Combining Societal Agents’ Knowledge

Joao Alexandre Leite, José Julio Alferes and Luis Moniz Pereira
CENTRIA, Dep. Informatica
FCT /Universidade Nova de Lisboa
2829-516 Caparica, Portugal
E-mail: jleite|jja|lmp@di.fct.unl.pt

Abstract

This paper explores the applicability of the new paradigm of Multi-dimen-
sional Dynamic Logic Programming to represent an agent’s view of the com-
bination of societal knowledge dynamics. The representation of a dynamic
society of agents is the core of MINERVA [11], an agent architecture and
system designed with the intention of providing a common agent framework
based on the unique strengths of Logic Programming, hat allows the com-
bination of several non-monotonic knowledge representation and reasoning
mechanisms developed in recent years.

1 Introduction

Over recent years, the notion of agency has claimed a major role in defining the
trends of modern research. Influencing a broad spectrum of disciplines such as So-
ciology, Psychology, among others, the agent paradigm virtually invaded every sub-
field of Computer Science [3, 8, 17]. Although commonly implemented by means of
imperative languages, mainly for reasons of efficiency, the agent concept has recently
increased its influence in the research and development of computational logic based
systems. Since efficiency is not always the crucial issue, but clear specification and
correctness is, Logic Programming and Non-monotonic Reasoning have been brought
back into the spotlight.

The Logic Programming paradigm provides a well-defined, general, integrative,
encompassing, and rigorous framework for systematically studying computation,
be it syntax, semantics, procedures, or attending implementations, environments,
tools, and standards. LP approaches problems, and provides solutions, at a suffi-
cient level of abstraction so that they generalize from problem domain to problem
domain. This is afforded by the nature of its very foundation in logic, both in sub-
stance and method, and constitutes one of its major assets. To this accrues the
recent significant improvements in the efficiency of Logic Programming implemen-
tations for Non-monotonic Reasoning (e.g. [15, 19]). Besides allowing for a unified

The first author is partially supported by PRAXIS XXI scholarship no. BD/13514/97.

APPIA-GULP-PRODE 2001

declarative and procedural semantics, eliminating the traditional wide gap between
theory and practice, the use of several and quite powerful results in the field of non-
monotonic extensions to Logic Programming (LP), such as belief revision, inductive
learning, argumentation, preferences, abduction, etc.[17] can represent an important
composite added value to the design of rational agents.

Until recently, Logic Programming could be seen as a good representation lan-
guage for static knowledge. If we are to move to a more open and dynamic environ-
ment, typical of the agency paradigm, we need to consider ways of representing and
integrating knowledge from different sources which may evolve in time. Moreover,
an agent not only comprises knowledge about each states, but also some form of
knowledge about the transitions between states. This knowledge about state tran-
sitions can represent the agent’s knowledge about the environment’s evolution, as
well as its own behaviour and evolution. Since logic programs describe knowledge
states, it’s only fit that logic programs describe transitions of knowledge states as
well. Tt is natural to associate with each state a set of transition rules to obtain the
next state. Recent developments have opened Logic Programming to these otherwise
unreachable dynamic worlds [1, 4, 6, 18, 20].

In [1], the authors, with others, introduced Dynamic Logic Programming. There,
they studied and defined the declarative and operational semantics of sequences of
logic programs (or dynamic logic programs). Each program in the sequence contains
knowledge about some given state, where different states may, for example, represent
different time periods or different sets of priorities. The introduction of Dynamic
Logic Programming has extended Logic Programming, making possible for a logic
program to undergo a sequence of modifications, opening up the possibility of in-
cremental design and evolution of logic programs, therefore significantly facilitating
modularization of logic programming and, thus, modularization of non-monotonic
reasoning as a whole.

In [2], the authors, with others, introduced the language LUPS — “Language for
dynamic updates” — designed for specifying changes to logic programs. Given an
initial knowledge base (as a logic program) LUPS provides a way for sequentially
updating it, unifying states and state transitions into a single declarative logic based
framework.

