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The developments in both language design and programming methodology for func-
tional programming have repeatedly demonstrated the usefulness of category-theory
insights in the construction and organization of programming idioms. Initial algebras
and final coalgebras, to give an example, are a succinct and very general mathema-
tization of the ideas of inductive and coinductive types. The legitimacy of various
structured recursion and corecursion schemes (circular definition schemes for func-
tions with inductive domains and coinductive codomains) is conveniently checked
category-theoretically. The central categorical notions of monad and comonad, to
give another example, are in several programming contexts useful as means for
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uncovering or imposing structure. Monads were originally introduced into program-
ming by Moggi [Mog91] as a modularization tool in language semantics and then
quickly popularized by Wadler [Wad92] as a means to set up an infrastructure for
representing and manipulating computations with effects also in actual program-
ming. Comonads, although not as popular as monads, have been employed, e.g., to
describe intensional semantics [BG92]. Kieburtz [Kie99] argues that comonads are
good as a framework for the representation and manipulation of computations in
context. Monads and comonads matter for inductive and coinductive types, too. It
is, for instance, possible to specify recursion and corecursion schemes by means of
comonads and monads equipped with distributive laws [UVPO01, Bar01].

In this paper, we study monads and comonads arising from inductive and coin-
ductive types. It is folklore knowledge (which, as a matter of fact, forms the starting
point of the categorical approaches to universal algebra and representation and ma-
nipulation of programming language syntax [Man76, Tur96, TP97]) that the types
of trees with variables of a fixed branching factor give rise to a monad with substi-
tution as the extension operation. The equally plausible, but not so apparent fact
that the same holds of the types of cotrees (non-wellfounded trees) with variables
has been pointed out recently [AAV01, Mos01, GT01]. We show that these two facts
dualize for the types of what we call decorated trees and decorated cotrees: these
determine comonads with redecoration as the coextension operation. Moreover,
both the constructions for trees and cotrees with variables and those for decorated
trees and cotrees are instances of significantly more general constructions: both the
inductive and coinductive types given by the partial applications F'(A, —) of any bi-
functor F' whose partial applications F'(—, X) uniformly admit a monad structure
give rise to a monad, and a dual statement holds about comonads. Written down
as programs, the constructions present an elegant example of seriously generic pro-
gramming involving, among other things, generic uses of different generic recursion
and corecursion combinators.

The paper may be seen as a successor to [UV99, Ven00, UVPO01], which are all
concerned with recursion and corecursion schemes. A discussion of decorated trees
and cotrees appears in a related paper [UVO01].

The organization of the paper is the following. In Section 2, we introduce the
concepts of monad and comonad. In Section 3, we outline the basics about the
categorical approach to inductive and coinductive types as initial algebras and final
coalgebras. The tree and cotree (co)monad constructions are presented in Section
4, to be followed by the generalized constructions of general inductive and coinduc-
tive (co)monads in Section 5. In Section 6, we conclude. Appendix A contains a
demonstration of a Haskell implementation of the generalized constructions.

Though motivated by issues in language design and programming methodology,
the material of the paper is basically category-theoretic. We have therefore striven
for a self-contained and elementary exposition, suppressing some abstractions that
would have added conciseness, but at the expense of indirection of the connection
to the concrete concepts and facts of interest. The reader is assumed to know
the concepts of functor and natural transformation and the basics of the categor-
ical approach to functional programming (i.e., the types-as-objects, functions-as-
morphisms paradigm), incl. the highly relevant notions of coproduct, product and
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exponential objects which constitute the structure of a bicartesian closed category.
The more specific concepts of initial algebra and final coalgebra and monad and
comonad are briefly introduced. For a good introduction to initial algebras and
final coalgebras from the programming perspective and to the categorical approach
to functional programming in general, we refer the reader to [Fok92, BAM97]. The
classic category-theory texts treating (co)monads are [Man76, BW84].

