
Inferring Termination Conditions for Logic
Programs using Backwards Analysis

Samir Genaim and Michael Codish
The Department of Computer Science
Ben-Gurion University of the Negev

Beer-Sheva, Israel
{genaim,mcodish}@cs.bgu.ac.il

Abstract

This paper focuses on the inference of modes for which a logic program is
guaranteed to terminate. This generalizes traditional termination analysis
where an analyzer tries to verify termination for a specified mode. The con-
tribution is a methodology which combines traditional termination analysis
and backwards analysis to obtain termination inference. We demonstrate the
application of this methodology to enhance a termination analyzer to perform
also termination inference.

1 Introduction

This paper focuses on the inference of modes for which a logic program is guar-
anteed to terminate. This generalizes traditional termination analysis where an
analyzer tries to verify termination for a specified mode. For example, for the clas-
sic append/3 relation, a standard analyzer will determine that a query of the form
append(x, y, z) with x bound to a closed list terminates and likewise for the query
in which z is bound to a closed list. In contrast, termination inference provides the
result append(x, y, z)← x∨ z with the interpretation that the query append(x, y, z)
terminates if x or z are bound to closed lists. We refer to the first type of analysis
as performing termination checking and to the second as termination inference. We
consider universal termination using Prolog’s leftmost selection rule and we assume
that unifications do not violate the occurs check.

Termination inference is considered previously by Mesnard and coauthors in [15,
16, 17]. Their work can be used at http://www.complang.tuwien.ac.at/cti.
Here, we make the observation that the missing link between termination checking
and termination inference is backwards analysis. Backwards analysis is concerned
with the following type of question: Given a program and an assertion at a given
program point, what are the weakest requirements on the inputs to the program
which guarantee that the assertion will hold whenever execution reaches that point.
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In a recent paper, King and Lu [12] describe a framework for backwards analysis
for logic programs set in the context of abstract interpretation. In their approach, the
underlying abstract domain is required to be condensing or equivalently, a complete
Heyting algebra. Basically, this property ensures that we can work backwards from
an assertion in the program to find the weakest requirement on calls to the program
which guarantee that an assertion will hold.

To demonstrate this link between termination checking and termination infer-
ence, we apply the framework for backwards analysis described by King and Lu
[12] to enhance the termination (checking) analyzer described in [5] to perform also
termination inference. We use the domain Pos for groundness dependencies which
satisfies the required properties. The use of backwards analysis provides a formal
justification for termination inference and leads to a simple and efficient implemen-
tation similar in power to that described in [16]. It too can be used online at
http://www.cs.bgu.ac.il/~mcodish/TerminWeb.

In rest of the paper, Section 2 provides some background and a motivating ex-
ample. Section 3 reviews the idea of backwards analysis. Section 4 illustrates how
to combine termination analysis with backwards analysis in order to obtain termi-
nation inference. Section 5 presents an experimentation with the resulting analyzer
for termination inference. Finally, Section 6 reviews related work and Section 7
concludes.

2 Preliminaries and Motivating Example

We assume a familiarity with the standard definitions for logic programs [13, 1]
as well as with the basics of abstract interpretation [6, 7]. This section describes
the standard program analyses upon which we build in the rest of the paper. For
notation, in brief: Variables in logic programs are denoted as in Prolog (using the
upper case) while in relations, Boolean formula, and other mathematical context
we use the lower case. We let x̄ denote a tuple of distinct variables x1, . . . , xn. To
highlight a specific point in a program we use labels of the form a©.

Size relations and instantiation dependencies rest at the heart of termination
analysis: size information to infer that some measure on program states decreases
as computation progresses; and instantiation information, to infer that the underly-
ing domain is well founded. Consider the recursive clause of the append/3 relation:
append([X|Xs], Y s, [X|Zs]) ← append(Xs, Y s, Zs). It does not suffice to observe
that the size of the first and third arguments decrease in the recursive call. To
guarantee termination one must also ensure that one of these arguments is suffi-
ciently instantiated in order to argue that this recursion can be activated only a
finite number of times.

