also summa-
rize our experimental results showing how finite-tree analysis, enhanced with
finite-tree dependencies is a practical means of obtaining precise finiteness
information.

Keywords: Finite trees, rational trees, data-flow analysis, abstract inter-
pretation, Boolean functions.

1 Introduction

Many logic-based languages refer to a computation domain of rational trees. While
rational trees allow for increased expressivity, they also have a surprising number of
problems. (See [4] for a survey of known applications of rational trees and a detailed
account of many of the problems caused by their use.) Some of these problems are so
serious that rational trees must be used in a very controlled way, disallowing infinite
trees in any context where they are “dangerous”. This, in turn, causes a secondary
problem: in order to disallow infinite trees in selected contexts one must first detect
them, an operation that may be expensive.

This work has been partly supported by MURST projects “Certificazione automatica di pro-
grammi mediante interpretazione astratta” and “Interpretazione astratta, sistemi di tipo e analisi
Control-Flow”. Some of this work was done during visits of the second author to Leeds, funded
by EPSRC under grant M05645.

Roberto Bagnara and Enea Zaffanella are with the Department of Mathematics of the Univer-
sity of Parma, Italy. Email: {bagnara,zaffanella}@cs.unipr.it.

Roberta Gori is with the Department of Computer Science of the University of Pisa, Italy.
Email: gori@di.unipi.it.

Patricia M. Hill is with the School of Computing of the University of Leeds, United Kingdom.
Email: hill@comp.leeds.ac.uk.

2 APPIA-GULP-PRODE 2001

In [4], we have introduced a composite abstract domain, H × P , for finite-tree
analysis. The H domain, written with the initial of Herbrand and called the finite-
ness component, is the direct representation of the property of interest: a set of
variables guaranteed to be bound to finite terms. The generic domain P (the pa-
rameter of the construction) provides sharing information that can include, apart
from variable aliasing, groundness, linearity, freeness and any other kind of informa-
tion that can improve the precision on these components, such as explicit structural
information. Sharing information is exploited in H ×P for two purposes: detecting
when new infinite terms are possibly created (this is done along the lines of [23]) and
confining the propagation of those terms as much as possible. As shown in [3, 4], by
giving a generic specification for this parameter component in terms of the abstract
queries it supports (in the style of the open product construct [12]), it is possible
to define and establish the correctness of the abstract operators on the finite-tree
domain independently from any particular domain for sharing analysis.

The domain H × P captures the negative aspect of term-finiteness, that is, the
circumstances under which finiteness can be lost. However, term-finiteness has also
a positive aspect: there are cases where a variable is granted to be bound to a
finite term and this knowledge can be propagated to other variables. Guarantees
of finiteness are provided by several built-ins like unify_with_occurs_check/2,
var/1, name/2, all the arithmetic predicates, besides those explicitly provided to
test for term-finiteness such as the acyclic_term/1 predicate of SICStus Prolog.
The information encoded by H is attribute independent [14], which means that
each variable is considered in isolation. What is missing is information concerning
how finiteness of one variable affects the finiteness of other variables. This kind of
information, usually called relational information, is not captured at all by H and
it is only partially captured by the composite domain H × P of [4].

Here we present a domain of Boolean functions that precisely captures how the
finiteness of some variables influences the finiteness of other variables. This domain
of finite-tree dependencies provides relational information that is important for the
precision of the overall finite-tree analysis. It also combines obvious similarities,
interesting differences and somewhat unexpected connections with classical domains
for groundness dependencies.

Finite-tree and groundness dependencies are similar in that they both track cov-
ering information (a term s covers t if all the variables in t also occur in s) and
share several abstract operations. However, they are different because covering does
not tell the whole story. Suppose x and y are free variables before either the uni-
fication x = f(y) or the unification x = f(x, y) are executed. In both cases, x will
be ground if and only if y will be so. However, when x = f(y) is the performed
unification, this equivalence will also carry over to finiteness. In contrast, when the
unification is x = f(x, y), x will never be finite and will be totally independent, as
far as finiteness is concerned, from y. Among the unexpected connections is the fact
that finite-tree dependencies can improve the groundness information obtained by
the usual approaches to groundness analysis.

The paper is structured as follows: the required notations and preliminary con-
cepts are given in Section 2; the concrete domain for the analysis is presented in
Section 3; Section 4 introduces the use of Boolean functions for tracking finite-tree

Boolean Functions for Finite-Tree Dependencies 3

dependencies, whereas Section 5 illustrates the interaction between groundness and
finite-tree dependencies. Our experimental results are presented in Section 6. The
paper concludes in Section 7.

2 Preliminaries

2.1 Infinite Terms and Substitutions

For a set S, ℘(S) is the powerset of S, ℘f(S) is the set of all the finite subsets of S,
whereas #S denotes the cardinality of S. Let Sig denote a possibly infinite set of
function symbols, ranked over the set of natural numbers and Vars a denumerable
set of variable symbols, disjoint from Sig. Then Terms denotes the free algebra of all
(possibly infinite) terms in the signature Sig having variables in Vars. It is assumed
that Sig contains at least two distinct function symbols, one having rank 0 and one
with rank greater than 0 (so that there exist finite and infinite terms both with and
without variables). If t ∈ Terms then vars(t) denotes the set of variables occurring
in t. If vars(t) = ∅ then t is said to be ground ; t is a finite term (or Herbrand term)
if it contains a finite number of occurrences of function symbols. The sets of all
ground and finite terms are denoted by GTerms and HTerms, respectively.