Even though the main motivation behind the introduction of Dynamic Logic
Programming was to represent the evolution of knowledge in time, the relationship
between the different states can encode other aspects of a system, as explored in
(1,9, 5, 16, 13]. Although Dynamic Logic Programming can represent several states
in one evolving dimension or aspect of a system, no more than one such aspectual
evolution can be encoded and combined simultaneously. This is so because Dynamic
Logic Programming is defined only for linear sequences of states. Multi-dimensional
Dynamic Logic Programming (MDLP) [10, 12] was introduced to generalize DLP
to allow for collections of states represented by arbitrary acyclic digraphs (DAG),
not just sequences of states. MDLP assigns semantics to sets and subsets of logic
programs, depending on how they stand in relation to one another, as defined by
the DAG that represents the states and their configuration. By dint of such natural
generalization, MDLP affords extra expressiveness, thereby enlarging the latitude
of logic programming applications unifiable under a single framework. The flexibility

Combining Societal Agents’ Knowledge

provided by a DAG ensures a wide scope and variety of new possibilities. By virtue of
the newly added characteristics of multiplicity and composition, MDLP provides a
“societal” viewpoint in Logic Programming, important in these web and agent days,
for combining knowledge in general.

In this paper we explore the application of the new paradigm of Multi-dimensional
Dynamic Logic Programming to represent an agent’s view of the combination of
societal knowledge dynamics, i.e. the agent’s view of the evolution of its knowledge
as a result of knowledge evolution in the community of agents.

We begin with a brief overview of DLP in Section 2. In Section 3, we present
MDLP. In Section 4 we explore the application of MDLP to represent inter and
intra-agent relationships and their views of a multi-agent system. We then conclude
in Section 6.

2 Background

We start with an overview of the syntax and semantics of generalized logic programs,
followed by a short recap of the paradigm of Dynamic Logic Programming.

2.1 Generalized Logic Programs and their Stable Models

To represent negative information in logic programs and in their updates, since we
need to allow default negation not A not only in premises of their clauses but also
in their heads, we use generalized logic programs as defined in [1]!. By a generalized
logic program P in a language £ we mean a finite or infinite set of propositional
clauses of the form Ly < Ly,..., L, where each L; is a literal (i.e. an atom A
or the default negation of an atom not A). If r is a clause (or rule), by H(r) we
mean L, and by B(r) we mean Ly,...,L,. If H(r) = A (resp. H(r) = not A) then
not H(r) = not A (resp. not H(r) = A). By a (2-valued) interpretation M of L we
mean any set of literals from £ that satisfies the condition that for any A, precisely
one of the literals A or not A belongs to M. Given an interpretation M we define
Mt ={A:Aisan atom,A € M} and M~ = {not A: A is an atom, not A € M}.
Following established tradition, wherever convenient we omit the default (negative)
atoms when describing interpretations and models. We say that a (2-valued) in-
terpretation M of L is a stable model of a generalized logic program P if r(M) =
least (r(P)Ur(M™)), where r(.) univocally renames every default literal not A in a
program or model into new atoms, say not_A. The class of generalized logic pro-
grams can be viewed as a special case of yet broader classes of programs, introduced
earlier in [14], and, for the special case of normal programs, their semantics coincides
with the stable models semantics [7].

Tn [2] the reader can find the motivation for the usage of generalized logic programs, instead
of using simple denials as a result of freely moving the head nots into the body.