The notation used is fairly standard. The coproduct of objects A and B is written
(A + B,inly p,inry g), the case analysis of f : A — C, g : B — C is denoted [ f,¢].
The product of objects A and B is denoted (A x B, fst4 p,snd4 p), the pairing of
f:C — Aand g: C — Bis (f,g). The final object is denoted 1 and the final
morphism from C' is ¢¢. The exponential object “A raised to the power of B”
is written (B = A,evp4) and the currying of a morphism f : C x B — A is
written curry(f). unit is the natural transformation — = — x 1, assoc is the natural
transformation (—; X —3) X —3 = —1 X (—2 X —3).

2 (Co)monads

2.1 Monads

A monad on a category C is a triple (M, n, u) consisting of an endofunctor M on C
(underlying functor), and two natural transformations n: ld > M, p: M-M — M
(unit and multiplication) such that

MA— M (MA) M(M(MA)24 M(MA)
WMAl u\\A l/llA uMAl N ll«‘A
M(MA) ——MA M(MA) MA

Monads are equivalent to Kleisli triples. A Kleisli triple on C is a triple (M, n, —*)
consisting of an endofunction M on |C| (underlying object mapping), a |C|-indexed
family n of morphisms 4 : A — M A, and an operation —* taking every morphism
f:A— MB toamorphism f*: MA — MB (extension of f) such that f*ons = f,
if f:A— MB, n*, = idya, and (g* o f)* = ¢g* o f*. A monad is converted into
a Kleisli triple by putting f* = uypo M f, if f : A — MB. For conversion in the
opposite direction, one sets M f = (ngo f)*,if f: A — B, and pa = id}, 4.

Some simple, but popular and important examples of monad constructions are
the following.

e Given an object F in C, the endofunctor M = — + F on C is extended into a
monad (M, n, ) by setting na = inlg g, pa = [idpra, inra g .

e Given an object E in C, the endofunctor M = E = — on C is extended
into a monad (M,n,u) by setting na = curry(fstag), ua = curry(evg 4 o
( eVE MA, SndM(MA),E ).

e Given a monoid (E, e, m) in C, the endofunctor M = — x E on C is extended
into a monad (M,n, u) by setting na = (id4 X €) o unity, pg = (idg x m) o
assOCy g E-
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2.2 Comonads

A comonad on a category C consists of an endofunctor N on C, and two natural
transformations € : N = Id, 6 : N = N - N (counit and comultiplication) such that,
for any object A,

N(NA) 24~ N4 N(NA) Y% N(N(N A))
JAT / TENA JAT . TJNA
NA—4- N(NA) NA N(NA)

Comonads are essentially the same as coKleisli triples. A coKleisli triple on C is a
triple (N, e, —1) consisting of an endofunction N on |C| (underlying object mapping),
a |C|-indexed family of morphisms £4 : NA — A, and an operation —' taking every
morphism f : NA — B to a morphism ff : NB — NA (coextension of f) such
that epo fT = f,if f: NA — B, g4 = idya, and (go f1)f = g o fI. A comonad
is converted into a coKleisli triple by putting ff = Nf od4, if f : NA — B. For
conversion in the opposite direction, one sets Nf = (foey)f, if f : A — B, and
(SA = idNAT.

The the simplest examples of comonads with relevance to programming are the
following:

e Given an object E in C, the endofunctor N = — x E on C is extended into a
comonad (N, e,0) by setting €4 = fsta g, 64 = (idya,snda g ).

e Given a monoid (F, e, m) in C, the endofunctor N = F = — on C is extended
into a comonad (N, ¢,d) by setting e4 = evyar o (idyva X €) o unitya, 64 =
curry(curry(evya,g o (idya X m) o assocya m,k))-

3 Inductive and coinductive types and functors

Given an endofunctor F on a category C, an F-algebra is a pair (A, ¢) consisting of
an object A (underlying object or carrier) and a morphism ¢ : FA — A (algebra
structure). An F-algebra map from (A, ¢) to (B,1) is a morphism h : A — B such
that

FA-FB

I}

A——B

An F-coalgebra, dually, is a pair (A, ¢) consisting of an object A (underlying object
or carrier) and a morphism ¢ : A — F'A (coalgebra structure). An F-coalgebra map
from (A, ) to (B, ) is a morphism h : A — B such that

FA-t ppB

I )

A——B
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Both the F-algebras and the F-coalgebras form a category (with identity and com-
position inherited from C).

