Proving modal and temporal properties of
rewriting logic programs

Isabel Pita and Narciso Marti-Oliet
Depto. Sistemas Informaticos, Univ. Complutense Madrid, Spain

Abstract

Verification Logic for Rewriting Logic (VLRL) is a modal action logic
appropriate for proving modal and temporal properties of concurrent systems
specified in rewriting logic. This paper improves the initial definition of VLRL
by making available two new action modalities that simplify the treatment of
the contextual identity transitions. The main novelty of the VLRL logic is
a topological modality associated with state constructors that allows us to
reason about the structure of states, stating that the current state can be
decomposed into regions satisfying certain properties. Then, on top of the
modal logic, we define a temporal logic for reasoning about properties of the
computations generated from rewrite theories. This is illustrated by means of
several examples.

Keywords: Rewriting logic specifications, Maude, Modal and temporal
logics, Verification logic for rewriting logic, Object-oriented systems.

1 Introduction

Rewriting logic is a logic for reasoning about the correctness of concurrent systems
having states, and evolving by means of transitions [7]. It is a logic of change
which can be used directly as a wide spectrum language supporting specification,
rapid prototyping, and programming of concurrent systems [6]. Modal and temporal
logics are, on the other hand, logics to talk about change in a more indirect and global
manner [4, 9]. In our view these latter logics support a nonexecutable—as far as
the system described is concerned—and more abstract level of specification above
that of rewriting logic. Our approach envisions two different roles played by logics
for concurrent systems: an erecutable role, played in our case by rewriting logic and
making the programming itself declarative, and a specification role, played by an
adequate logic for specification of concurrent systems, which is used to formulate
properties about the system.

Once we have the programs writen in rewriting logic, the Verification Logic for
Rewriting Logic (VLRL) [3] is used both to specify modal properties about the
system, and to establish the relationship between properties given in a temporal
logic and programs, so that the programs can be verified against the specification
properties. VLRL takes programs as models and allows observation properties to be

ArriaA-GuLr-rnupyr ZUuul

derived directly or through inference rules that relate the program and the temporal
specification logic (or logics). In this setting, given a program P and a specification
S, verifying that P satisfies S consists in determining a set V' of sentences in VLRL
such that P is a model of V' and V entails S.

In order to express the properties of the system, we make available attributes
for making observations of the state of a system and action symbols to account for
its elementary state changes. From those action symbols, we build action terms «
associated to the transitions in the system. Then, the modalities [«] and («) are
the usual modalities representing possibility and necessity, that capture the state
transitions at the top level of the system. We improve the initial definition of VLRL
by making available two new action modalities that simplify the treatment of the
contextual identity transitions. Another novelty of the VLRL logic is a topologi-
cal modality associated with state constructors that allows us to reason about the
structure of states, stating that the current state can be decomposed into regions
satisfying certain properties.

In Section 2 we present some basic notions of rewriting logic and the Maude
language; Section 3 introduces VLRL as it is presented in [3], and in Section 4 we
propose the new action modalities. Next, Section 5 introduces the temporal logic
we shall use and the interface inference rules of the temporal logic with VLRL.
Finally, in Section 6 we illustrate the use of the logic, in particular the action and
topological modalities, and prove some temporal properties about an object-oriented
application.

2 Rewriting Logic and the Maude Language

We outline here some basic notions of rewriting logic and its implementation in the
specification and programming language Maude needed for the application case. For
more information on the subject see [1, 7, 8].

A rewrite theory R is defined as a 4-tuple R = (%, E, L, R) where (X, E) is an
equational signature, L is a set of labels, and R is a set of rewrite rules of the
form [: [tz — [t'|g, where | € L, t and ' are X-terms possibly involving some
variables, and [t]; denotes the equivalence class of term ¢ modulo the equations
E. In order to simplify the presentation, in the following we will not make explicit
the equivalence class of terms. Intuitively, the signature (3, E) of a rewrite theory
describes a particular structure for the states of a system, and the rewrite rules
describe which elementary local transitions are possible in the distributed state by
concurrent local transformations.

Rewriting logic constitutes the foundation of the specification and programming
language Maude. In this paper we only make use of unconditional rewrite rules,
but both equations and rewrite rules can be conditional [7]. Systems in Maude are
built out of basic elements called modules. Functional modules are used for the
definition of algebraic data types and object-oriented modules for the definition of
object-oriented classes.

An object is represented as a term < O : C' | ay : vy,...,a, : v, >, where O is the
object’s name belonging to a set Oid of object identifiers, C' is the class identifier, a;

Proving modal and temporal properties of rewriting logic programs

are the names of the object attributes, and v; are their corresponding values, which
typically are required to be in a sort appropriate for their corresponding attribute.

Rewrite rules represent the implementation of the method associated to a message
received by an object. An unconditional rewrite rule has the form

rl[l]: My...M, <O;:Cy|atts; > ... < Op: Cp | attsy, >
= <O0;:C latts; > ... <O, :C} | atts; >
<Qu:Dyatts] > ... < Qp: Dy | attsy >
M ... M]

where n,m, k,p,q > 0, the M, are message expressions, i1, ..., % are different num-
bers among the original 1,...,m, and [is a label. The result of applying such a
rewrite rule is that: the messages My, ..., M, disappear; the state and possibly the
class of the objects O;,,...,0;, may change; all the other objects O; vanish; new
objects)1, ..., Q, are created; and new messages M, ..., Mé are sent.