APPIA-GULP-PRODE 2001

2.2 Dynamic Logic Programming

Next we recall the semantics of dynamic logic programming [1]. A dynamic logic
program is a sequence Py®...H P, ®... (also denoted by PP, where P = {P, : s € S}
is a finite or infinite sequence of LPs, indexed by the finite or infinite set S =
{1,2, ..., n, ...}. Such sequence may be viewed as the outcome of updating Py
with P, ..., updating it with P,,... As we will see in the following sections, each P;
is determined by the i*" state transition. The role of dynamic logic programming is
to ensure that these newly added rules are in force, and that previous rules are still
valid (by inertia) for as long as they do not conflict with more recent ones, whenever
the latter remain in force themselves. The notion of dynamic logic program at state
s, denoted by @, P, characterizes the meaning of the dynamic logic program when
queried at state s, by means of its stable models, defined as follows:

Definition 1 (Stable Models of DLP) Let @P = @{ Ps: s € S} be a dynamic
logic program, let s € S. An interpretation M is a stable model of P at state s
iff Mg = least(Ps — Reject(s, M) U De fault(My)) where:

PS = Uigs‘Pi
Reject(s,Ms) ={re P, :3r' € Pj,i <j <s,H(r)=not H(r') N Ms = B(r'")}
Default(Ps, M) = {not A:Ar € Ps, H(r) = AN MsF B(r)} (A is an atom)

3 Multi-dimensional Dynamic Logic Programming

Even though the main motivation behind the introduction of DLP was to represent
the evolution of knowledge in time, the relationship between the different states can
encode other aspects of a system, as pointed out in [1]. In fact, since its introduction,
DLP (and LUPS) has been employed to represent a stock of features of a system,
namely as a means to: represent and reason about the evolution of knowledge in
time [1]; combine rules learnt by a diversity of agents [9]; reason about updates of
agents’ beliefs [5]; model agent interaction [16]; model and reason about actions [1];
resolve inconsistencies in metaphorical reasoning [13].

The common feature among these applications of DLP is that the states associ-
ated with the given set of theories encode only one of several possible representational
dimensions (e.g. time, hierarchies, domains,...), inasmuch DLP is defined for linear
sequences of states alone. For example, DLP can be used to model the relationship
of a strict hierarchy group of agents, and DLP can be used to model the evolution
of a single agent over time. But DLP, as it stands, cannot deal with both settings
at once, and model the evolution of one such group of agents over time.

In effect, knowledge updating is not to be simply envisaged as taking place in the
time dimension alone. Several updating dimensions may combine simultaneously,
with or without the temporal one, such as specificity (as in taxonomies), strength of
the updating instance (as in the legislative domain), hierarchical position of knowl-
edge source (as in organizations), credibility of the source (as in uncertain, mined,
or learnt knowledge), or opinion precedence (as in a society of agents). For this
to be possible, DLP needs to be extended to allow for a more general structure of
states.

Combining Societal Agents’ Knowledge

In this section we present the notion of Multi-dimensional Dynamic Logic Pro-
gramming (MDLP) (introduced in [10]) which generalizes DLP to allow for col-
lections of states represented by arbitrary acyclic digraphs. In this setting, MDLP
assigns semantics to sets and subsets of logic programs, depending on how they re-
late to one another, these relations being defined by the acyclic digraph representing
the states.

3.1 Graphs

A directed graph, or digraph, D = (V,E) is a pair of two finite or infinite sets
V' = Vp of vertices and E = Ep of pairs of vertices or (directed) edges. A directed
edge sequence from vy to v, in a digraph is a sequence of edges ey, es,...,e, € Ep
such that e; = (v;_1,v;) fori =1, ...,n. A directed path is a directed edge sequence in
which all the edges are distinct. A directed acyclic graph, or acyclic digraph (DAG),
is a digraph D such that there are no directed edge sequences from v to v, for all
vertices v of D. A source is a vertex with in-valency 0 (number of edges for which
it is a final vertex) and a sink is a vertex with out-valency 0 (number of edges
for which it is an initial vertex). We say that v < w if there is a directed path
from v to w and that v < w if v < w or v = w. The relevancy DAG of a DAG
D wrt a vertex v of D is D, = (V,, E,) where V,, = {v; : v; € V and v; < v} and
E, = {(vi,vj) : (v;,vj) € E and v;,v; € V,, }. The relevancy DAG of a DAG D wrt
a set of vertices S of D is Dg = (Vg, Eg) where Vs = |J,cq Vo and Eg = (J,cq Ev,
where D, = (V,, E,) is the relevancy DAG of D wrt v.