Instantiation information is obtained through abstract interpretation over the
domain Pos which consists of the positive Boolean functions augmented with a
bottom element (representing the formula false). The elements of the domain are
ordered by implication and represent equivalence classes of propositional formula.
This domain is usually associated with its use to infer groundness dependencies
where a formula of the form x ∧ (y → z) is interpreted to describe a program state
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in which x is definitely bound to a ground term and there exists an instantiation
dependency such that whenever y becomes bound to a ground term then so does z.
Similar analyses can be applied to infer dependencies with respect to other notions of
instantiation. We denote the approximation of the success set in Pos for groundness
of a program P by [[P ]]sucgr . For details on Pos see [14].

Size relations express linear information about the sizes of terms (with respect
to a given norm function) [3, 4, 8, 11]. For example, the relation x ≤ z ∧ y ≤ z
describes a program state in which the sizes of the terms associated with x and y
are less or equal to the size of the term associated with z. Similarly, a relation of the
form z = x+y describes a state in which the sum of the sizes of the terms associated
with x and y is equal to the size of the term associated with z. Several methods
for inferring size relations are described in the literature [3, 4, 8, 9]. They differ
primarily in their approach to obtaining a finite analysis as the abstract domain of
size relations contains infinite chains.

Throughout this paper we will use the so-called term-size norm for size relations
for which the corresponding notion of instantiation is groundness. We base our
presentation on the termination analyzer described in [5] although we could use
as well almost any of the alternatives described in the literature. This analyzer
is based on a bottom-up TP like semantics which makes loops observable in the
form of binary clauses. This provides a convenient starting point for termination
inference as derived in this paper. We denote the abstraction of this semantics over
the domain of size relations as [[P ]]binsize. Each element of [[P ]]binsize represents a loop
and is of the form p(x̄)← π, p(ȳ) where π is a conjunction of linear constraints.

For the full picture, we note that the analyzer of [5] involves two phases. In the
first phase, the user provides a program and the analyzer computes an approximation
of its loops over two domains: size relations and instantiation dependencies. In the
second phase, the user specifies the mode of an initial goal and the analyzer performs
a termination check. For termination inference we make use of the descriptions
of the loops with size information obtained in the first part of the first phase of
the termination analysis. In addition, we apply a standard Pos analyzer to obtain
instantiation dependencies which approximate the success set of the given program.
We demonstrate our approach by example in four steps:

The first step: Consider the append/3 relation.

append([X|Xs],Ys,[X|Zs]) :- append(Xs,Ys,Zs).

append([],Ys,Ys).

The termination checker [5] reports a single abstract binary clause:

append(A,B,C) :- [D<A, F<C, B=E], append(D,E,F).

indicating that subsequent calls append(A,B,C) and append(D,E, F ) in a com-
putation, involve a decrease in size for the first and third arguments (D < A and
F < C) and maintain the size of the second argument (B = E). To guarantee
that this loop may be traversed only a finite number of times, it is sufficient to
require that A or C be sufficiently instantiated. This can be expressed as a Boolean
condition: append(x, y, z)← (x ∨ z).
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Backwards analysis is now applied to infer the weakest conditions on the pro-
gram’s predicates which guarantee this condition. For this example the inference is
complete and we have derived the result: terminates(append(x, y, z))← x ∨ z.

The second step: Consider the use of append/3 to define list membership. Adding
the clause:

member(X,Xs) :- append(A,[X|B],Xs).

to the program introduces no additional loops. Backwards analysis should specify
the weakest condition on member(X,Xs) which guarantees the termination condi-
tion A∨Xs for append(A, [X|B], Xs). This is obtained through projection which for
backwards analysis is defined in terms of universal quantification as ∀A.(A∨Xs). The
resulting Boolean precondition for member/2 is: terminates(member(x, y))← y.

The third step: We now add to the program a definition for the subset/2 relation:

subset([X|Xs],Ys) :- member(X,Ys), subset(Xs,Ys).

subset([],Ys).

Termination checking reports an additional loop:

subset(A,B) :- [B=D,C<A], subset(C,D).

which will be traversed a finite number of times if A is sufficiently instantiated. For
the first clause to terminate both loops must terminate: for append/3 in the call to
member(X, Y s) and for subset/2 in the call to subset(Xs, Y s). So both Xs and
Y s must be instantiated which implies that both arguments of subset/2 should be
inputs. Namely, terminates(subset(x, y))← x ∧ y.