By convention, the only object attributes attsy, ..., atts,, made explicit in a rule
are those relevant for that rule. In particular, the attributes mentioned only on the
lefthand side of the rule are preserved unchanged, the original values of attributes
mentioned only on the righthand side of the rule do not matter, and all attributes
not explicitly mentioned are left unchanged.

3 Verification Logic

A werification signature is defined by (X1, E*| State, At, L) where (3, ET) defines
a conservative extension of (X,), State is a designated sort of ¥, At is a family of
observation attributes, and L is a collection of labels indexed over strings of sorts
in 3. The idea is to make available attributes for making observations of the state
of a system and, since we use a conservative extension of the original signature, the
set of states Tx g siare is the same set as Ty+ g+ siq.- Hence, we take models to be
Kripke frames associated to the rewrite theories over an extended signature.

Action symbols account for the elementary state changes. Since rewrite rules may
require the context in which they are being applied to be considered as actions, the
following language of action terms defines a proper subset of all concurrent one-step
rewrites [7]. Pre-action terms « correspond to the quotient of the set of proof terms
obtained through the following rules of deduction *:

e Identities: for each [t] € Tx g(X), =T

T4 !
e Y-structure: for each f € &, o : [t =[]

f@) [f @] = [F@)]

e Replacement: for each labelled rewrite rule r(z) : [t(Z)] — [t'(T)] in R,

r(w) : [t(@/z)] — ['(w/z)]

IHere and in the rest of the paper, an overbar is used to abbreviate sequences of expressions;
for example, f(t) denotes f(t1,---,tn)-

ArriaA-GuLr-rnupyr ZUuul

modulo the following equations:

e Identity transitions: f([t1],...,[ta]) = [f(t1,--.,t0)],
e Axioms in E : t(a) = t'(@), for each equation t = t' in E.

Action terms are the pre-action terms that rewrite terms of sort State.

The term language is the term algebra Ty+(X), where Yt is extended to X with
attributes as constants and X has an infinite set of variables for each sort in X7
The modal language is given by

pu=true|ti =1t | "¢ | @1 D@2 | oo | fHler -, onl

where t1,t; € Ty+(X) are two terms of the same sort, o is an action term, f :
$1...5m — State € ¥, d is a sequence of data terms corresponding to the arguments
of f that are not of sort State, and the ¢; are in one-to-one correspondence with the
arguments of f that are of sort State. We apply this notational convention also to
action and state terms.

Given an action term «, [¢] is the usual modality that captures the state tran-
sitions performed by the action. f;[.] is a topological modality that allows us to
reason about the structure of states, that is, about the fact that the current state
of the system can be decomposed into components that satisfy certain properties.

We will make use of the usual derived propositional connectives for conjuntion
(A), disjunction (V), and logical equivalence (=).

The term algebra Tx+ g+ provides the structure over which formula satisfaction is
defined. Satisfaction of formulae at a given state [t] € Tx+ g+, for a given attribute
interpretation 12, and substitution o of ground X *-terms for variables, is defined as
follows:

o [«]"[t] = o(x),

[
[al"[t] = 1(a)([2]),
[

o [f(tr,...,t)]"0[t] = F([t]*°[t], ..., [tm]*°[t]), for each f : s;...8, — s in
xt.
o [t],I,0 = true,

1], 1,0 =ty = ta iff [t1]"[t] = [t2]"[¢],

[t], I,0 = o iff it is not the case that [t],I,0 = ¢,
[t], 1,0 =1 D @y ift [t],I,0 = ¢ implies [t], I, 0 = ¢o,
1], 1,0 = [o]p iff [o]" : [t] — [¢'] implies [t'], 1,0 &= ¢,

o [t],I,0 E filps,- .-, pn] iff for each fo(ty,...,t,) € [t], where w = [d]""[],
there is some ¢ € {1,...,n} such that [t;],I,0 = ¢;.

2The interpretation I provides an interpretation for the observation attributes: for each sort s,
I maps observations of sort s to functions of type Ts g, state — T5+,E+,5-

Proving modal and temporal properties of rewriting logic programs

where [a]! is the state transition given by the ground action term obtained by
applying the substitution ¢ to the action term .
We have two dual operators:

o [t],I,0 = {(a)piff [a]"° : [t] = [t'] and [t'],I,0 = ¢

o [t],I,0 & f7{¢1,- .-, py,) iff thereis a term fg(t1,. .., t,) € [t] withw = [d]"°[t]
such that [t;], 1,0 = ¢; foreach i =1,...,n.

Notice that the modality («) requires the action to denote an existing transition
from the current state. The modality [a] does not impose the requirement that such
a transition actually exists. Hence, [a]¢ holds trivially if, for the given substitution,
« cannot rewrite the current state.

The dual of the topological operator allows us to say that the current state is
decomposable according to the structure f into components that satisfy the formu-
lae ¢;. The f[p1, ..., ¢,] modality introduced above uses instead the subjunctive
condition if the state is decomposable in the specified way, then

Finally, we say that a formula is valid in a model iff it is satisfied at every state
for any attribute interpretation and any ground substitution for the variables.