A substitution is a total function σ : Vars → HTerms that is the identity almost

everywhere; in other words, the domain of σ, dom(σ)
def
=
{
x ∈ Vars

∣∣ σ(x) 6= x
}

,
is a finite set of variables. If x ∈ Vars and t ∈ HTerms \ {x}, then x 7→ t is called a
binding. The set of all bindings is denoted by Bind. Substitutions are conveniently
denoted by the set of their bindings. Thus a substitution σ is identified with the
(finite) set

{
x 7→ σ(x)

∣∣ x ∈ dom(σ)
}
. We denote by vars(σ) the set of all variables

occurring in the bindings of σ.
A substitution of the form {x1 7→ x2, . . . , xn−1 7→ xn, xn 7→ x1} is circular if and

only if n > 1 and x1, . . . , xn are distinct variables. A substitution is in rational
solved form if it has no circular subset. The set of all substitutions in rational solved
form is denoted by RSubst .

Given a substitution σ : Vars→ HTerms, the symbol ‘σ’ also denotes the function
σ : HTerms → HTerms defined as usual. That is, for each t ∈ HTerms, σ(t) is the
term obtained by replacing each occurrence of each variable x in t by the term σ(x).
If t ∈ HTerms, we write tσ to denote σ(t). Let s ∈ HTerms and σ ∈ RSubst . Then

σ0(s)
def
= s and σi(s)

def
= σ

(
σi−1(s)

)
for all i ∈ N, i > 0. The sequence of finite terms

σ0(s), σ1(s), . . . converges to a (possibly infinite) term, denoted by σ∞(s) [18, 19].

2.2 Equations

An equation has the form s = t where s, t ∈ HTerms. Eqs denotes the set of all
equations. A substitution σ may be regarded as a finite set of equations, that is, as
the set {x = t | x 7→ t ∈ σ }. We say that a set of equations e is in rational solved
form if

{
s 7→ t

∣∣ (s = t) ∈ e
}
∈ RSubst . In the rest of the paper, we will often

write a substitution σ ∈ RSubst to denote a set of equations in rational solved form
(and vice versa).

4 APPIA-GULP-PRODE 2001

Some logic-based languages, such as Prolog II, SICStus and Oz, are based on
RT , the theory of rational trees [9, 10]. This is a syntactic equality theory (i.e., a
theory where the function symbols are uninterpreted), augmented with a uniqueness
axiom for each substitution in rational solved form. It is worth noting that any set
of equations in rational solved form is, by definition, satisfiable in RT .

Given a set of equations e ∈ ℘f(Eqs) that is satisfiable in RT , a substitution
σ ∈ RSubst is called a solution for e in RT if RT ` ∀(σ → e), i.e., if every model
of the theory RT is also a model of the first order formula ∀(σ → e). If in addition
vars(σ) ⊆ vars(e), then σ is said to be a relevant solution for e. Finally, σ is a most
general solution for e in RT if RT ` ∀(σ ↔ e). In this paper, the set of all the
relevant most general solution for e in RT will be denoted by mgs(e).

The function ↓(·) : RSubst → ℘(RSubst) is defined, for each σ ∈ RSubst , by

↓σ def
=
{
τ ∈ RSubst

∣∣ ∃σ′ ∈ RSubst . τ ∈ mgs(σ ∪ σ′)
}

. The next result shows
that ↓(·) corresponds to the closure by entailment in RT .

Proposition 2.1 Let σ ∈ RSubst. Then ↓σ =
{
τ ∈ RSubst

∣∣ RT ` ∀(τ → σ)
}

.

2.3 Boolean Functions

Boolean functions have already been extensively used for data-flow analysis of logic-
based languages. An important class of these functions used for tracking groundness
dependencies is Pos [1]. This domain was introduced in [20] under the name Prop
and further refined and studied in [11, 21].

Boolean functions are based on the notion of Boolean valuation.

Definition 2.1 (Boolean valuations.) Let VI ∈ ℘f(Vars) and B
def
= {0, 1}. The

set of Boolean valuations over VI is Bval
def
= VI → B. For each a ∈ Bval, each

x ∈ VI, and each c ∈ B the valuation a[c/x] ∈ Bval is given, for each y ∈ VI, by

a[c/x](y)
def
=

{
c, if x = y;

a(y), otherwise.

If X = {x1, . . . , xk} ⊆ VI, then a[c/X] denotes a[c/x1] · · · [c/xk].

Bval contains the distinguished elements 0
def
= λx ∈ VI . 0 and 1

def
= λx ∈ VI . 1.

Definition 2.2 (Boolean functions.) The set of Boolean functions over VI is

Bfun
def
= Bval → B. Bfun is partially ordered by the relation |= where, for each

φ, ψ ∈ Bfun, we have φ |= ψ if and only if
(
∀a ∈ Bval : φ(a) = 1 =⇒ ψ(a) = 1

)
.