3.2 Declarative Semantics

We start by defining the framework consisting of the generalized logic programs
indexed by a DAG. Throughout this paper, we will restrict ourselves to DAG’s
such that for every vertex v of the DAG, any path ending in v is finite.

Definition 2 (Multi-dimensional Dynamic Logic Program) Let L be a propo-
sitional language. A Multi-dimensional Dynamic Logic Program (MDLP), P, is a
pair (Pp, D) where D = (V, E) is a DAG and Pp = {P, : v € V'} is a set of gener-
alized logic programs in the language L, indexed by the verticesv € V of D. We call
states such vertices of D. For simplicity, we often leave the language L implicit.

To characterize the models of P at any given state we will keep to the basic
intuition of logic program updates, whereby an interpretation is a stable model of
the update of a program P by a program U iff it is a stable model of a program
consisting of the rules of U together with a subset of the rules of P comprised
by those that are not rejected (do not carry over by inertia) due to their being
overridden by program U. With the introduction of a DAG to index programs,
a program may have more than a single ancestor. This has to be dealt with, the
desired intuition being that a program P, € Pp can be used to reject rules of any
program P, € Pp if there is a directed path from u to v. Moreover, if some atom
is not defined in the update nor in any of its ancestor, its negation is assumed by
default. Formally, the stable models of the MDLP are:

APPIA-GULP-PRODE 2001

Definition 3 (Stable Models at state s) Let P = (Pp, D) be a MDLP, where
Pp={P,:veV}and D = (V,E). An interpretation My is a stable model of P
at state s € V, iff My = least ([Ps — Reject(s, Ms)| U De fault (Ps, Ms)) where:

7)5 = Uigspi
Reject(s,My) ={re P, | 3" € P;,i<j<s, H(r)=notH(r') N M, B(r')}
Default (Ps, M,) = {not A | fr € Py : (H(r) = A) A M, F B(r)}

Intuitively, the set Reject(s, M) contains those rules belonging to a program
indexed by a state ¢ that are overridden by the head of another rule with true body
in state j along a path to state s. Py contains all rules of all programs that are
indexed by a state along all paths to state s, i.e. all rules that are potentially
relevant to determine the semantics at state s. The set Default (Ps, M) contains
default negations not A of all unsupported atoms A, i.e., those atoms A for which
there is no rule in Py whose body is true in M.

According to [10], to determine the models of a MDLP at state s, we need only
consider the part of the MDLP corresponding to the relevancy graph wrt state s.

We might have a situation where we desire to determine the semantics jointly
at more than one state. If all these states belong to the relevancy graph of one of
them, we simply determine the models at that state. But this might not be the case.
Formally, the semantics of a MDLP at an arbitrary set of its states is determined
by the definition:

Definition 4 (Stable Models at a set of states S) LetP = (Pp, D) be a MDLP,
where Pp = {P,:v eV} and D = (V,E). Let S be a set of states such that
S C V. An interpretation Mg is a stable model of P at the set of states S iff
Mg = least ([Ps — Reject(S, Ms)] U De fault (Ps, Ms)) where:

PS = UsES (Ulgspl)
. _freP|3se S I ePi<j<s,

Reject(S, Ms) = { H(r) = not H(r') A Ms F B(r') }

Default (Pg, Ms) = {not A | #r € Ps: (H(r) = A) A Ms F B(r)}

This is equivalent to the addition of a new vertex a to the DAG, and connect-
ing to a, by addition of edges, all states we wish to consider. Furthermore, the
program indexed by « is empty. We then determine the stable models of this new
MDLP at state . Note the addition of state a does not affect the stable models
at other states. Indeed, a and the newly introduced edges do not belong to the
relevancy DAG wrt any other state. A particular case of the above definition is
when S =V, corresponding to the semantics of the whole M DLP. In [10], we have
presented an alternative definition, based on a purely syntactical transformation
that, given a MDLP, produces a generalized logic program whose stable models are
in a one-to-one equivalence relation with the stable models of the MDLP previously
characterized. The computation of the stable models at some state s reduces to
the computation of the transformation followed by the computation of the stable
models of the transformed program. This directly provides for an implementation
of MDLP, publicly available at centria.di.fct.unl.pt/~jja/updates.