A partial axiomatization of the logic includes the following rules of deduction [3]

F{a)p = [a]p A {a)true (1)
{oi D [auili | i€ {1,...,n}}

= fale1, - on) D [falan, .o an) f2{tr, -) (2)
Ft =ty D [a](t; = to) (3)

where ¢, and £ do not involve state attributes. Soundness of the rules can easily be
proved. For proving completeness we are currently trying to adapt the techniques
used to prove completeness of modal and dynamic logics.

4 Transitions zn context

A natural extension of the modal language is to consider new modalities that simplify
the treatment of contextual identity transitions. Given a state [t], an attribute
interpretation I, and a ground substitution o:

o [t],I,0 = [la]]leiff [t],I,0 = [a]p and [t], I, 0 = [B(a)]p, for all action terms
B(a) constructed only by the identities and X-structure rules on top of a.

o [t],I,0 & ({a))p iff either [t],],0 = (a)p or there is an action term [(«)
constructed only by the identities and »-structure rules on top of « such that

1], 1,0 = (B(a))e.

The new modalities allow us to formulate properties about parts of the system in
a wider context without complicating the notation by the need to make explicit the
contextual identity transitions. The action modality [[]] captures properties that
hold after rewriting any subterm of the term that represents the state. The idea of

ArriaA-GuLr-rnupyr ZUuul

the action modality ((«)) is that we can perform an action term in contest if either
we can perform the action term in the whole state or we can perform the action
term in a substate while performing identity transitions in the rest of substates in
which we can divide the state. In this case it is required one of the transitions to
take place.

We consider the following properties concerning the new modalities. First, we
have a version of (1) for the new modalities:

= {ledle A () true 5 {(a))e -

The main difference with (1) is that, if we rewrite inside a state, the fact that
a transition takes place in a substate yielding a property does not guarantee that
the transition cannot take place in a different substate yielding a different property.
Because of this, the converse is not always true. Consider, for example, an alphabet
with two constants: a and b; two operations to construct strings: the constant nil
and a concatenation operation, which is declared associative and with identity nil;
and rules for changing one constant into the other

sorts Alpha String .

subsort Alpha < String .

ops a b : -> Alpha .

op nil : -> String .

op __ : Alpha String -> String [assoc id:nil]
rl [chl] : a =>Db .

rl [ch2] : b => a .

We consider an observation attribute first that returns the first character of a
string. Then, for example, in the state abaab, the property ({chl))(first = b) is
fulfilled, since we can apply the rule chl in contert to the first character of the
string. However, the property [[chi]|(first = b) is not fulfilled, since we can apply
the rewrite rule to the second or third a of the string.

The following are justified directly from the definition

F (e D ((a)e
F{lefle S [ale (4)

The following property expresses when an action can be done in context

wi D ()Y F fa(pr, -, n) D {a)) faler, s 0imt, ¥, Qigas -, o)
for any i € {1,...,n} .

5 Temporal Logic

Different logics can be defined on top of VLRL depending on the nature of the
properties about which one wants to reason. Each logic should be related with VLRL
by means of interface inference rules that support the verification of programs against
specifications. We will use a branching time temporal logic for writing specifications.
Three logical operators are provided with the following meaning:

Proving modal and temporal properties of rewriting logic programs

e AX¢: the property ¢ holds at all possible successor states,
e A(pW1): in every computation ¢ will hold until ¢ holds (weak until),
e EXy: the property ¢ holds at some successor state.

Notice that AGy (the property ¢ is valid at all possible future states) is equivalent
to A(pWfalse).
The interface inference rules are:

© DY, {v D [a]Y | a action term} F ¢ D AXe) (5)
{e A=Y D [a](¢ V) | aaction term} F ¢ D A(pW)) (6)
¢ D (a)p ¢ D EXtY where « is an action term. (7)

Notice that, since « can be of the form (a/) where § only adds identities and
Y-structure to an action o, by the definition of the modality ((«')), (7) can also be
expressed as ¢ D ((a))y F ¢ D EXq.

6 Examples: A blocks world

In this example, we illustrate the use of the topological and action modalities and
we introduce the use of variables in the definition of properties. The example is
based on an object-oriented approach to the world of blocks [1, Section 9.5]. A
block is represented as an object with two attributes, under, saying whether it is
under another block or it is clear, and on, saying whether the block is on top of
another block or it is on the table. A robot arm is represented as another object
with one attribute hold, saying whether the robot arm is empty or it holds a block.
Actions are represented as messages.

First we present the system in Maude, then we prove some properties about the
number of blocks in the system, and then, we introduce observation attributes with
variables to prove properties about the blocks position in the system.

(omod 00-BLOCKSWORLDN is
protecting QID .
sorts BlockId RobotId Up Down Hold .
subsorts Qid < BlockId RobotId < 0id .
subsorts BlockId < Up Down Hold .

op clear : -> Up . *** block is clear

op catchup : -> Up . **x*x block is caught by the robot arm
op table : -> Down . ***% block is on the table

op catchd : -> Down . *%* block is caught by the robot arm
op empty : -> Hold . **x* robot arm is empty

class Block | under : Up, on : Down .

class Robot | hold : Hold .

msgs pickup putdown : RobotlId BlockId -> Msg .

msgs unstack stack : RobotId BlockId BlockId -> Msg .
vars X Y : BlockId .

var R : RobotlId .