Bfun contains the distinguished elements ⊥ def
= λa ∈ Bval . 0 and > def

= λa ∈ Bval . 1.
For each φ ∈ Bfun, x ∈ VI, and c ∈ B, the function φ[c/x] ∈ Bfun is given, for

each a ∈ Bval, by φ[c/x](a)
def
= φ

(
a[c/x]

)
. When X ⊆ VI, φ[c/X] is defined in the

expected way. If φ ∈ Bfun and x, y ∈ VI the function φ[y/x] ∈ Bfun is given by

φ[y/x](a)
def
= φ

(
a
[
a(y)/x

])
, for each a ∈ Bval. Boolean functions are constructed

from the elementary functions corresponding to variables and by means of the usual

Boolean Functions for Finite-Tree Dependencies 5

logical connectives. Thus x denotes the Boolean function φ such that, for each
a ∈ Bval, φ(a) = 1 if and only if a(x) = 1. For φ1, φ2 ∈ Bfun, we write φ1 ∧ φ2

to denote the function φ such that, for each a ∈ Bval, φ(a) = 1 if and only if both
φ1(a) = 1 and φ2(a) = 1. A variable is restricted away using Schröder’s elimination

principle [22]: ∃x . φ def
= φ[1/x]∨φ[0/x]. Note that existential quantification is both

monotonic and extensive on Bfun. The other Boolean connectives and quantifiers
are handled similarly.

Pos ⊂ Bfun consists precisely of those functions assuming the true value under

the everything-is-true assignment, i.e., Pos
def
=
{
φ ∈ Bfun

∣∣ φ(1) = 1
}

. For each
φ ∈ Bfun, the positive part of φ, denoted pos(φ), is the strongest Pos formula that

is entailed by φ. Formally, pos(φ)
def
= φ ∨

∧
VI.

For each φ ∈ Bfun, the set of variables necessarily true for φ and the set of
variables necessarily false for φ are given, respectively, by

true(φ)
def
=
{
x ∈ VI

∣∣ ∀a ∈ Bval : φ(a) = 1 =⇒ a(x) = 1
}
,

false(φ)
def
=
{
x ∈ VI

∣∣ ∀a ∈ Bval : φ(a) = 1 =⇒ a(x) = 0
}
.

3 The Concrete Domain

A knowledge of the basic concepts of abstract interpretation theory [13, 15] is as-
sumed. In this paper, the concrete domain consists of pairs of the form (Σ, V),
where V is a finite set of variables of interest and Σ is a (possibly infinite) set of
substitutions in rational solved form.

Definition 3.1 (The concrete domain.) Let D[def
= ℘(RSubst) × ℘f(Vars). If

(Σ, V) ∈ D[, then (Σ, V) represents the (possibly infinite) set of first-order formulas{
∃∆ . σ

∣∣ σ ∈ Σ, ∆ = vars(σ)\V
}

where σ is interpreted as the logical conjunction
of the equations corresponding to its bindings. The operation of projecting x ∈ Vars
away from (Σ, V) ∈ D[is defined as follows:

∃∃x . (Σ, V)
def
=

{
σ′ ∈ RSubst

∣∣∣∣∣σ ∈ Σ, V = Vars \ V,
RT ` ∀

(
∃V . (σ′ ↔ ∃x . σ)

) }.
The concrete element

({
{x 7→ f(y)}

}
, {x, y}

)
expresses a dependency between x

and y. In contrast,
({
{x 7→ f(y)}

}
, {x}

)
only constrains x. The same concept can

be expressed by saying that the variable name ‘y’ matters in the first case but not in
the second. Thus, the set of variables of interest is crucial for defining the meaning
of the concrete and abstract descriptions. Despite this, always specifying the set
of variables of interest would significantly clutter the presentation. Moreover, most
of the needed functions on concrete and abstract descriptions preserve the set of
variables of interest. For these reasons, we assume there exists a set VI ∈ ℘f(Vars)
containing, at each stage of the analysis, the current variables of interest. As a
consequence, when the context makes it clear that Σ ∈ ℘(RSubst), we will write
Σ ∈ D[as a shorthand for (Σ,VI) ∈ D[.

6 APPIA-GULP-PRODE 2001

3.1 Operators on Substitutions in Rational Solved Form

There are cases when an analysis tries to capture properties of the particular sub-
stitutions computed by a specific rational unification algorithm. This is the case,
for example, when the analysis needs to track structure sharing for the purpose of
compile-time garbage collection, or provide upper bounds to the amount of memory
needed to perform a given computation. More often the interest is on properties of
the rational trees themselves. In these cases it is possible to define abstraction and
concretization functions that are independent from the finite representations actu-
ally considered. Moreover, it is important that these functions precisely capture the
properties under investigation, so as to avoid any unnecessary precision loss.

Pursuing this goal requires the ability to observe properties of (infinite) rational
trees while just dealing with one of their finite representations. This is not always an
easy task, since even simple properties can be “hidden” when using non-idempotent
substitutions. For instance, when σ∞(x) ∈ GTerms \ HTerms is an infinite and
ground rational tree, all of its finite representations in RSubst will map the variable
x into a finite term that is not ground.

These are the motivations behind the introduction of two computable operators
on substitutions that will be used later to define the concretization functions for the
considered abstract domains. First, the groundness operator ‘gvars’ captures the
set of variables that are mapped to ground rational trees by ‘σ∞’. We define it by
means of the occurrence operator ‘occ’ introduced in [17].

Definition 3.2 (Occurrence and groundness operators.) For each n ∈ N, the
occurrence function occn : RSubst×Vars→ ℘f(Vars) is defined, for each σ ∈ RSubst
and each v ∈ Vars, by

occn(σ, v)
def
=

{
{v} \ dom(σ), if n = 0;{
y ∈ Vars

∣∣ vars(yσ) ∩ occn−1(σ, v) 6= ∅
}
, if n > 0.