The initial object of the category of F-algebras (if it exists) is called the initial F-
algebra, written (uF,ing). Under the view of C as a category of types, it is exactly
what type theorists and functional programmers call the F-based inductive type
(data type), together with the accompanying data constructor. By the initiality, for
any morphism ¢ : FA — A, there exists a unique morphism A : uF' — A such that

F(uF) 2> A

e | lw

pF—t— A

This h is often called the catamorphism or fold of ¢ and denoted (| ¢ ) or foldg(¢p).
Conceptually, A is the function determined by ¢ as a step function by the most basic
recursion scheme of iteration.

It is also true that, for any morphism ¢ : F(A x uF) — A, there exists a unique
morphism A : uF' — A such that

F(uF) "M 4 x uF)

l lw

pF—"— A

This h, sometimes called the paramorphism of ¢ and written (¢ ), is the function
determined by ¢ by primitive recursion. By its “direct” expressive power, primitive
recursion is stronger than iteration. With the help of “tupling”, however, it is
easily reduced to iteration: for any ¢ : F(A x uF) — A, it holds that (¢ )r =
fstaur o ( (@, inpo Fsndg,r) )p.

The initial algebra structure inp is an isomorphism with inverse inz' = (| Fing ) p :
uF — FuF, the data destructor for uF. Hence, uF' carries not only an algebra
structure, but a coalgebra structure, too.

The final object in the category of F-coalgebras (if it exists) is called the fi-
nal F-coalgebra and denoted (vF,outr). If C is a category of types, then the final
F-coalgebra is the F-based coinductive type (codata type), together with its accom-
panying codata destructor.

For any morphism ¢ : A — FA, there exists a unique morphism h : A — vF
such that

FA— F(vF)
(PT Toutp
A L vF

This h, commonly called the anamorphism or unfold of ¢ and written [ )r or
unfoldr(¢), represents the function produced from ¢ by coiteration.
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For any morphism ¢ : A — F(A + vF), there is a unique morphism b : A — vF
such that

F(A+vEV" S pyr)
QDT TOUtF
A h vF

This morphism h, which stands for the function determined by ¢ by primitive
corecursion, is referred to as the apomorphism of ¢ and written [ ¢)p. Primi-
tive corecursion is reduced to coiteration with recourse to “varianting”: for any
w:A— F(A+vF), it is the case that [ ¢ Jr = [[¢, Finra,r oouty]]poinlgpe.

The final coalgebra structure out is an isomorphism with inverse outz' = ([ Fout ) :
F(vF) — vF, the codata constructor for vF.

Some popular examples of inductive and coinductive types include the following:

e Let N be the endofunctor 1 + — on C. Then the objects uN and vN of C are
the types of naturals and conaturals (naturals plus “infinity”).

e For an object E of C, let Lg be the endofunctor 1 + E x — on C. Then ulLg
and vLg are the types of lists and colists (possibly infinite lists) over FE.

Given an endobifunctor F’ on C, the initial algebras and final coalgebras of its
partial applications F'(A,—) (if they all exist) are most economically studied as
families. The initial algebras for F'(A,—) give rise to an endofunctor iF' on C
defined by (iF')A = p(F'(A4,=)), (iF")f = (ing_) o F'(f,idgms) Devca s if
f A — B. They also determine a natural isomorphism ihg : F' - (ld, iF") =
AF" given by (ingr)4 = ingra,—). Dually, the final coalgebras for F'(A,—) deter-
mine an endofunctor 7F' on C defined by (PF')A = v(F'(A,—)) and (DF')f =
[(F'(f,id@wrya) o outpra—y)r(n,—), if f : A — B, and a natural isomorphism
outp: : UF' = F'-(ld, 7F") given by (outs)4 = outpr(4,_). The functors iF' and 0 F’
are sometimes called the F’'-given inductive functor (data functor) and coinductive
functor (codata functor).