ArriaA-GuLr-rnupyr ZUuul

rl [pickup] : pickup(R,X) < R : Robot | hold : empty >
< X : Block | under : clear, on : table >
=> < R : Robot | hold : X >
< X : Block | under : catchup, on : catchd > .
rl [putdown] : putdown(R,X) < R : Robot | hold : X >
< X : Block | under : catchup, on : catchd >
=> < R : Robot | hold : empty >
< X : Block | under : clear, on : table > .
rl [unstack] : unstack(R,X,Y) < R : Robot | hold : empty >
< X : Block | under : clear, on : Y >
<Y : Block | under : X >
=> < R : Robot | hold : X >
< X : Block | under : catchup, on : catchd >
<Y : Block | under : clear > .
rl [stack] : stack(R,X,Y) < R : Robot | hold : X >
< X : Block | under : catchup, on : catchd >
<Y : Block | under : clear >
=> < R : Robot | hold : empty >
< X : Block | under : clear, on : Y >
<Y : Block | under : X > .
endom)

6.1 Observing the number of blocks

To formulate properties about the number of blocks in the system we define the
following observation attributes: 3

e #blTable, which represents the number of blocks on the table,

e #blOnBl, which represents the number of blocks that are on other blocks,
#blHold, which represents the number of blocks that are held by robot arms,
#blocks, which represents the total number of blocks in the system,

#empty, which represents the number of empty robot arms,

#robots, which represents the total number of robot arms.

In the following we will consider only consistent configurations, in the sense that
they describe possible blocks world situations: blocks are not duplicated, if a block
is on top of another block then the latter should be under the former, and so on.

6.2 Topological and action modalities

In this section we present some examples on the use of the topological modality and
the action modalities in the specification of properties. In the configuration

< ’a:
< ¢

table >
)a>

Block | under :
: Block | under :

’c, on :
clear, on :

3The observed program is given in Appendix A.

Proving modal and temporal properties of rewriting logic programs

< ’b : Block | under : clear, on : table >
< ’r : Robot | hold : empty > < ’s : Robot | hold : empty >

the following formulae are satisfied:

e The state can be separated into a substate with two blocks, one over the other,
and a robot arm, and a substate with one block on the table and the other
robot arm:

_(#blocks = 2 N\ #blOnBl = 1 A\ #robots = 1,
#blocks = 1 N\ #blTable =1 A #robots = 1)

e The state can also be separated into the blocks and the robot arms:

_(#blocks = 3 N\ #robots = 0, #blocks = 0 \ #robots = 2)

With regard to the action modalities, in the state

’a : Block | under : catchup, on : catchd >

’c : Block | under : ’b, on : table >

’b : Block | under : clear, on : ’c >

’r : Robot | hold : empty > < ’s : Robot | hold : ’a >
putdown(’s,’a) unstack(’r,’b,’c)

AN AN AN A

the following formulae are satisfied:

e Rule putdown can be applied to the robot arm s and block a:
((putdowng 5))true

Notice that we use the modality ((-)) instead of the single modality () since
we want to apply the transition in contert to the subterm

< ’a : Block | under : catchup, on : catchd >
< ’s : Robot | hold : ’a > putdown(’s,’a)

e Rules unstack and putdown can be applied concurrently:
(--(unstacky p,c,putdowng p))true

Here we can use the single modality (_) since we apply the action term to the
whole configuration.

e Rules unstack and putdown can be applied concurrently, and after the transi-
tion is performed, a substate will have one block held by a robot arm and the
other substate will have one block on the table:

(- (unstacky p,¢,putdowng ,)) (#blHold = 1, #blTable = 1)

ArriaA-GuLr-rnupyr ZUuul

e If rules unstack and putdown are applied concurrently, then after the tran-
sition takes places a substate will have two blocks, one of them held, and a
robot arm, and the other substate will have an empty robot arm and a block
on the table:

[--(unstacky p,c,putdowng 5)]
_(#blHold = 1 A #blocks = 2 N #robots = 1, #empty = 1 A #blTable = 1)

o [f rules pickup and putdown are applied concurrently in contezt, then after
the transition takes places a substate will have more than one block on the
table and the other substate will have more than one block held:

[[--(pickupy p,putdowng 5)]]-(#blHold > 1, #blTable > 1)

e In all possible substates, if we apply rule putdown to the robot arm s and to
the block a, then the number of blocks on the table in that substate will be
greater than 1:

--[[putdowng 51 #blTable > 1,truel

6.3 Basic properties about the number of blocks

In this section, we present some basic properties fullfilled by the 00-BLOCKSWORLDN
system that can be directly proved from the satisfaction relation. We are investi-
gating the possibility of automatically deriving these properties from the program.