The occurrence operator occ : RSubst × Vars → ℘f(Vars) is given, for each substi-

tution σ ∈ RSubst and v ∈ Vars, by occ(σ, v)
def
= occ`(σ, v), where `

def
= #σ.

The groundness operator gvars : RSubst→ ℘f(Vars) is given, for each substitution
σ ∈ RSubst, by

gvars(σ)
def
=
{
y ∈ dom(σ)

∣∣ ∀v ∈ vars(σ) : y /∈ occ(σ, v)
}
.

The finiteness operator ‘hvars’, introduced in [4], captures the set of variables
that ‘σ∞’ maps to finite terms.

Definition 3.3 (Finiteness operator.) For each n ∈ N, the finiteness function
hvarsn : RSubst→ ℘(Vars) is defined, for each σ ∈ RSubst, by

hvarsn(σ)

def
=

{
Vars \ dom(σ), if n = 0;

hvarsn−1(σ) ∪
{
y ∈ dom(σ)

∣∣ vars(yσ) ⊆ hvarsn−1(σ)
}
, if n > 0.

Boolean Functions for Finite-Tree Dependencies 7

The finiteness operator hvars : RSubst → ℘(Vars) is given, for each substitution

σ ∈ RSubst, by hvars(σ)
def
= hvars`(σ), where `

def
= #σ.

Example 3.1 Let

σ =
{
x 7→ f(y, z), y 7→ g(z, x), z 7→ f(a)

}
,

τ =
{
v 7→ g(z, w), x 7→ f(y), y 7→ g(w), z 7→ f(v)

}
.

Then gvars(σ) = {x, y, z} and hvars(τ) ∩ vars(τ) = {w, x, y}.

The following proposition states how ‘gvars’ and ‘hvars’ behave with respect to
the further instantiation of variables.

Proposition 3.1 Let σ, τ ∈ RSubst, where τ ∈ ↓ σ. Then

hvars(σ) ⊇ hvars(τ), (3.1a)

gvars(σ) ∩ hvars(σ) ⊆ gvars(τ) ∩ hvars(τ). (3.1b)

4 Finite-Tree Dependencies

Any finite-tree domain must keep track of those variables that are definitely bound
to finite terms, since this is the final information delivered by the analysis. In [4]
we have introduced the composite abstract domain H × P , where the set of such
variables is explicitly represented in the finiteness component H.

Definition 4.1 (The finiteness component H.) The set H
def
= ℘(VI), partially

ordered by reverse subset inclusion, is called finiteness component. The concretiza-
tion function γH : H → ℘(RSubst) is given, for each h ∈ H, by

γH(h)
def
=
{
σ ∈ RSubst

∣∣ hvars(σ) ⊇ h
}
.

As proven in [3], equivalent substitutions in rational solved form have the same
finiteness abstraction.

Proposition 4.1 Let σ, τ ∈ RSubst, where σ ∈ γH(h) and RT ` ∀(σ ↔ τ). Then
τ ∈ γH(h).

The precision of the finite-tree analysis of [4] is highly dependent on the precision
of the generic component P . As explained before, the information provided by
P on groundness, freeness, linearity, and sharing of variables is exploited, in the
combinationH×P , to circumscribe as much as possible the creation and propagation
of cyclic terms. However, finite-tree analysis can also benefit from other kinds of
relational information. In particular, we now show how finite-tree dependencies
allow to obtain a positive propagation of finiteness information.

Let us consider the finite terms t1 = f(x), t2 = g(y), and t3 = h(x, y): it is clear
that, for each assignment of rational terms to x and y, t3 is finite if and only if t1

8 APPIA-GULP-PRODE 2001

and t2 are so. We can capture this by the Boolean formula t3 ↔ (t1 ∧ t2).1 The
important point to notice is that this dependency will keep holding for any further
simultaneous instantiation of t1, t2, and t3. In other words, such dependencies are
preserved by forward computations (which proceed by consistently instantiating
program variables).

Consider x 7→ t ∈ Bind where t ∈ HTerms and vars(t) = {y1, . . . , yn}. After
this binding has been successfully applied, the destinies of x and t concerning term-
finiteness are tied together: forever. This tie can be described by the dependency
formula

x↔ (y1 ∧ · · · ∧ yn), (2)

meaning that x will be bound to a finite term if and only if yi is bound to a finite
term, for each i = 1, . . . , n. While the dependency expressed by (2) is a correct
description of any computation state following the application of the binding x 7→ t,
it is not as precise as it could be. Suppose that x and yk are indeed the same
variable. Then (2) is logically equivalent to

x→ (y1 ∧ · · · ∧ yk−1 ∧ yk+1 ∧ · · · ∧ yn). (3)

Correct: whenever x is bound to a finite term, all the other variables will be bound
to finite terms. The point is that x has just been bound to a non-finite term,
irrevocably: no forward computation can change this. Thus, the implication (3)
holds vacuously. A more precise and correct description for the state of affairs caused
by the cyclic binding is, instead, the negated atom ¬x, whose intuitive reading is
“x is not (and never will be) finite.”