The fourth step: This step demonstrates that the precondition on a call in a
clause body may be (partially) satisfied by answers to calls which precede it. Con-
sider adding to the program a clause:

s(X,Y,Z) :- a© append(X,Y,T), b© subset(T,Z).

which defines a relation s(x, y, z) such that the set z contains the union of sets
x and y. The preconditions for termination derived in the previous steps specify
the conditions x ∨ t and t ∧ z at points a© and b© respectively. In addition, from
a standard groundness analysis we know that on success append(x, y, t) satisfies
(x ∧ y) ↔ t. So, instead of imposing on the clause head both conditions from the
calls in its body, as we did in the previous step, we may weaken the second condition
in view of the results from the first call. Namely the termination condition inferred
for s(x, y, z) is

∀t.((x ∨ t) ∧ (((x ∧ y)↔ t)→ t ∧ z)) ≡ x ∧ y ∧ z.

In general, the steps illustrated above need to be applied in iteration. Though
what we have shown works correctly for our example. In the next section we describe
more formally the steps required for backwards analysis.
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3 Backward Analysis

This section presents an abstract interpretation for backwards analysis using the
domain Pos distilled from the general presentation given in [12]. Clauses are assumed
to be normalized and contain assertions so that they are of the form h(x̄) ← µ �
b1, . . . , bn where µ is a Pos formula, interpreted as an instantiation condition that
must hold at the beginning of the clause, and bi is either an atom, or a unification
operation.

The analysis associates preconditions, specified in Pos, with the predicates of the
program. Initialized to true (the top element in Pos) these preconditions become
more restrictive (move down in Pos) through iteration until they stabilize. At each
iteration, clauses are processed from right to left using the current aproximations
for preconditions on the calls together with the results of a standard groundness
analysis to infer new approximations for these preconditions.

For the basic step, consider a clause of the form: p← . . . a©, q, b© . . . and assume
that the current approximation for the precondition for q is ϕq, the success of q is
approximated by ψq, and that processing the clause from right to left has already
propagated a condition ϕb at the point b©. Then, to insure that ϕb will hold after
the success of q, it suffices to require at a© the conjunction of ϕq with the weakest
condition σ such that (σ ∧ ψq) → ϕb. This σ is precisely the pseudo-complement
[10] of ψq with respect to ϕb, obtained as ψq → ϕb. So propagating one step to the
left gives the condition ϕa = ϕq ∧ (ψq → ϕb).

Now consider a clause h(x̄)← µ � b1, . . . , bn with an assertion µ ∈ Pos at the left
of the body. Assume that the current approximation for the precondition of h(x̄)
is ϕ and let ψi and ϕi denote respectively the approximation of the success set of
bi (obtained through standard groundness analysis) and the current precondition
for bi (1 ≤ i ≤ n). Backwards analysis infers a new approximation ϕ′ on h(x̄) by
consecutive application of the basic step described above. We start with en+1 = true
and through n steps (with i going from n to 1) compute a condition ei = ϕi∧ (ψi →
ei+1) which should hold just before the call to bi. After computing e1 we take
e0 = µ ∧ e1 and project e0 on the variables x̄ of the head by means of universal
quantification. The new condition is finally obtained through conjunction with the
previous condition ϕ.

There is one subtlety in that Pos is not closed under universal quantification. To
be precise, projection of x from ϕ is defined as the largest element in Pos which
implies ∀x.ϕ. When ∀x.ϕ is not positive then the projection gives false which is the
bottom element in Pos.

Example 1 Consider the clause

subset(A,B) :- e0© A � e1© A=[X|Xs], e2© B=Ys,

e3© member(X,Ys), e4© subset(Xs,Ys) e5©.

(the assertion A states that the first argument must be ground) where the success
patterns (derived by a standard groundness analysis) and the current approximation
of the preconditions are (respectively):
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[[P ]]sucgr =

{
member(x, y)← (y → x)
subset(x, y)← (y → x)

}
I =

{
member(x, y)← y
subset(x, y)← x

}
.