Properties about the transitions of the system. For each rewrite rule we express the
changes of each observation attribute when the transition associated with it takes
place. For example, if we take the rewriting rule pickup and the corresponding
action term pickupy 5, where u and a represent a substitution of the rule variables,
we can formulate the following properties about the number of blocks in the world:

#blHold = N > [[pickupy o] (#blHold = N +1)
#blTable = N D [[pickupy, a]/(#blTable = N — 1)
#bl0nBl = N D [[pickupy, o]](#bl0nBl = N)
#empty = N D [[pickupy o)(#empty = N —1)
#blocks = N D [[pickupy, a]](#blocks = N)
#robots = N D [[pickupy l|(#robots = N)

Properties that characterize the enabling conditions for the rewrite rules. Looking
at the lefthand side of each rewrite rule we can define the following properties:

((pickupy a))true D #blTable > 1 A #empty > 1
((putdowny, a))true D #blHold > 1

((unstacky a,p))true D #blOnBl > 1 A #empty > 1
((stacky,a,p))true D #blHold > 1

Structural properties of attributes concerning the number of blocks. These properties
express when a state can be separated in substates, and the properties fulfilled by

Proving modal and temporal properties of rewriting logic programs

each substate. They depend on the system configuration, and the fact that the
system admits empty states will influence them. For example we have:

#blocks = N = 3Ny, No._(#blocks = N1, #blocks = No) A (N = N1 + N2) (8)

Notice that if the system did not admit empty states, then this property would no
longer be an equivalence, since then there would be no way to decompose a state
with only one block.

6.4 Temporal properties about the number of blocks

The number of blocks in the system is invariant:
#blocks = N D AG(#blocks = N) .

By definition of the temporal connective AG, AGy = A(pWfalse) and applying
the second interface inference rule of temporal logic and VLRL (6), it is enough to
prove

{#blocks = N D [a](#blocks = N) | a action term} .

Using structural induction on action terms [3] to deal with the infinite set of action
terms, we have to prove:

e constants *: In a state composed only by a constant the property is fulfilled
for the action term related to that constant,
1. 4, 2,() D (#blocks = N) D [[<o:Zl >z, ,]](#blocks = N)
2. <Lislo > ge3s() D (#blocks = N) D [[<_:_l- >(z1, 22, z3)]](#blocks = N)
3. none() D (#blocks = N) D [[none]](#blocks = N)
4. pickupy () D (#blocks = N) D [[pickupy ,]](#blocks = N)
5. putdowny 5() D (#blocks = N) D [[putdowny j]](#blocks = N)
6. unstacky a p() O (#blocks = N) D [[unstacky 5 pll(#blocks = N)
7. stacky 5, p() O (#blocks = N) D [[stacky a,pl](#blocks = N)

e rules: The property is fulfilled for the action term related to each rewrite rule,

8. (#blocks = N) D [pickupy x|(#blocks = N)

9. (#blocks = N) D [putdowny x|(#blocks = N)
10. (#blocks = N) D [unstacku,x,y](#blocks = N)
11. (#blocks = N) D [stacky,x,y](#blocks = N)

e state operations (in this case, only __): If the property is fulfilled for an action
term in each substate then, if the state can be decomposed, the property is
fulfilled for the action term that results from applying the state operation to
the action terms of each substate,

4Some constants of sort State are obtained from the CONFIGURATION module, imported in the
transformation process of an object-oriented module to a system module [8].

ArriaA-GuLr-rnupyr ZUuul

12. ((#blocks = N1) D [a1](#blocks = Ny)),
((#blocks = N3) D [aa](#blocks = Na))
_(true, true) D (#blocks = N D [__(a1, a2)](#blocks = N))

The proofs of the first seven properties are straightforward. Derivation of prop-
erties 8-11 is based on the properties about the transitions of the system, and on
the property (4). We prove the last property as follows. Assume the hypotheses;
using the inference rule (2) of VLRL, we derive

(#blocks = Ny, #blocks = No) O [(ar, an)](_(#blocks = N1, #blocks = No))
Using the structural property of attributes (8):
#blocks = N D 3Ny, No.[__ (a1, a2)](_(#blocks = N1, #blocks = No)) A (N = Ny + N3).
Since N, Ny, N, are not state variables, we can apply (3):

#blocks = N D 3Ny, No.[__(a1, az)](_(#blocks = N1, #blocks = N3)) A
[--(oa, a2)](N = N1 + Na).

Applying [a]e A [a]y = [a](¢ A1) and IX [e]p O [a]3X.p, we have
#blocks = N D [__(a1,@2)]3N1, No.(_(#blocks = Ny, #blocks = N3)) A (N = Ny + Na).
Finally, using again the structural property of attributes (8) we get the result:

#blocks = N D [__(a1, a2)|(#blocks = N).

6.5 Observing the blocks position

To formulate properties about the position of the blocks in the system we need
to take into account each individual block. We consider the following observation

attributes: °

blTable,, which is true iff block x is on the table.

blClear,, which is true iff there is no block on block zx.
blOnBl,,, which is true iff block x is on block y.

blHold, 5, which is true iff block z is held by the robot arm 7.
blHold,, which is true iff block z is held by some robot arm.
empty,, which is true iff the robot arm r is empty.

5The observed program is given in Appendix A.