We are building an abstract domain for finite-tree dependencies where we are
making the deliberate choice of including only information that cannot be with-
drawn by forward computations. The reason for this choice is that we want the
concrete constraint accumulation process to be paralleled, at the abstract level, by
another constraint accumulation process: logical conjunction of Boolean formulas.
For this reason, it is important to distinguish between permanent and contingent
information. Permanent information, once established for a program point p, main-
tains its validity in all points that follow p in any forward computation. Contingent
information, instead, does not carry its validity beyond the point where it is estab-
lished. An example of contingent information is given by the h component of H×P :
having x ∈ h in the description of some program point means that x is definitely
bound to a finite term at that point ; nothing is claimed about the finiteness of x
at other program points and, in fact, unless x is ground, x can still be bound to a
non-finite term. However, if at some program point x is finite and ground, then x
is permanently finite. In this case we will ensure our Boolean dependency formula
entails the positive atom x.

At this stage, we already know something about the abstract domain we are
designing. In particular, we have positive and negated atoms, the requirement of
describing program predicates of any arity implies that arbitrary conjunctions of
these atomic formulas must be allowed and, finally, it is not difficult to observe

1The introduction of such Boolean formulas, called dependency formulas, is originally due to
P. W. Dart [16].

Boolean Functions for Finite-Tree Dependencies 9

that the merge-over-all-paths operations [13] will be logical disjunction, so that the
domain will have to be closed under this operation. This means that the carrier of
our domain must be able to express any Boolean function: Bfun is the carrier.

Definition 4.2 (γF : Bfun → ℘(RSubst).) The function hval : RSubst → Bval is
defined, for each σ ∈ RSubst and each x ∈ VI, by

hval(σ)(x) = 1
def⇐⇒ x ∈ hvars(σ).

The concretization function γF : Bfun→ ℘(RSubst) is defined, for φ ∈ Bfun, by

γF (φ)
def
=
{
σ ∈ RSubst

∣∣ ∀τ ∈ ↓ σ : φ
(
hval(τ)

)
= 1

}
.

The following theorem shows how most of the operators needed to compute the
concrete semantics of a logic program can be correctly approximated on the abstract
domain Bfun.

Theorem 4.2 Let Σ,Σ1,Σ2 ∈ ℘(RSubst) and φ, φ1, φ2 ∈ Bfun, where γF (φ) ⊇ Σ,
γF (φ1) ⊇ Σ1, and γF (φ2) ⊇ Σ2. Let also (x 7→ t) ∈ Bind, where {x} ∪ vars(t) ⊆ VI.
Then the following hold:

γF

(
x↔

∧
vars(t)

)
⊇
{
{x 7→ t}

}
; (4.2a)

γF (¬x) ⊇
{
{x 7→ t}

}
, if x ∈ vars(t); (4.2b)

γF (x) ⊇
{
σ ∈ RSubst

∣∣ x ∈ gvars(σ) ∩ hvars(σ)
}

; (4.2c)

γF (φ1 ∧ φ2) ⊇
{

mgs(σ1 ∪ σ2)
∣∣ σ1 ∈ Σ1, σ2 ∈ Σ2

}
; (4.2d)

γF (φ1 ∨ φ2) ⊇ Σ1 ∪ Σ2; (4.2e)

γF (∃x . φ) ⊇ ∃∃x . Σ. (4.2f)

Cases (4.2a), (4.2b), and (4.2d) of Theorem 4.2 ensure that the following definition
of amguF provides a correct approximation on Bfun of the concrete unification of
rational trees.

Definition 4.3 The function amguF : Bfun × Bind → Bfun captures the effects of
a binding on a finite-tree dependency formula. Let φ ∈ Bfun and (x 7→ t) ∈ Bind.
Then

amguF (φ, x 7→ t)
def
=

{
φ ∧

(
x↔

∧
vars(t)

)
, if x /∈ vars(t);

φ ∧ ¬x, otherwise.

Other semantic operators, such as the consistent renaming of variables, are very
simple and, as usual, their approximation does not pose any problem.

The next result shows how finite-tree dependencies may improve the finiteness
information encoded in the h component of the domain H × P .

Theorem 4.3 Let h ∈ H and φ ∈ Bfun. Let also h′
def
= true

(
φ ∧

∧
h
)

. Then

γH(h) ∩ γF (φ) = γH(h′) ∩ γF (φ).

10 APPIA-GULP-PRODE 2001

Example 4.1 Consider the following program, where it is assumed that the only
“external” query is ‘?- r(X, Y)’:

p(X, Y) :- X = f(Y,).

q(X, Y) :- X = f(, Y).

r(X, Y) :- p(X, Y), q(X, Y), acyclic term(X).

Then the predicate p/2 in the clause defining r/2 will called with X and Y both un-
bound. Computing on the abstract domain H ×P gives us the finiteness description
hp = {x, y}, expressing the fact that both X and Y are bound to finite terms. Com-
puting on the finite-tree dependencies domain Bfun, gives us the Boolean formula
φp = x→ y (Y is finite if X is so).

Considering now the call to the predicate q/2, we note that, since the variable X is
already bound to a non-variable term sharing with Y, all the finiteness information
encoded by H will be lost (that is, hq = ∅). So, both X and Y are detected as
possibly cyclic. However, the finite-tree dependency information is preserved, because
φq = (x→ y) ∧ (x→ y) = x→ y.

Finally, consider the effect of the abstract evaluation of acyclic_term(X). On
the H × P domain we can only infer that variable X cannot be bound to an infinite
term, while Y will be still considered as possibly cyclic, so that hr = {x}. On the
domain Bfun we can just confirm that the finite-tree dependency computed so far still
holds, so that φr = x→ y (no stronger finite-tree dependency can be inferred, since
the finiteness of X is only contingent). Thus, by applying the result of Theorem 4.3,
we can recover the finiteness of Y:

h′r = true
(
φr ∧

∧
hr

)
= true

(
(x→ y) ∧ x

)
= {x, y}.