Starting from e5 = true, the conditions e4, . . . , e0 are obtained as follows:

e4 = Xs ∧ ((Y s→ Xs)→ e5)
e3 = Y s ∧ ((Y s→ X)→ e4)
e2 = true ∧ ((B ↔ Y s)→ e3)
e1 = true ∧ ((A↔ (X ∧Xs)→ e2)
e0 = A ∧ e1

Projecting e0 to the variables in the head gives ∀Xs,Y s,X .(e0) = A ∧ B. Which leads
to the new precondition subset(x, y)← x ∧ y.

In [12], the authors formalize backwards analysis as the greatest fixed point of
an operator over Pos. We have implemented this operator as a meta interpreter
which manipulates Boolean formula represented using binary decision diagrams.
See Appendix A.

4 Termination Inference

Termination inference proceeds as follows: (a) apply the initial phase of the ter-
mination analysis described in [5] to obtain a set of abstract binary clauses which
approximate the loops in the program; (b) extract Boolean conditions on the instan-
tiation of variables to guarantee that each of the identified loops can be executed a
finite number of times; and (c) apply backwards analysis as defined in [12] to infer
the weakest modes on initial goals which guarantee that these Boolean conditions
will hold.

The following definition specifies how to extract from the results of the initial
phase of the termination analysis those assertions from which backwards analysis
starts.

Definition 1 The termination assertion µ(p(x̄)) for the predicate p/n in the pro-
gram P is determined as follows:

1. The condition for a single binary clause is

µ(p(x̄)← π, p(ȳ)) =
∨{ ∧

i∈I xi

∣∣∣ I ⊆ {1, . . . , n}, π |= ( Σ
i∈I
xi >Σ

i∈I
yi )

}
2. and the assertion for p(x̄) is:

µ(p(x̄)) =
∧{

µ(`)
∣∣ ` = p(x̄)← π, p(ȳ) ∈ [[P ]]binsize

}
In theory we could obtain a stronger assertion by considering arbitrary linear

combinations of the arguments of p(x̄) instead of restricting coefficients to 0 and 1
as we do in the definition by taking subsets I of the argument positions. In practice,
in the implementation, we impose a weaker assertion which does not consider all
subsets I ⊆ {1, . . . , n}, but rather only the singletons (to detect argument positions
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which decrease in size) and the set of arguments which do not decrease in size. This
simplistic approach works well in practice. A more elaborate approach is described
in [19].

Example 2 Consider as P the split/3 relation (from merge sort):

split([],[],[]).

split([X|Xs],[X|Ys],Zs) :- split(Xs,Zs,Ys).

The binary clauses obtained by the analyzer of [5] are:

`1 = split(x1, x2, x3)← [y1 < x1, y3 < x2, x3 = y2], split(y1, y2, y3).

`2 = split(x1, x2, x3)← [y1 < x1, y2 < x2, y3 < x3], split(y1, y2, y3).

`3 = split(x1, x2, x3)← [y1 < x1, y3 < x2, y2 < x3], split(y1, y2, y3).

We have µ(`1) = µ(`3) = x1 ∨ (x2 ∧ x3), because y1 < x1 and y2 + y3 < x2 + x3; and
µ(`2) = x1 ∨ x2 ∨ x3 because y1 < x1, y2 < x2, y3 < x3. The assertion for split/3 is
µ(split(x1, x2, x3)) = (x1 ∨ (x2 ∧ x3)) ∧ (x1 ∨ x2 ∨ x3) = x1 ∨ (x2 ∧ x3).

Definition 2 A mode is a tuple of the form p(m1, . . . ,mn) where mi (1 ≤ i ≤ n) is
either b (‘bound’) or f (‘free’). We say that p(m1, . . . ,mn) is safe for p(x1, . . . , xn)
if the conjunction ∧{xi | mi = b} implies the termination condition inferred by
backwards analysis for p(x̄).

Example 3 In the previous example we inferred µ(split(x1, x2, x3)) = ϕ with ϕ =
x1 ∨ (x2 ∧ x3). Hence p(b, f, f) and p(f, b, b) are safe modes for split/3 because
x1 → ϕ and (x2 ∧ x3)→ ϕ.

The correctness of the method follows from the results of [5] and [12].