Combining Societal Agents’ Knowledge

8) ° e b)
0‘”
o

Figure 1: a) Hierarchical Dimension b) Temporal Dimension

4 Inter- and Intra-Agent Social Viewpoints

The previous section contains the definition of the notion of Multi-dimensional Dy-
namic Logic Programming, MDLP, as an extension of DLP to allow for states to
be related by an arbitrary DAG. The stable models of MDLP have been charac-
terized but nothing has been yet explained as how to use such DAGs to represent
real problems. In particular, we have not shown how DAGs allow for the combina-
tion of more than one representational dimension, the very motivation to introduce
MDLP. Here, we explore some particular classes of DAGs suitable in the context
of multi-agent systems.

Agents are situated and therefore need to represent and reason about informa-
tion they obtain directly by sensing the environment or communicated by other
agents. These agents, as well as the environment, evolve in time, i.e. the incoming
information is to be used as an update over existing knowledge. Moreover these
agents do not have the same credibility, this being represented via a hierarchy of
predominance. In this section we explore DAGs that provide a way to represent the
evolution in time of knowledge with provenance in a community of hierarchically
related agents.

We start with an agent «, situated in a community of agents represented by
the greek letters [3,7v,u,v. The multi-agent system is A = {«, 5,7, 1, v}. Ac-
cording to agent a’s hierarchical view of the world, and its position within the
community, all agents are related according to the DAG D, = (A, E),) where
Ep=A{(,n), (B, 1), (1,7), (1, @), (7,)}, depicted in Fig. 1 a).

According to this DAG, agent a’s opinions prevail over those of every other
agent. However this need not be so. If, for example, one of these agent’s role was
to coordinate the community, it would be natural to exist an edge connecting o to
this agent.

In a static environment, this representation would be sufficient to determine the
semantics of a’s view of the community. In such a situation, the rules asserted
by each agent would constitute programs indexed by the DAG of Fig. 1 a), i.e.
Ps, P, P, ...

In a realistic scenario, where the dynamics of the system cannot be ignored, there
is no single program representing each agent. Rather, there is a sequence of programs
representing the knowledge of each agent at each time point. Suppose these time
points were represented by the set T'= {0, 1, ..., ¢} (where by ¢ we mean the current

APPIA-GULP-PRODE 2001

Figure 2: Equal Role Representation

time state), then, for example, the knowledge of agent 5 would be represented by
the set of programs { Ps,, Pg, , ..., Ps,}, indexed according to the DAG Dg, = (B, Ey)
where By ={f;:t € T} and E; = {(0,1),...,(c — 1,¢)} as depicted in Fig. 1 b).

The full dynamic hierarchical scenario, comprising all agents, is then represented
by the set of programs Pp = {P,, : a € A,t € T'} indexed by the DAG D = (Ar, E)
where Ap = {a;:a € At € T}.

There still remains to be defined the relationships between all these programs,
i.e. the edges belonging to F. To this purpose, we will propose three basic ways to
systematically relate these programs.

4.1 Equal Role Representation

The first approach to combining the hierarchical and temporal dimensions is accom-
plished by assigning equal roles to both precedence relations. In this scenario, we
maintain the temporal precedence relation within each agent, and the hierarchical
one within each time state, and we do not relate any two programs that fall outside
this scope, i.e. there is no precedence between a higher ranked older program and
a lower ranked newer one. Accordingly, the set of edges E, of the DAG D contains
the union of the following two sets of edges:

Time Dependence Edges (TDE) : {(as,as,) : a € A t1,ts € T, ty < to}.
Hierarchy Dependence Edges (HDE) : {(a;,b;) : a,b € At € T,a < b}.