Proving modal and temporal properties of rewriting logic programs

6.6 Basic properties about the blocks position
Properties about the transitions of the system:

biTablea A blCleara A emptyy D [[pickupy 5]]blHoldy,a

blOnBly v, O [[pickupy,]|blOnBl, v 9)
blHoldy ,a D [[putdowny ,]](emptyy A blCleara A blTablea)
blOnBly p O [[putdowny (]|blOnBl, 1 (10)
emptyy A blCleara A blOnBly 1, O

[[unstacky a,p]|(blHoldy,a A blCleary) (11)
blHoldy ,a A blCleary, D [[stacky apll(emptyy A biCleara A blOnBly 1)
blOnBly p O [[stacky, c,q]|blOnBl; 1 (12)

Properties that characterize the enabling conditions for the rewrite rules:
We define a property for each rewrite rule in the system:

((pickupy,g))true D biTablea A blCleara A emptyy
((putdowny, a))true D blHoldy,a
((unstacky 5, p))true D blOnBly 1, A blCleara A emptyy (13)
((stacky a,p))true D blHoldy,a A blCleary,
Properties of derived observation attributes. In the set of observation attributes

that we have defined, some attributes can be expressed as a function of the values
of other observation attributes.

blCleara D —blOnBly, 5 A —blHoldy,a (14)
blOnBly v, O —~blTablea A =blCleary, A =blHoldy ,a A —blHoldy y, (15)
biHoldy 3 O blHolda (16)

Structural properties of attributes concerning the blocks position. An observation
attribute is true in a state, if it is true in some substate.

blOnBly v, A emptyy = _(blOnBly v, A emptyy, true) (17)
blHoldy ,a = __(blHoldy , a, true) (18)
blOnBly v, = _(blOnBly v, true) (19)
blHoldy = __(blHolda, true) (20)

6.7 Temporal properties about the blocks position
If a block is under another block then it cannot be caught by an empty robot arm:
blOnBlx,y A emptyy O AX(=blHoldr,y) .

Applying the first interface inference rule of temporal logic and VLRL (5), it is
enough to prove

blOnBlx ,y N emptyy D —blHoldr ,y,
{bl0OnBix ,y N emptyy D [a](=blHoldr ,y) | c action term} .

ArriaA-GuLr-rnupyr ZUuul

For the first part we get from (15):
blHoldy ,y D —blOnBlx,y V —emptyy
For the second part, using structural induction on action terms, we have to prove:

e constants are derived like in the previous example.

o rules:
1. (blOnBlx,y A emptyy) DO [pickupy ,](—blHoldr,y) Apply properties (9),
(15) and (4) to obtain the result.
2. (blOnBlx,y A emptyy) D [putdowny,)(=blHoldr,y) Apply properties (10),
(15) and (4) to obtain the result.

3. (blOnBlx ,y A emptyy) D [unstacky »1,z2](—blHoldr ,y) We distinguish two
cases: (i) If blCleary then apply (11) and then (14) and (4) to obtain the

result; (ii) If —=blClearx apply the contrapositive law of propositional logic
o (13) and (4).

4. (blOnBlx ,y A emptyy) D [stacky, z1,z2](—blHoldr,y) The property is de-
rived like the first and the second ones.

e state operations (in this case, only _):

5. ((blOnlei,yl A emptyrq) D [al](ﬂblHoldri’yl)),
((bl0nBlyg yo A emptyrp) O [aa](=blHoldyo yo))
_(true, true) D (blOnBlx,y A emptyy) D (a1, a)](—blHoldy ,y)

Assume the hypotheses; using the inference rule (2) of VLRL, we derive
—((blOnBlyy y1 A emptyry), true) O [-(a1, a2)](-(—blHoldyy | yy, true))
Using the structural property of attributes (17):
(blOnBly ,y A emptyr) D [-(a1, ao)](-(=blHoldy y, true)).

Finally using the structural property of attributes (18) we get the result.
If a block is under another block, it will stay under that block until the block that
15 on it is caught:

blOnBlx,y O A(blOnBlx,y W blHoldx) .

Applying the second interface inference rule of temporal logic and VLRL (6), it is
enough to prove

{blOnBIx ,y A —blHoldx D [a](blOnBlx ,y V blHoldx) | o action term} .
Using structural induction, we have to prove:

e constants are derived like in the first example.

Proving modal and temporal properties of rewriting logic programs

o rules:

1. (blOnBlx,y A —~blHoldy) > [pickupy](blOnBly,y V biHoldg) The property
is derived directly from (9) and (4).

2. (blOnBlx ,y A=blHoldx) D [putdowny](blOnBlx,yV biHoldx) The property
is derived directly from (10) and (4).

3. (blOnBlx ,y A —blHoldy) D [unstacky z1,72](blOnBlx,y V blHoldx) We dis-
tinguish two cases: (i) If empty, A blClearx then apply (11), (16) and (4)
to obtain the result; (ii) If —empty, V —blClearx we apply the contrapos-
itive law of propositional logic to (13) and (4).