Information encoded in H × P and Bfun is not completely orthogonal and the
following result provides a kind of consistency check.

Theorem 4.4 Let h ∈ H and φ ∈ Bfun. Then

γH(h) ∩ γF (φ) 6= ∅ =⇒ h ∩ false(φ) = ∅.

Note however that, provided the abstract operators are correct, the computed de-
scriptions will always be mutually consistent, unless φ = ⊥.

5 Groundness Dependencies

Since information about the groundness of variables is crucial for many applications,
it is natural to consider a static analysis domain including both a finite-tree and
a groundness component. In fact, any reasonably precise implementation of the
parameter component P of the abstract domain specified in [4] will include some kind
of groundness information. We highlight similarities, differences and connections
relating the domain Bfun for finite-tree dependencies to the abstract domain Pos
for groundness dependencies. Note that these results also hold when considering a
combination of Bfun with the groundness domain Def [1].

Boolean Functions for Finite-Tree Dependencies 11

Definition 5.1 (γG : Pos → ℘(RSubst).) The function gval : RSubst → Bval is
defined as follows, for each σ ∈ RSubst and each x ∈ VI:

gval(σ)(x) = 1
def⇐⇒ x ∈ gvars(σ).

The concretization function γG : Pos→ ℘(RSubst) is defined, for each ψ ∈ Pos,

γG(ψ)
def
=
{
σ ∈ RSubst

∣∣ ∀τ ∈ ↓ σ : ψ
(
gval(τ)

)
= 1

}
.

Definition 5.2 The function amguG : Pos × Bind → Pos captures the effects of a
binding on a groundness dependency formula. Let ψ ∈ Pos and (x 7→ t) ∈ Bind.
Then

amguG(ψ, x 7→ t)
def
= ψ ∧

(
x↔

∧(
vars(t) \ {x}

))
.

Note that this is a simple variant of the standard abstract unification operator for
groundness analysis over finite-tree domains: the only difference concerns the case
of cyclic bindings [2].

The next result shows how, by exploiting the finiteness component H, the finite-
tree dependencies (Bfun) component and the groundness dependencies (Pos) com-
ponent can improve each other.

Theorem 5.1 Let h ∈ H, φ ∈ Bfun and ψ ∈ Pos. Let also φ′ ∈ Bfun and ψ′ ∈ Pos
be defined as φ′ = ∃VI \ h . ψ and ψ′ = ∃VI \ h . pos(φ). Then

γH(h) ∩ γF (φ) ∩ γG(ψ) = γH(h) ∩ γF (φ) ∩ γG(ψ ∧ ψ′); (5.1a)

γH(h) ∩ γF (φ) ∩ γG(ψ) = γH(h) ∩ γF (φ ∧ φ′) ∩ γG(ψ). (5.1b)

Moreover, even without any knowledge of the H component, combining Theorem 4.3
and Eq. (5.1a), the groundness dependencies component can be improved.

Corollary 5.2 Let φ ∈ Bfun and ψ ∈ Pos. Then

γF (φ) ∩ γG(ψ) = γF (φ) ∩ γG
(
ψ ∧ true(φ)

)
.

The following example shows that, when computing on rational trees, finite-tree
dependencies may provide groundness information that is not captured by the usual
approaches.

Example 5.1 Consider the program:

p(a, Y).

p(X, a).

q(X, Y) :- p(X, Y), X = f(X, Z).

The abstract semantics of p/2, for both finite-tree and groundness dependencies, is
φp = ψp = x ∨ y. The finite-tree dependency for q/2 is φq = (x ∨ y) ∧ ¬x = ¬x ∧ y.
Using Definition 5.2, the groundness dependency for q/2 is

ψq = ∃z .
(
(x ∨ y) ∧ (x↔ z)

)
= x ∨ y.

This can be improved, using Corollary 5.2, to

ψ′q = ψq ∧
∧

true(φq) = y.

12 APPIA-GULP-PRODE 2001

Since better groundness information, besides being useful in itself, may also im-
prove the precision of many other analyses such as sharing [7, 8], the reduction steps
given by Theorem 5.1 and Corollary 5.2 can trigger improvements to the precision
of other components. Theorem 5.1 can also be exploited to recover precision after
the application of a widening operator on either the groundness dependencies or the
finite-tree dependencies component.

6 Experimental Results

The work described here and in [4] has been experimentally evaluated in the frame-
work provided by the China analyzer [2]. We implemented and compared the three
domains Pattern(P), Pattern(H × P) and Pattern(Bfun ×H × P),2 where the pa-
rameter component P has been instantiated to the domain Pos×SFL [7], including
groundness, freeness, linearity and (non-redundant) set-sharing information. The
Pattern(·) operator [5] further upgrades the precision of its argument by adding
explicit structural information.