Intuitively, each rule can be used to reject any rule of a lower ranked agent indexed
by a time state equal or lower than its own. This situation is depicted in Fig. 2.

Remark 5 Throughout this section, we have chosen a simplified representation of
the DAGSs to make their interpretation easier. For this purpose, we introduce new
nodes (meta-nodes) encapsulating part of the DAG (detail). To obtain the complete
DAG from this simplification one needs to replace the meta-node with the detail
while replacing the edges entering the meta-node with a set of edges entering each
source node of the detail. Similarly, one needs to replace each node departing from
the meta-node with a set of edges departing from each sink of the detail. In every
DAG, we have added a new node labelled o, which becomes its single sink, and an

Combining Societal Agents’ Knowledge

Figure 3: Time Prevailing Representation

empty program associated with it, indicating where the semantics corresponding to
agent o's view of the overall system at time state ¢ can be determined. Also, since
the semantics of MDLP is invariant wrt the transitive closure of the DAG, we will
often be omitting some edges that do not affect such transitive closure.

Such a scenario can be found in legal reasoning, where the legislative agency is
divided conforming to a hierarchy of power, governed by the principle Lex Superior
(Lex Superior Derogat Legi Inferiori) according to which the rule issued by a higher
hierarchical authority overrides the one issued by a lower one, and the evolution of
law in time is governed by the principle Lex Posterior (Lex Posterior Derogat Legi
Priori) according to which the rule enacted at a later point in time overrides the
earlier one. Lex Superior is encoded by the Hierarchy Dependence Edges and Lex
Posterior is encoded the Time Dependence Edges.

Allowing rejection governed by time and hierarchy alone, potentiates contradic-
tion inasmuch as there are many pairs of programs not related according to this
graph. If the purpose of our agency system were to perform some sort of paracon-
sistent reasoning, such as in an agent based negotiation system trying to reach an
agreement, this would be the ideal scenario: contradiction would generate messages
to the responsible agents to possibly review their positions. But often this is not
the case and we may want to reduce the amount of contradiction, namely by estab-
lishing a skewed relation between the temporal and hierarchical dimensions. Two
approaches will be explored in the following subsections.

4.2 Time Prevailing Representation

According to this representation, the DAG D contains, besides the Time and Hier-
archy Dependence Edges, the following edges:

Time Prevailing Edges (TPE) : {(as,b:,) : a,b € A t1,ts € T\ t1 < to}.

The intuitive reading is that any rule indexed by a more recent time state overrides
any older rule, independently of which agents these rules belong to. This situation
is depicted in Fig. 3.

APPIA-GULP-PRODE 2001

RO

Figure 4: Hierarchy Prevailing Representation

This representation is particularly useful in very dynamic situations where com-
petence is distributed, i.e. when knowledge changes rapidly and different agents
will typically provide rules about different literals. This is so mainly because any
newer rule always overrides any older one. It means that if a situation is completely
defined by the rules issued by the community at a given time state, one can simply
ignore older rules.

The main drawback of this representation relates to the trustfulness of agents
in the community. It requires all agents to be fully trusted because, in allowing
all new rules to override all old ones, irrespective of their hierarchical position,
any untrustworthy lower ranked agent can override any higher ranked agent just
by issuing a rule at a later time state. This leads us to the next, alternative,
representation.

4.3 Hierarchy Prevailing Representation

According to this representation, the DAG D contains, besides the Time and Hier-
archy Dependence Edges, the following edges:

Hierarchy Prevailing Edges (HPE) : {(a,b,) : a,b € A t;,t5 € T,a < b}.

The intuitive reading is that any rule indexed by a higher ranked agent overrides
any lower ranked agent’s rule, independently of the time state it is indexed by. This
situation is depicted in Fig. 4.