Theorem 1 Let P be a logic program and p(m̄) a safe mode for p(x̄). Then P
terminates for p(m̄).

Proof (sketch). Let p(m̄) be a safe mode for p/n, let G be an initial query of this
mode and let Q be a call to a predicate q/k which loops in an SLD derivation for G.
Let µ be the Boolean assertion imposed on q/k by termination inference and ϕ be
the termination condition for p/n. From the correctness of backwards analysis [12] it
follows that µ must hold for Q because ∧{xi|mi = b} ⇒ ϕ and ϕ guarantee µ. From
the construction of µ which considers the binary clauses for q and the correctness of
the termination analysis [5] it follows that the loop on q/k must terminate.
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5 Experimental Results

We have implemented an analyzer for termination inference based on the ideas pre-
sented in the previous sections. The implementation combines the first phase of the
termination analysis described in [5] (binary clauses with size information) and the
backwards analysis algorithm described in [12]. The implementation of backwards
analysis is described in the appendix. It is based on two meta-interpreters: one for
the approximation of the success set (computes a lfp); and the other for the back-
wards analysis itself (computes a gfp). Both manipulate binary decision diagrams
using a package written by Armstrong and Schachte (used in [2] and described in
[18]).

We use the same benchmarks as used in [16]. Our analyzer runs SICStus 3.7.1
on a Pentium III 500MHZ machine with 128MB RAM under Linux RedHat 7.1
(kernel 2.4.2-2). Timings for cTI are reported for a faster machine (Athlon 750MHz,
256Mb, SICStus 3.8.4). Table 1 indicates analysis times (in seconds). The columns
indicate the cost for: Pre: preprocessing (reading, abstraction, computing sccs,
printing results); Size: size analysis (to approximate binary clauses); Pos: ground-
ness dependencies analysis (to approximate answers); Ass: computing instantiation
assertions from the abstract binary clauses; BA: backwards analysis; cTI: the anal-
ysis using cTI (as reported in [16]). To conform with [16] all programs are analyzed
using the term-size norm with widening applied every third iteration, except for the
programs marked by a ? for which the list-length norm is applied and widening is
performed every fourth iteration.

The two blocks of programs in Table 1 correspond respectively to those from
Tables 2 and 5 in [16]. For the first block we infer exactly the same termination
conditions as cTI. For the second block (of larger programs), we infer a positive
termination condition for the same percentage of predicates as does cTI, except for
the last three programs where a “⊕” indicates that we infer a positive termination
condition for more predicates than does cTI and a “	” vice-versa.

In comparison with standard termination checking, the first three columns (Pre,
Size, and Pos) correspond to phases which need to be performed during termina-
tion checking. The next two columns (Ass and BA) indicate the extra cost for
termination inference. It is interesting to note that the times in these columns are
very small and in general less expensive than the additional cost to perform checking
(for a single mode) in the second phase of the standard termination analysis.

6 Related Work

This paper draws on results from two areas: termination analysis and backwards
analysis. It combines these results to obtain an analyzer which infers sufficient
conditions for termination of logic programs. For termination analysis we build on
the implementation described in [5]. For backwards analysis we have implemented
the algorithm described in [12]. The analyzer we obtain for termination inference is
similar to the one described in [16].