We shall have use for the following examples of inductive and coinductive functors.

e Given an endofunctor H on C, let T# be the endobifunctor —; + H—5 on
C. Then the objects (4T#)A and and (#TH)A of C represent the types of
H-branching trees and cotrees (non-wellfounded trees) with variables. [If H
is polynomial, H-branching trees with variables are (the syntax trees of) H-
terms in the sense of universal algebra.| In category theory, the initial algebras
(ATH)A, (inyr)4) are known as free H-algebras.

e Given an endofunctor H on C, let D¥ be the endobifunctor —; x H—5 on
C. Then the objects (iD¥)A and (#D¥)A capture the types of decorated
H-branching trees and cotrees (non-wellfounded trees). The final coalgebras
((DTH)A, (outrn ) 4) bear the name of cofree H-coalgebras.
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4 Tree and cotree (co)monads

4.1 Tree and cotree monads

It is well known that, given a functor H, the types of H-branching trees with vari-
ables give rise to a monad or, to be more precise, the functor 4T# extends to a
monad. To define this monad, write (M, «) for (4T, ihtu). Decompose the natural
isomorphism « : T# - (Id, M) = M into two natural transformations n : Id = M
and 7: H - M — M by letting na = a4 oinlg g(ara), Ta = q ©inryg g(ara), so that
a4 = [N4,Ta]. The unit of the monad on M isn. The multiplication p : M-M = M
is defined by iteration: p,4 is the unique morphism A such that

MA+ HMMASY A + H(MA)
aMA:[nMA;TMA]l l/[idMA;TA]

M(MA) h MA

Conceptually, 74 is the function that takes a variable from A and makes it into a
tree with variables from A, while p4 is a function that takes a tree with variables
from M A and “flattens” it into a tree with variables from A by replacing each of its
variables by the tree this variable constitutes. The extension f*: MA — MB of a
morphism A — M B takes a tree over A and replaces all its variables with trees over
B using f as a guideline, producing a tree over B. Hence, f* is the substitution
function given by f as a substitution rule. Remarkably, several important properties
of substitution follow just from the monad laws for M.

It seems rather intuitive that, for cotrees with variables, it ought to be possible
to define something analogous to the flattening and substitution that exist for trees.
This is indeed the case: the functor T also admits a monad structure and in a
good sense a very similar one to that on gT# [AAV01, Mos01, G*01]. To define
it, write (M,a) for (0TH outrs). Decompose again o : TH - (Id, M) = M into
n:ld—=> M and 7: H- M — M as before; n is the monad unit on M. Defining the
multiplication p : M - M = M needs primitive corecursion (coiteration suffices only
in conjunction with “varianting” and yields then essentially the same definition in
a clumsier formulation): p4 is defined as the unique morphism A such that

idA—I—H[h,idMA]

A+ H(M(MA) + MA)

A+ H(MA)
(idatm (M) +014)50 A H (M (M A)+114) ]
(A+ HM(MA)+ MA))+ HM(MA) + MA)

(id a4 Hinr s (aray va)+Hine ar (v 4y a4
(A+ H(MA)) + H(M(MA)) "

o' +idmar(aa))

MA+ H(M(MA))

—1
QApra

M(MA) b MA
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Notably, this description is equivalent to the more appealing one that constituted
the iterative definition of y in the case of M = gT#.

4.2 'Tree and cotree comonads

The functors gD and 2D are the formal duals of the functors 7T and AT, Tt is
therefore a matter of straightforward dualization to establish that they both admit
the structure of a comonad.