4. (blOnBlx ,y A —blHoldx) D [stacky z1,22](blOnBlx,y V blHoldg) The prop-
erty is derived directly from (12) and (4).

e state operations:

5. ((blOnBlyy g1 A—blHoldg) O (0] (HOnBlyy y1 V biHoldyy),
(bOnBlyg, yo A —blHoldyg) O [02)(blOnBlyg 4o V biHoldyo) -
—(true, true) O (blOnBlx,y A ~blHoldg) D
[-—(a1,a2)](blOnBlx ,y V blHoldx)

Assume the hypotheses; using the inference rule (2) of VLRL, we derive
—(blOnBlyxy y1,true) D [(a, a2)](-((blOnBlyxy y1 V blHoldy1), true))
Using the structural properties of attributes (19):
blOnBlyy y1 O [, 02)](((BlOnBlyq g1 V biHoldyy), truc))

Finally using the structural properties of attributes (20) we get the result.

7 Related work

Work directly related to our proposal includes the modal p-calculus proposed by
Lechner for reasoning about object-oriented Maude specifications [5], and Denker’s
object-oriented distributed temporal logic [2]. The main difference of our approach
is that we do not restrict ourselves to a special type of state configuration, thus
including structures that need not to be associative or commutative. Therefore,
we are able to treat any system specified in Maude, and not only object-oriented
systems.

Comparing with the locally distributed temporal logic of Denker’s work, we are
interested in global properties of a system, object-oriented or not, instead of proper-
ties as seen by a local object. Then, we use Kripke frames based on state transitions
as models instead of the concurrent labeled event structures used by Denker. While
we emphasize the relation between properties of global states and properties of the
substates, mainly when state transitions take place, Denker’s work deals with the
concurrent nature of a distributed system, mainly with causality, conflict and con-
currency properties.

ArriaA-GuLr-rnupyr ZUuul

Comparing with Lechner’s work, our atomic formulae are more general than sim-
ple propositions asserting the presence of messages and/or objects. This is the main
reason behind the introduction of observation attributes in order to express more
interesting properties of the system. Our approach admits using different specifi-
cation logics for the definition of properties, by giving inference rules of the logic
and VLRL, then the verification process is acomplished by the deductive system of
VLRL. On the other hand, Lechner proposes a three level approach to specification:
at the most abstract level, properties are expressed using the p-calculus; at the in-
termediate level, formulae are blended with propositions on object states; and at
the concrete level, Maude is used. The relation between these levels is achieved by
a refinement process.

References

[1] M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and J. F.
Quesada, A Maude Tutorial, Computer Science Laboratory, SRI International, March
2000. http://maude.csl.sri.com/tutorial

[2] G. Denker. From rewrite theories to temporal logic theories, in: C. Kirchner and H.
Kirchner (eds.), Proc. Second Int. Workshop on Rewriting Logic and its Applications,
Pont-a-Mousson, France, Electronic Notes in Theoretical Computer Science, Vol. 15,
Elsevier Science, September 1998.

[3] J. L. Fiadeiro, T. Maibaum, N. Marti-Oliet, J. Meseguer, and I. Pita. Towards a veri-
fication logic for rewriting logic. In D. Bert, C. Choppy, and P. Mosses, editors, Recent
Trends in Algebraic Development Techniques, WADT’99, Chateau de Bonas, France,
September 1999, Selected Papers, LNCS 1827, 438-458. Springer-Verlag, 2000.

[4] R. Goldblatt, Logics of Time and Computation, CSLI Lecture Notes 7, Center for
the Study of Language and Information, Second edition, 1992.

[6] U. Lechner, Object-Oriented Specification of Distributed Systems, Ph. D. Dissertation,
Universitat Passau, June 23, 1997.

[6] P. Lincoln, N. Marti-Oliet, and J. Meseguer, Specification, transformation, and pro-
gramming of concurrent systems in rewriting logic, in: G. E. Blelloch et al. (eds.),
Specification of Parallel Algorithms, DIMACS Workshop, May 1994, American Math-
ematical Society, 1994, 309-339.

[7] J. Meseguer, Conditional rewriting logic as a unified model of concurrency, Theoretical
Computer Science 96, 1992, 73—-155.

[8] J. Meseguer, A logical theory of concurrent objects and its realization in the Maude
language, in: G. Agha, P. Wegner, and A. Yonezawa (eds.), Research Directions in
Concurrent Object-Oriented Programming, The MIT Press, 1993, 314-390.

[9] C. Stirling, Modal and temporal logics, in: S. Abramsky, D. Gabbay, and T. Maibaum
(eds.), Handbook of Logic in Computer Science, Vol. I1, Oxford University Press, 1992,
478-563.

Proving modal and temporal properties of rewriting logic programs

A Observed programs

The observed program of the number of blocks example is given by the following
rewrite theory, which is a conservative extension of the 00-BLOCKSWORLDN theory,

since no additional rewrite rule is added:

(omod 00-BLOCKSWORLDN-NUMBLOCKS-OBSERVED is

protecting 00-BLOCKSWORLDN .

op #blTable : Configuration -> MachineInt .
op #b1l0OnBl : Configuration -> MachinelInt .

op #blHold : Configuration -> MachineInt .

op #blocks : Configuration -> MachinelInt .

op #empty : Configuration -> MachineInt .

op #robots : Configuration -> MachinelInt .
var C : Configuration .

vars X Y : BlockId .

var R : RobotId .

var M : Msg .

var 0 : Object .

eq #blTable(< X : Block | on : table >) =1 .
eq #blTable(< X : Block | on : catchd >) = 0 .
eq #blTable(< X : Block | on : Y >) =0 .

eq #blTable(< R : Robot | >) =0 .