Backwards reasoning for imperative programs dates back to the early days of
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program Pre Size Pos Ass BA Total cTI
permute 0.01 0.12 0.00 0.01 0.00 0.14 0.15
duplicate 0.00 0.03 0.00 0.00 0.00 0.03 0.05
sum1 0.00 0.05 0.00 0.01 0.00 0.06 0.18
merge 0.00 0.19 0.00 0.02 0.00 0.21 0.26
dis-con 0.00 0.09 0.00 0.00 0.01 0.10 0.24
reverse 0.02 0.05 0.00 0.01 0.00 0.08 0.08
append 0.00 0.05 0.01 0.00 0.00 0.06 0.09
list 0.01 0.01 0.01 0.00 0.00 0.03 0.01
fold 0.00 0.05 0.00 0.01 0.00 0.06 0.10
lte 0.00 0.06 0.01 0.00 0.00 0.07 0.13
map 0.00 0.05 0.00 0.00 0.00 0.05 0.09
member 0.00 0.04 0.01 0.00 0.00 0.05 0.03
mergesort 0.00 0.44 0.00 0.02 0.00 0.46 0.43
mergesort? 0.01 0.98 0.01 0.01 0.01 1.02 0.57
mergesort ap 0.00 0.63 0.00 0.04 0.00 0.67 0.79
mergesort ap? 0.00 1.29 0.03 0.03 0.00 1.35 0.92
naive rev 0.01 0.08 0.01 0.00 0.00 0.10 0.12
ordered 0.00 0.03 0.00 0.00 0.00 0.03 0.04
overlap 0.00 0.05 0.01 0.00 0.00 0.06 0.05
permutation 0.02 0.10 0.00 0.01 0.00 0.13 0.15
quicksort 0.00 0.38 0.01 0.04 0.00 0.43 0.39
sum2 0.00 0.08 0.00 0.01 0.00 0.09 0.08
select 0.00 0.09 0.01 0.00 0.00 0.10 0.09
subset 0.01 0.09 0.01 0.00 0.00 0.11 0.12

ann 0.16 4.46 0.07 0.30 0.03 5.02 5.01
bid 0.04 0.62 0.02 0.05 0.01 0.74 0.79
boyer 0.10 2.55 0.05 0.04 0.01 2.75 3.53
browse 0.04 0.96 0.01 0.15 0.00 1.16 1.81
credit 0.04 0.43 0.02 0.04 0.01 0.54 0.61
peephole 0.09 4.46 0.04 0.07 0.02 4.68 12.08
plan 0.03 1.03 0.02 0.03 0.01 1.12 0.71
qplan 0.13 10.86 0.05 0.51 0.03 11.58 7.30
rdtok ⊕ 0.05 2.86 0.02 0.16 0.01 3.10 2.92
read 	 0.12 4.43 0.03 0.04 0.03 4.65 6.87
warplan ⊕ 0.08 2.54 0.04 0.14 0.03 2.83 3.18

Table 1: Experimental Results
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static analysis and has been applied extensively in functional programming. Ap-
plications of backwards analysis in the context of logic programming are few. For
details concerning other applications of backwards analysis, see [12]. The applica-
tion described in [12] is similar to ours. There, the authors infer modes for a logic
program which guarantee that Prolog builtins do not report instantiation errors.
The authors note that when trying to figure out how to run programs written by
a third party they typically start from builtins and work backwards to infer the
intended modes of use for the program.

Note that our work can also be applied to the same task as it is natural to assume
that the intended mode result in terminating computations. So for example where
King and Lu infer the mode x ∨ y for the predicate sort(x, y) in permutation sort,
termination can be guaranteed for the more restrictive mode x; and where they infer
for partition(x1, x2, x3, x4) in the quicksort program the mode x2∧(x1∨(x3∧x4)), to
guarantee termination we infer the mode x1. Together, these give the mode x1 ∧ x2

which is in fact the intended mode for this program. It is interesting to note that
both of these analyses can be performed together as a single backwards analysis.
We simply take the conjunction of the initial assertions from both analyses.

The only other work on termination inference that we are aware of is that of
Mesnard and coauthors. The implementation of Mesnard’s analyzer is described in
[16] and its formal justification is given in [17]. Their cTI analyzer is very similar
to ours, though designed differently.

For the first step our work relies on a traditional termination (checking) analyzer.
Hence we avoid getting involved with the specification, implementation and justi-
fication of the internal details of this phase. Instead, we consider it a black box
which supplies an approximation of the loops which could arise when executing a
program. The corresponding component in cTI derives size information just as we
do but detects level mappings (the measure on the program state which decreases
in a loop) using a more sophisticated, albeit more costly, technique adapted from
[19]. In most cases this does not make a practical difference on precision but it is
more powerful. In any case, it appears that both analyzers, given the same level
mappings will derive the same results in the second phase.