This situation is useful, in contrast with the previous one, when some of the
agents are untrustworthy because a lower ranked agent rule, to be used, may not be
contradicted by any (even if older) higher ranked agent rule. The main drawback
is that one has to consider the entire history of all higher ranked agents in order
to accept/reject a rule provided by a lower ranked agent. However, a number of
techniques to reduce the size of a dynamic logic program are being developed, useful
for simplifying the time sequence of programs of each individual agent. These are
outside the scope of this paper.

Again in the context of Legal Reasoning, this scenario corresponds to the one
used in many Legislatures, where collisions between rules are governed by the prin-

Combining Societal Agents’ Knowledge

o
oo
)
Figure 5: Sub-agent Hierarchy

ciple Lex Superior Priori Derogat Legi Inferiori Posterior, i.e. the rule issued by a
higher hierarchical authority at an earlier point overrides the one issued by a lower
hierarchical authority at a later point.

4.4 Representing Inter- and Intra-Agent Relationships

The representations set forth in the previous sub-sections refer to a community of
agents. Nevertheless, they can be used at different levels of abstraction to repre-
sent macro and micro aspects of a multi-agent system, in a unified manner. Let
us suppose that agent « is composed of several sub-agents concurrently perform-
ing dedicated tasks while reading and writing onto a common knowledge structure.
According to this view, agent a can now be seen as a community of sub-agents
Ao = {ag, ap, ag, e}, related, for example, according to the DAG D, = (Aa, E.)
where E, = {(aa, o), (aq,), (,aq), (e, q)} as in Fig. 5. The overall dy-
namic system, comprising all agents and sub-agents, is now represented by the
set of programs Pp = {P,, : a; € Ar} indexed by the DAG D = (Ar, E) where
Ar={a;:a e AN{a},t € T}U{a;:a € A, t €T},

As for the relations between the programs, we propose a combination of the
time and hierarchy prevailing representations to relate the sub-agents and agents
respectively. As mentioned before, the time prevailing representation is the most
efficient but requires all agents to be trusted. One would expect an agent to trust
its component sub-agents. As for the representation of other agents, we will opt for
the hierarchy prevailing relation. Formally, the set of edges in the DAG contains:

Time Prevailing Edges (TPE) : {(a¢,,bs,) : a,b € A, t1,t2 € T, 11 < ta}, to model
the relationships between the sub-agents of «.

Hierarchy Prevailing Edges (HPE) : {(ay,b,) : a,b € A ty,t2 € T,a < b}, to
model the relationships between the agents of the system. Note that each
edge entering (resp. departing from) «; (represented by o' in Fig. 6) should
be interpreted as a set of edges entering (resp. departing from) each of

{aata Ay, Oy aet}-

This situation is depicted in Fig. 6. Note however that this is just one proposal
of the many possible existing combinations to represent such relations.

APPIA-GULP-PRODE 2001

Figure 6: Inter- and Intra-Agent Relationship Representation

5 Conclusions

In this paper we have explored Multi-dimensional Dynamic Logic Programming
as a means to combine knowledge provenient from different agents, into a single
knowledge base point of view, with a precise a declarative semantics. Depending
on the situation and the relations amongst the agents, we have envisaged several
classes of acyclic digraphs suitable for its encoding.

Based on the strengths of MDLP as a framework capable of simultaneously
represent several aspects of a system in a dynamic fashion, and of LUPS [2] as
a powerful language to specify the evolution of such representations by means of
transitions, we have launched into the design of an agent architecture, MZNERV.A
[11]. Tt aims at providing, on a sound theoretical basis, a common agent framework
based on the strengths of Logic Programming, to allow the combination of several
non-monotonic knowledge representation and reasoning mechanisms developed in
recent years.

The use of Logic Programming for the overall endeavour is justified on the ground
of it providing a rigorous single encompassing theoretical basis for the aforesaid
topics, as well as an implementation vehicle for parallel and distributed processing.
Additionally, logic programming provides a formal high level flexible instrument for
the rigorous specification and experimentation with computational designs, making
it extremely useful for prototyping, even when other, possibly lower level, target
implementation languages are envisaged.