To define the comonad on D, write (N, ) for (4D¥ ingy). Decompose the
natural isomorphism 3 : N = D¥ - (ld, N} into two natural transformations ¢ : N =
Id and 6 : N — H - N by setting €4 = fst4 g(nva) 0 B4 and 04 = snd 4 g(na) 0 Ba; the
counit of the comonad structure on N is €. The comultiplication 6 : N — N - N is
defined by primitive recursion: ¢4 is defined as the unique morphism A such that

idAXH<h,,idNA)

Ax H(NA) Ax HIN(NA) x NA)

(idax (N (NA)yx NA)SNda, H(N(NA)xNA) )
(AXx HIN(NA) x NA)) x H(N(NA) x NA)

(idax Hsnd y (v a),x 4) X HESty (x 4), N 4
B4t (Ax H(NA)) x H(N(NA))

Bat Xid (v (v a))

NA X H(N(NA))

Bya

NA h N(NA)

To define the comonad on ?D¥, write (N, 8) for (#D¥, outpr). Decompose 3 :
N 5D -(ld,N)intoe : N 3 ld and # : N — H - N as above; the counit is . The
comultiplication 6 : N = N - N is defined by coiteration: ¢4 is the unique morphism
h such that

NA x H(NA)YY M 4 « H(N(NA))
(idya,04 )T T(SNA;GNA )=Bna

NA h N(NA)

Importantly, the primitive corecursive definition of § in the case N = gD is also
equivalent to this description.

The comonads arising from the types of decorated (co)trees make good program-
ming sense [UV01], bearing relevance, e.g., for attribute grammars. The counit
€4 takes an A-decorated tree and returns its decoration. The comultiplication §4
takes an A-decorated tree and “inflates” it into an N A-decorated tree by replacing
the A-decoration of each of its subtrees with this subtree itself. The coextension
fi: NA — NB of a morphism f : NA — B takes an A-decorated tree and replaces
the A-decoration of each of its subtrees by the B-decoration assigned to this subtree
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by f; if f is viewed as a redecoration rule, f! is the corresponding redecoration
function. Certain properties of redecoration follow from the comonad laws.

5 General inductive and coinductive (co)monads

5.1 General inductive and coinductive monads

When defining monads on the functors 4T and 2T we overlooked the fact that
their base bifunctor T# had something to do with monads already: the partial
applications T#(—, X) carry a monad structure, in fact, a monad structure uniform
in X. A fresh look at the definitions given above makes it clear that they work
exactly because of this circumstance. This directs us to the formulation of a general
procedure for producing monads from families of inductive and coinductive types.
Let us say that a bimonad on C is triple (M',n', u') consisting of a endobifunctor
M' on C and two natural transformations ' : Fst — M’ and p' : M'-(M’,Snd) = M’
such that
M'(ny xi

M'(A, X) WA, X), X)) MO (M(A, X), X)X 00 (4, X), X)

nMI(A,X),Xl \ lﬂf«;,x “SMI(A,X),X\L lNIA,X
! !

M'(M'(A, X), X) 225 2 Mmr(A, X) M'(M'(A, X), X) —2% M'(A, X)

To give an example, the bifunctor T# corresponding to a functor H is equipped
with a bimonad structure by setting )y x = inlamx, 'y x = [idra(ax),inramx |-

Now, given a bimonad (M', 7, i'), both the M’'-based inductive functor M’ and
coinductive functor 2 M’ extend into a monad. Pleasantly, the constructions are not
more complicated than those for the monads from tree and cotree types; on the
contrary, they rather explain these special cases.