#b1lTable (none) = 0 .
#b1Table(M C) = #blTable(C)

€q
€q

ceq #blTable(0 C) = #blTable(0) + #blTable(C) if C =/= none .

eq #b1l0nBl(< X : Block | on : table >) = 0 .

eq #b10nB1(< X : Block | on : catchd >) = 0 .

eq #b10nB1(< X : Block | on : Y >) =1 .

eq #b10nB1(< R : Robot | >) =0 .

eq #b1l0nBl(none) = 0 .

eq #b1l0nB1(M C) = #bl0nB1(C)

ceq #bl0OnB1(0 C) = #blOnB1(0) + #b1lOnB1(C) if C =/= none .
eq #blHold(< X : Block | >) =0 .

eq #blHold(< R : Robot | hold : empty >) = 0 .

eq #blHold(< R : Robot | hold : X >) =1 .

eq #blHold(none) = 0 .

eq #blHold(M C) = #blHold(C)

ceq #blHold(0 C) = #blHold(0) + #blHold(C) if C =/= none .

eq #blocks(C) = #blTable(C) + #bl0OnB1(C) + #blHold(C)

Block | ») =0 .
Robot | hold : X >)
Robot | hold :

eq #empty(< X :
eq #empty(< R :
eq #empty(< R :

=0 .

empty >) =1 .

ArriaA-GuLr-rnupyr ZUuul

eq #empty(none) = 0 .
eq #empty(M C) = #empty(C)
ceq #empty(0 C) = #empty(0) + #empty(C) if C =/= nome .

eq #robots(C) = #blHold(C) + #empty(C)
endom)

The observed program of the blocks position example is given by:

(omod 00-BLOCKSWORLDN-POSITION-OBSERVED is
protecting 00-BLOCKSWORLDN .

op blTable : Configuration 0id -> Bool .

op blClear : Configuration 0id -> Bool .

op blOnBl : Configuration 0id 0id -> Bool .
op blHold : Configuration 0id 0id -> Bool .
op blHold : Configuration 0id -> Bool .

op empty : Configuration 0id -> Bool .

var C : Configuration .
vars X Y Z : BlockId .
vars R S : RobotId .
var M : Msg .

var 0 : Object .

eq blTable(< X : Block | on : table >,X) = true .

eq blTable(< X : Block | on : Y >,X) = false .

ceq blTable(< Y : Block | >,X) = false if X =/=Y .

eq blTable(< R : Robot | >,X) = false .

eq blTable(none,X) = false .

eq blTable(M C,X) = blTable(C,X)

ceq blTable(0 C,X) = blTable(0,X) or blTable(C,X) if C =/= none .

eq blClear(< X : Block | under : clear >,X) = true .

eq blClear(< X : Block | under : Y >,X) = false .

ceq blClear(< Y : Block | >,X) = false if X =/=Y .

eq blClear(< R : Robot | >,X) = false .

eq blClear(none,X) = false .

eq blClear(M C,X) = blClear(C,X)

ceq blClear(0 C,X) = blClear(0,X) OR blClear(C,X) if C =/= none .

eq bl0nB1(< X : Block | on : table >,X,Y) = false .

eq bl0OnB1(< X : Block | on : Y >,X,Y) = true .

ceq bl0nB1(< X : Block | on : Z >,X,Y) = false if Y =/=Z .

ceq bl0nB1(< Z : Block | >,X,Y) = false if X =/= Z .

eq blOnB1(< R : Robot | >,X,Y) = false .

eq blOnBl(none,X,Y) = false .

eq blOnB1(M C,X,Y) = blOnB1(C,X,Y)

ceq blOnB1(0 C,X,Y) = bl0OnB1(0,X,Y) or blOnB1(C,X,Y) if C =/= none .

Proving modal and temporal properties of rewriting logic programs

eq blHold(< X : Block | >,R,Y) = false .

eq blHold(< R : Robot | hold : empty >,S,Y) = false .

eq blHold(< R : Robot | hold : X >,R,X) = true .

ceq blHold(< R : Robot | hold : X >,R,Y) = false if X =/=Y .
eq blHold(none,R,Y) = false .

eq blHold(M C,R,Y) = blHold(C,R,Y)

ceq blHold(0 C,R,Y) = blHold(O,R,Y) or blHold(C,R,Y) if C =/= none .

eq blHold(< X : Block | >,Y) = false .
eq blHold(< R : Robot | hold : empty >,Y) = false .
eq blHold(< R : Robot | hold : X >,X) = true .

ceq blHold(< R : Robot | hold : X >,Y) = false if X =/=Y

eq blHold(none,Y) = false .

eq blHold(M C,Y) = blHold(C,Y)

ceq blHold(0 C,Y) = blHold(0,Y) or blHold(C,Y) if C =/= none .

eq empty(< X : Block | >,R) = false .

eq empty(< R : Robot | hold : empty >,R) = true .

ceq empty(< R : Robot | hold : empty >,S) = false if R =/= S .

eq empty(< R : Robot | hold : X >,S) = false .

eq empty(none,X) = false .

eq empty(M C,X) = empty (C,X)

ceq empty(0 C,X) = empty (0,X) or empty (C,X) if C =/= none .
endom)