Our second phase is packaged as an instance of backwards analysis. Though
similar in essence to the corresponding phase in cTI, ours can be viewed as a black
box and simplifies the implementation of the analyzer and its formal justification.
There is also a difference: cTI specifies recursive equations for each point in a
clause and computes a greatest fixed point using a µ-calculus solver [16]. Backwards
analysis propagates Boolean constraints from right to left and avoids some degree
of re-computation. Our implementation computes the greatest fixed point using a
meta-interpreter written in Prolog. The two techniques appear to be equivalent,
but our backwards analysis phase is 5-6 times faster (on a slower machine) than the
corresponding phase in cTI (based on the comparison of our Table 1 with Table 5
from [16]).
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7 Conclusion

We have demonstrated that backwards analysis provides a useful link between termi-
nation checking and termination inference. This leads to a better understanding of
termination inference and simplifies the formal justification and the implementation
of termination inference. We demonstrate how putting the components together
enables us to enhance the termination analyzer described in [5] to perform also
termination inference.
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A Implementing Backwards Analysis

We implement backwards analysis for Pos as a meta-interpreter written in Prolog
just as we do for usual groundness analysis. The main differences are: that clause
bodies are processed from right to left, standard groundness dependencies are fac-
tored through application of the pseudo-complement, the fact that projection is
implemented in terms of universal quantification (instead of existential), and since
the analysis is moving down from the top element, so between iterations instead of
a join (disjunction) we apply the meet (conjunction).

The implementation consists in two meta-interpreters: one for the approxima-
tion of the success set (computes a lfp); and the other for the backwards anal-
ysis itself (computes a gfp). Both manipulate binary decision diagrams using a
BDD package written by Armstrong and Schachte and described in [18] and re-
ported in [2]. In our actual implementation, the interpreters are semi-naive and
optimized to consider the strongly connected components in the programs call
graph. Here, we illustrate a simplified (but working) version of backwards anal-
ysis based on naive fixed point evaluation. Both versions can be obtained from
http://www.cs.bgu.ac.il/~mcodish/TerminWeb.

Figure 1 depicts the two interpreters. On the left the interpreter for standard
groundness dependencies analysis and on the right the interpreter for backwards
analysis. Prior to analysis, clauses are normalized and represented as facts of the
form my clause(h(x̄), [b1, . . . , bn]). Unifications are abstracted and of the form X =
V ars where X is a variable and V ars is a conjunction of variables represented as
list.

The “control” component (identical for both interpreters) is given in lines 1-5.
The call to iterate triggers the iteration of an operator which continues until a
fixed point is reached. Whenever, new information is obtained, a flag is raised.
Iteration stops when retract(flag) fails in the second clause for iterate, that is,
when no changes where made in the previous iteration.

Groundness Analysis

The operator on the left (lines 7-11) performs a standard groundness dependencies
analysis. The current Pos approximation for each predicate p/n is maintained as a
fact of the form fact(gr, p(x1, . . . , xn), ϕ) where ϕ ∈ Pos is a represented as a BDD.
If there is no such fact for p/n then its current approximation is false (corresponding
to the bottom element of the domain). The operator provides the inner loop of the
algorithm which for each my clause(p(x̄), Body) solves the Body using the current
Pos approximations (line 9), projects the result on the variables x̄ (line 10) and then
updates the current approximation for p/n with the result (line 11).

The relation solve(Body, ϕin, ϕout) defined in lines 16-24 specifies that the solution
of the Body with the approximation ϕin is ϕout. If the Body is empty (line 16), then
ϕin = ϕout; Otherwise the first call in the body is either a unification (line 17) of
the form X = V ars in which case we take ϕ1 = X ↔ V ars (line 18), or else it is
an Atom (line 21) in which case we take as ϕ1 the current approximation for Atom
(line 22). In both cases we continue solving the rest of the Body with ϕ2 = ϕin∧ϕ1.
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The relation bdd lub(Head, ϕ) (lines 28-40) updates the current approximation
ϕ1 for the Head replacing it by ϕ ∨ ϕ1. There are three cases: If ϕ entails ϕ1

(line 30), then there is no update to perform. Otherwise, the current fact for the
approximation is removed, if it exists, and replaced by the disjunction (line 39). If
there is no current fact then the current approximation is false, so ϕ is the new
approximation (line 37). If the lub changes the current approximation, then the flag
is raised (at line 40) unless it is already up.

The get fact(Type, Atom, ϕ) relation (lines 42-49 and used in both interpreters)
picks up the current Pos approximation for an Atom and performs a renaming.