To define the monad structure on pgM’, write M for gM' and « for inyy : M’ -
(ld, M) = M. The unit  : Id - M of the monad with M as the underlying
functor is defined via 7' explicitly by putting n4 = a4 o n’A, wa- The multiplication
w: M-M = M is defined via p' by iteration: 4 is determined as the unique h
such that

M/ (MA, M(MA))" AN vpara, MA)
M’(a;l,idMA)

M!(M'(A, MA), M A)

ama By ma
M'(A, MA)

aa

M(MA) h MA

To specify the monad structure on vM', write M for M’ and « for oﬂt;, :
M'-(ld, M) = M. The unit 5 : ld = M is, just as before, defined explicitly from 7’
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by setting na = a4 o1y yr4- The multiplication p : M - M — M is definable from
i/, but only by primitive corecursion: 4 is the unique morphism A such that

M(A, M(MA) + MAY LA D g )

'uA,M(MA)+MA

M!(M"(A, M(MA) + MA), M(MA) + MA)

M (M (id a,int g (a1.4),. 01 4)5i0 81 (01.4) 21 4)
M!(M'(A, MA), M(MA)) ag!

M (a3 jidar(ara))

M!(MA, M(MA))

-1
Xpra

M(MA) h MA

In both cases, the defining characterization of y is equivalent to this more sym-
metric characterization: 4 is the unique morphism h : M(MA) — M A such that

M'(M'(A, M A), M/i ) A (M'(A, MA), MA)

M'(oasidar(ar4)) l l/"A,MA
M'(MA, M(MA)) M'(A, MA)
M(MA) h MA

Checking the monad laws for M can be done for both cases at one go: it suffices
to rely on the defining explicit definition of ¢ and the derived description of x in
combination with the knowledge that M’ is a bimonad, M is a functor and a a
natural isomorphism.

5.2 General inductive and coinductive comonads

Not surprisingly, the above general construction of monads from inductive and coin-
ductive types is readily dualizable into one delivering comonads. Say that a bi-
comonad on C is a triple (N, &', ¢") consisting of an endobifunctor N’ on C together
with two natural transformations ¢’ : N’ = Fst and ¢’ : N = N’- (N’,Snd) such
that

N'(¢/y «,id N'(§') & .id
N'(N'(A X),X)(LX)> N'(A,X) N'(N'(4,X),X) ﬁi‘Nf{()N'(N'(A X), X), X)

5’A,XT / TsIN’(A,X),X 5’A,XT
6/

N'(A, X) —25 N'(N'(A, X),X) N'(A,X)

)

T‘sgv'(AX)X
N'(N'(A,X), X)

!
4 x

The bifunctor D¥, corresponding to a functor H, for example, is extended into a
bicomonad (D¥, &', 8") by putting &'y x = fsta,mx, 04 x = (idpr(a,x),snda,mx )-
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Given a bicomonad (N',&’,¢") on C, the inductive functor N’ and the coinduc-
tive functor #N' based on its underlying bifunctor N’ are both extendable into a
comonad.

To define the comonad structure on iN’, write N for 4N’ and § for iy : N =
N'-(ld, N). The counit ¢ : N = Id of the comonad is manufactured from &’ explicitly
by letting £4 = &/ y4 © B4. The comultiplication 6 : N =+ N - N is defined in terms
of ¢’ using primitive recursion: 4 is the unique morphism A such that

N'(

Sl MINAR (A N(NA) x NA)

d

N'(A,NA)
AN(NA)XNA

N'(N'(A,N(NA) x NA),N(NA) x NA)
N'(N'(ida,sndy (v a),NA4)fSta(va),na)
e N'(N'(A,NA), N(NA))

N'(B5 idn (v a))

N'(NA, N(NA))

-1
Bna

NA h N(NA)

To spell out the comonad structure on ?/N', write N for 7N’ and 3 for outy: :
N = N'-(ld, N). The counit ¢ : N = Id for the comonad on N is defined via &’
explicitly as before: €4 = €y x40 84. The comultiplication 6N — N - N is produced
from ¢’ by means of coiteration: d,4 is specified as the unique A such that

N'(NA, NA) YO0 4, N(N A))

N'(B3 idna)

N'(N'(A, NA), NA)

Sy na Ba
N'(A,NA)

Ba

NA h N(NA)

In both cases, the defining characterization of § is equivalent to this more sym-
metric charaterization: d,4 is the unique morphism h: NA — N(NA) such that