Concerning the Bfun component, the implementation was straightforward, since
all the techniques described in [6] (and almost all the code, including the widenings)
has been reused unchanged, obtaining comparable efficiency. As a consequence,
most of the implementation effort was in the coding of the abstract operators on
the H component and of the reduction processes between the different components.
A key choice, in this sense, is ‘when’ the reduction steps given in Theorems 4.3
and 5.1 should be applied. When striving for maximum precision, a trivial strategy
is to immediately perform reductions after any application of any abstract operator.
For instance, this is how predicates like acyclic_term/1 should be handled: after
adding the variables of the argument to the H component, the reduction process
is applied to propagate the new information to all domain components. However,
such an approach turns out to be unnecessarily inefficient. In fact, the next result
shows that Theorems 4.3 and 5.1 cannot lead to a precision improvement if ap-
plied just after the abstract evaluation of the merge-over-all-paths or the existential
quantification operations (provided the initial descriptions are already reduced).

Theorem 6.1 Let x ∈ VI, h, h′ ∈ H φ, φ′ ∈ Bfun and ψ, ψ′ ∈ Pos. Let

h1
def
= h ∩ h′, φ1

def
= φ ∨ φ′, ψ1

def
= ψ ∨ ψ′,

h2
def
= h ∪ {x}, φ2

def
= ∃x . φ, ψ2

def
= ∃x . ψ.

Let also

h ⊇ true
(
φ ∧

∧
h
)
, φ |= (∃VI \ h . ψ), ψ |=

(
∃VI \ h . pos(φ)

)
,

h′ ⊇ true
(
φ′ ∧

∧
h′
)
, φ′ |= (∃VI \ h′ . ψ′), ψ′ |=

(
∃VI \ h′ . pos(φ′)

)
.

Then, for i = 1, 2,

hi ⊇ true
(
φi ∧

∧
hi
)
, φi |= (∃VI \ hi . ψi), ψi |=

(
∃VI \ hi . pos(φi)

)
.

2For ease of notation, the domain names are shortened to P, H and Bfun, respectively.

Boolean Functions for Finite-Tree Dependencies 13

Prec. class P H Bfun

p = 100 2 84 86
80 ≤ p < 100 1 31 36
60 ≤ p < 80 7 26 23
40 ≤ p < 60 6 41 40
20 ≤ p < 40 47 47 46
0 ≤ p < 20 185 19 17

Prec. impr. P→ H H→ Bfun

i > 20 185 4
10 < i ≤ 20 31 3
5 < i ≤ 10 11 6
2 < i ≤ 5 4 10
0 < i ≤ 2 2 24
no impr. 15 201

Table 1: The precision on finite variables when using P, H and Bfun.

We conjecture that Theorem 6.1 can be strengthened: the reduction process affecting
the Bfun component, corresponding to Eq. (5.1b) of Theorem 5.1, seems to be useless
also after the application of an abstract unification. In any case, this reduction
process can be usefully exploited to recover precision after the application of a
widening operator on the Bfun component.

A goal-dependent analysis was run for all the programs in our benchmark suite
and the results (with respect to the precision) are summarized in Table 1. Here, the
precision is measured as the percentage of the total number of variables that the
analyser can show to be Herbrand. Two alternative views are provided.

In the first view, each column is labeled by an analysis domain and each row is
labeled by a precision interval. For instance, the value ‘31’ at the intersection of col-
umn ‘H’ and row ‘80 ≤ p < 100’ is to be read as “for 31 benchmarks, the percentage
p of the total number of variables that the analyser can show to be Herbrand using
the domain H is between 80% and 100%.”

The second view provides a better picture of the precision improvements obtained
when moving from P to H (in the column ‘P → H’) and from H to Bfun (in the
column ‘H → Bfun’). For instance, the value ‘10’ at the intersection of column
‘H→ Bfun’ and row ‘2 < i ≤ 5’ is to be read as “when moving from H to Bfun, for
10 benchmarks the improvement i in the percentage of the total number of variables
shown to be Herbrand was between 2% and 5%.”

It can be seen from Table 1 that, even though the H domain is remarkably
precise, the inclusion of the Bfun component allows for a further, and sometimes
significant, precision improvement for a number of benchmarks. It is worth noting
that the current implementation of China does not yet fully exploit the finite-
tree dependencies arising when evaluating many of the built-in predicates, therefore
incurring an avoidable precision loss. We are working on this issue and we expect
that the specialized implementation of the abstract evaluation of some built-ins
will result in more and better precision improvements. The experimentation has
also shown that, in practice, the Bfun domain does not improve the groundness
information.

7 Conclusion

Several modern logic-based languages offer a computation domain based on rational
trees. On the one hand, the use of such trees is encouraged by the possibility of

14 APPIA-GULP-PRODE 2001

using efficient and correct unification algorithms and by an increase in expressivity.
On the other hand, these gains are countered by the extra problems rational trees
bring with themselves. As a consequence, those applications that exploit rational
trees tend to do so in a very controlled way, that is, most program variables can
only be bound to finite terms. By detecting the program variables that may be
bound to infinite terms with a good degree of accuracy, we can significantly reduce
the disadvantages of using rational trees.

In [4] an initial solution to the problem was proposed, where the composite ab-
stract domain H ×P allows to track the creation and propagation of infinite terms.
Even though this information is crucial to any finite-tree analysis, propagating the
guarantees of finiteness that come from several built-ins (including those that are ex-
plicitly provided to test term-finiteness) is also important. Therefore, in this paper
we have introduced a domain of Boolean functions Bfun for finite-tree dependencies
which, when coupled to the domain H ×P , can enhance its expressive power. Since
Bfun has many similarities with the domain Pos used for groundness analysis, we
have investigated how these two domains relate to each other and what are the
possibilities when both of them are included in the “global” domain of analysis.