Backwards Analysis

The current approximation for backwards analysis of each predicate p/n is main-
tained as a fact of the form fact(ba, p(x1, . . . , xn), ϕ) where ϕ ∈ Pos. If there is
no such fact for p/n then its current approximation is true (corresponding to the
top element of the domain). In addition, there is an initial assertion (for termina-
tion inference) associated with each predicate and maintained as a fact of the form
assertion(p(x̄), ϕ).

The interpreter on the right is quite similar to the one on the left. In the operator
relation (lines 7-14): we consider for each clause its initial assertion (line 9) and
process the clause from right to left (line 10). Projection is performed by universal
quantification (line 13) and instead of a lub we apply a glb (at line 14).

In the solve relation (lines 16-26) implication is applied as pseudo complement on
the result of a unification (line 19) or on the result of the groundness analysis (line
24). The definition of the bdd glb/2 relation (lines 28-40) is dual to the bdd lub/2
relation to its left.
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iterate ← operator, fail.
iterate ←

retract(flag),
iterate.

iterate.

operator ←
my clause(Head,Body),
solve(Body,true,ϕ1),
bdd existential q(ϕ1,Head,ϕ2),
bdd lub(Head,ϕ2).

solve([],ϕ,ϕ).
solve([X=Vars Xs],ϕin,ϕout) ←

bdd iff(X,Vars,ϕ1),
bdd and(ϕin,ϕ1,ϕ2),
solve(Xs,ϕ2,ϕout).

solve([Atom Xs],ϕin,ϕout) ←
get fact(gr,Atom,ϕ1),
bdd and(ϕ,ϕin,ϕ2),
solve(Xs,ϕ2,ϕout).

bdd lub(Head,ϕ) ←
fact(gr,Head,ϕ1),
bdd entailed(ϕ,ϕ1),
!.

bdd lub(Head,ϕ) ←
(
retract(fact(gr,Head,ϕ1)) →

bdd or(ϕ1,ϕ,ϕ2),
;

ϕ2 = ϕ
),
assert(fact(gr,Head,ϕ2)),
(flag → true ; assert(flag)).

get fact(Type,Atom,Φ) ←
functor(Atom,Name,A),
functor(F Atom,Name,A),
Atom =.. [ A Vs],
F Atom =.. [ F Vs],
fact(Type,F Atom,ϕ),
bdd rename(ϕ,F Vs,A Vs,Φ),
!.

iterate ← operator, fail.
iterate ←

retractall(flag),
iterate.

iterate.

operator ←
my clause(Head,Body),
get assertion(Head,ϕ0)
reverse(Body,RBody),
solve(RBody,true,ϕ1),
bdd and(ϕ0,ϕ1,ϕ2),
bdd universal q(ϕ2,Head,ϕ3),
bdd glb(Head,ϕ3).

solve([],ϕ,ϕ).
solve([X=Vars Xs],ϕin,ϕout) ←

bdd iff(X,Vars,ϕ1),
bdd implies(ϕ1,ϕin,ϕ2),
solve(Xs,ϕ2,ϕout).

solve([Atom Xs],ϕin,ϕout) ←
get fact(gr,Atom,ϕ1),
get fact(ba,Atom,ϕ2),
bdd implies(ϕ1,ϕin,ϕ3),
bdd and(ϕ2,ϕ3,ϕ4),
solve(Xs,ϕ4,ϕout).

bdd glb(Head,ϕ) ←
fact(ba,Head,ϕ1),
bdd entailed(ϕ1,ϕ),
!.

bdd glb(Head,ϕ) ←
(
retract(fact(ba,Head,ϕ1)) →

bdd and(ϕ1,ϕ,ϕ2),
;

ϕ2 = ϕ
),
assert(fact(ba,Head,ϕ2)),
(flag → true ; assert(flag)).

get fact(Type,Atom,Φ) ←
functor(Atom,Name,A),
functor(F Atom,Name,A),
Atom =.. [ A Vs],
F Atom =.. [ F Vs],
fact(Type,F Atom,ϕ),
bdd rename(ϕ,F Vs,A Vs,Φ),
!.

Figure 1: Pos Interpreters for groundness (left); and backwards (right) analyses