N'(id s Jh
N'(N'(A, NA), NA)( ”_“;W'(}v'(A, NA), N(NA))
JQ,NAT TNI(ﬁAyidN(NA))
N'(A, NA) N'(NA, N(NA))

o s

NA h N(NA)
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6 Conclusion and future work

We have shown that the fact that the types of trees and cotrees with variables give
rise to monads is but a special instance of a more general phenomenon and the same
holds about the types of decorated trees and cotrees yielding comonads. Written
down as programs, the constructions present an example of seriously generic pro-
gramming. Potentially, they ought to be useful as building blocks in applications,
e.g., in the representation and manipulation of syntax or in the processing of hi-
erarchical data along the lines of “explosive” programming as studied by Oliveira
[O1i98]. This is envisaged as future work.
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A Implementation in Haskell

The Haskell code below is an implementation the general construction of inductive
and coinductive (co)monads from bi(co)monads. Note that extensive use is made of
constructors of higher kinds, constructor classes and inheritance.
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-- Functors

{-
class Functor f where

fmap :: (@ > b) >fa->fb
-}

—-- Monads, comonads
class (Functor m) => Mon m where
unit :: a -> m a

mult :: m (ma) ->m a

class (Functor n) => Comon n where

counit :: n a -> a
comult :: na ->n (n a)
-- Bifunctors

class BiFunctor f where
bifmap :: (a -> b) -> (a’ -> b’) ->f aa’ ->f b b’

—- Bimonads, bicomonads
class (BiFunctor m) => BiMon m where
biunit :: a -> m a a’
bimult :: m (m a a’) a’ -> m a a’
class (BiFunctor n) => BiComon n where
bicounit :: n a a’ -> a
bicomult :: naa’ ->n (n a a’) a
-- Pointwise mu, nu type constructors

data Mu f a = In (f a (Mu f a))

unIn :: Mu fa ->f a (Mu f a)
unIn (In x) = x

cata :: (BiFunctor f) => (f ac ->c) > Muf a > ¢
cata phi = phi . bifmap id (cata phi) . unIn

para :: (BiFunctor f) => (f a (¢, Mu f a) -> ¢) -> Mu f a -> ¢
para phi = phi . bifmap id (both (para phi) id) . unIn

both :: (¢ -=> a) -> (¢ -> a’) -> ¢ -> (a, a’)
both g g’ x = (g x, g’ %)
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data Nu f a

= UnOut (f a (Nu f a))

out :: Nufa->f a (Nuf a)
out (UnOut x) = x

ana :: (BiFunctor f) => (¢ -=> f ac) > c -> Nu f a

ana phi = UnOut . bifmap id (ana phi)

. phi

apo :: (BiFunctor f) => (c -> f a (Either ¢ (Nu f a))) -> c -> Nu f a

apo phi = UnOut

{_

either ::

-}

(a ->c) —>
either g g’ (Left x)
either g g’ (Right x)

g x
g’ x

—- Pointwise mu, nu functors

. bifmap id (either (apo phi) id)

(a’ => ¢c) -> Either a a’ -> ¢

instance (BiFunctor f) => Functor (Mu f) where
fmap g = cata (In . bifmap g id)

instance (BiFunctor f) => Functor (Nu f) where
fmap g = ana (bifmap g id . out)

-- Pointwise mu, nu monads

instance (BiMon m) => Mon (Mu m) where

unit =
mult =

In .
cata (In . bimult . bifmap unIn id)

biunit

instance (BiMon m) => Mon (Nu m) where
unit = UnOut . biunit

mult =

apo (bimult

-- Pointwise mu, nu comonads

instance (BiComon n) => Comon (Mu
= bicounit . unIn

counit
comult

= para (In . bifmap In id .

instance (BiComon n) => Comon (Nu
= bicounit . out

counit
comult

ana (bifmap UnQOut id .

n) where

n) where

bicomult .

. bifmap (bifmap id Right) Left

bifmap (bifmap id snd) fst

out)

. bifmap out id . out)

. bicomult)