References

[1] T. Armstrong, K. Marriott, P. Schachte, and H. Søndergaard. Two classes of
Boolean functions for dependency analysis. Science of Computer Programming,
31(1):3–45, 1998.

[2] R. Bagnara. Data-Flow Analysis for Constraint Logic-Based Languages. PhD
thesis, Dipartimento di Informatica, Università di Pisa, Pisa, Italy, 1997.
Printed as Report TD-1/97.

[3] R. Bagnara, R. Gori, P. M. Hill, and E. Zaffanella. Finite-tree analysis for
constraint logic-based languages. Quaderno 251, Dipartimento di Matematica,
Università di Parma, 2001. Available at http://www.cs.unipr.it/~bagnara/.

[4] R. Bagnara, R. Gori, P. M. Hill, and E. Zaffanella. Finite-tree analysis for
constraint logic-based languages. In P. Cousot, editor, Static Analysis: 8th
International Symposium, SAS 2001, volume 2126 of Lecture Notes in Computer
Science, pages 165–184, Paris, France, 2001. Springer-Verlag, Berlin.

[5] R. Bagnara, P. M. Hill, and E. Zaffanella. Efficient structural information
analysis for real CLP languages. In M. Parigot and A. Voronkov, editors,
Proceedings of the 7th International Conference on Logic for Programming and
Automated Reasoning (LPAR 2000), volume 1955 of Lecture Notes in Computer
Science, pages 189–206, Réunion Island, France, 2000. Springer-Verlag, Berlin.

[6] R. Bagnara and P. Schachte. Factorizing equivalent variable pairs in ROBDD-
based implementations of Pos. In A. M. Haeberer, editor, Proceedings of
the “Seventh International Conference on Algebraic Methodology and Software

Boolean Functions for Finite-Tree Dependencies 15

Technology (AMAST’98)”, volume 1548 of Lecture Notes in Computer Science,
pages 471–485, Amazonia, Brazil, 1999. Springer-Verlag, Berlin.

[7] R. Bagnara, E. Zaffanella, and P. M. Hill. Enhanced sharing analysis tech-
niques: A comprehensive evaluation. In M. Gabbrielli and F. Pfenning, editors,
Proceedings of the 2nd International ACM SIGPLAN Conference on Principles
and Practice of Declarative Programming, pages 103–114, Montreal, Canada,
2000. Association for Computing Machinery.

[8] M. Codish, H. Søndergaard, and P. J. Stuckey. Sharing and groundness depen-
dencies in logic programs. ACM Transactions on Programming Languages and
Systems, 21(5):948–976, 1999.

[9] A. Colmerauer. Prolog and infinite trees. In K. L. Clark and S. Å. Tärnlund, ed-
itors, Logic Programming, APIC Studies in Data Processing, volume 16, pages
231–251. Academic Press, New York, 1982.

[10] A. Colmerauer. Equations and inequations on finite and infinite trees. In Pro-
ceedings of the International Conference on Fifth Generation Computer Systems
(FGCS’84), pages 85–99, Tokyo, Japan, 1984. ICOT.

[11] A. Cortesi, G. Filé, and W. Winsborough. Prop revisited: Propositional formula
as abstract domain for groundness analysis. In Proceedings, Sixth Annual IEEE
Symposium on Logic in Computer Science, pages 322–327, Amsterdam, The
Netherlands, 1991. IEEE Computer Society Press.

[12] A. Cortesi, B. Le Charlier, and P. Van Hentenryck. Combinations of abstract
domains for logic programming: Open product and generic pattern construc-
tion. Science of Computer Programming, 38(1–3), 2000.

[13] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
Proceedings of the Fourth Annual ACM Symposium on Principles of Program-
ming Languages, pages 238–252, 1977.

[14] P. Cousot and R. Cousot. Abstract interpretation and applications to logic
programs. Journal of Logic Programming, 13(2&3):103–179, 1992.

[15] P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic
and Computation, 2(4):511–547, 1992.

[16] P. W. Dart. On derived dependencies and connected databases. Journal of
Logic Programming, 11(1&2):163–188, 1991.

[17] P. M. Hill, R. Bagnara, and E. Zaffanella. Soundness, idempotence and com-
mutativity of set-sharing. Theory and Practice of Logic Programming, 2001. To
appear. Available at http://arXiv.org/abs/cs.PL/0102030.

[18] B. Intrigila and M. Venturini Zilli. A remark on infinite matching vs infinite
unification. Journal of Symbolic Computation, 21(3):2289–2292, 1996.

16 APPIA-GULP-PRODE 2001

[19] A. King. Pair-sharing over rational trees. Journal of Logic Programming, 46(1–
2):139–155, 2000.

[20] K. Marriott and H. Søndergaard. Notes for a tutorial on abstract interpreta-
tion of logic programs. North American Conference on Logic Programming,
Cleveland, Ohio, USA, 1989.

[21] K. Marriott and H. Søndergaard. Precise and efficient groundness analysis for
logic programs. ACM Letters on Programming Languages and Systems, 2(1–
4):181–196, 1993.

[22] E. Schröder. Der Operationskreis des Logikkalkuls. B. G. Teubner, Leibzig,
1877.

[23] H. Søndergaard. An application of abstract interpretation of logic programs:
Occur check reduction. In B. Robinet and R. Wilhelm, editors, Proceedings of
the 1986 European Symposium on Programming, volume 213 of Lecture Notes
in Computer Science, pages 327–338. Springer-Verlag, Berlin, 1986.