Rational agents, in our opinion, will require an admixture of any number of those
reasoning mechanisms mentioned in the introduction, to carry out their tasks. To
this end, a MZINERV.A agent is based on a modular design where a common
knowledge base is concurrently manipulated by specialized sub-agents. The com-
mon knowledge base contains all knowledge shared by more that one sub-agent. It

Combining Societal Agents’ Knowledge

is conceptually divided in the following components: Capabilities, Intentions, Goals,
Plans, Reactions, Object Knowledge Base and Internal Behaviour Rules. Although
conceptually divided in such components, all these modules share a common repre-
sentation mechanism based on MDLP and LUPS, the former to represent knowl-
edge at each state and LUPS to represent the state transitions, i.e. the common
part of the agent’s behaviour. Every agent is composed of specialized functionality
related subagents, that execute various specialized tasks. Examples of such sub-
agents are those implementing the reactive, planning, scheduling, belief revision,
goal management, learning, dialogue management, information gathering, prefer-
ence evaluation, strategy, and diagnosis functionalities. These sub-agents contain a
LUPS program encoding their behaviour, and interfacing with the Common Knowl-
edge Base. Whilst some of those sub-agent’s functionalities are fully specifiable in
LUPS, others require private specialized procedures where LUPS serves as an inter-
face language.

References

[1] J. J. Alferes, J. A. Leite, L. M. Pereira, H. Przymusinska, and T. Przymusin-
ski. Dynamic updates of non-monotonic knowledge bases. Journal of Logic
Programming, 45(1-3):43-70, 2000. Short version titled Dynamic Logic Pro-
gramming appeared in Procs. of KR-98.

[2] J. J. Alferes, L. M. Pereira, H. Przymusinska, and T. Przymusinski. LUPS : A
language for updating logic programs. Artificial Intelligence, 2001. To appear.
Short version appeared in Procs of LPNMR-99, LNAI-1730.

[3] M. Bozzano, G. Delzanno, M. Martelli, V. Mascardi, and F. Zini. Logic pro-
gramming and multi-agent system: A synergic combination for applications
and semantics. In The Logic Programming Paradigm - A 25-Year Perspective.
Springer, 1999.

[4] F. Buccafurri, W. Faber, and N. Leone. Disjunctive logic programs with inher-
itance. In D. De Schreye, editor, Proceedings of the 1999 International Con-
ference on Logic Programming (ICLP-99), pages 79-93, Cambridge, November
1999. MIT Press.

[5] P. Dell’Acqua and L. M. Pereira. Updating agents. In S. Rochefort, F. Sadri,
and F. Toni, editors, ICLP-99 Workshop on Multi-Agent Systems in Logic,
1999.

[6] Thomas Eiter, Michael Fink, Giuliana Sabbatini, and Hans Tompits. Con-
siderations on updates of logic programs. In Manuel Ojeda-Aciego, Inma P.
de Guzman, Gerhard Brewka, and Luis Moniz Pereira, editors, Proceedings of
the European Workshop on Logics in Artificial Intelligence (JELIA-00), volume
1919 of LNAI pages 2-20. Springer, October 2000.

[7]

[10]

[11]

[12]

[13]

[15]

[16]

APPIA-GULP-PRODE 2001

M. Gelfond and V. Lifschitz. The stable semantics for logic programs. In
R. Kowalski and K. Bowen, editors, Proceedings of the 5th international sym-
posium on logic programming, pages 1070-1080, Cambridge, MA., 1988. MIT
Press.

N. R. Jennings, K. Sycara, and M. Wooldridge. A roadmap of agent research
and development. Journal of Autonomous Agents and Multi-Agent Systems,
1(1):7-38, 1998.

E. Lamma, F. Riguzzi, and L. M. Pereira. Strategies in combined learning via
logic programs. Machine Learning, 38(1/2):63-87, 2000.

J. A. Leite, J. J. Alferes, and L. M. Pereira. Multi-dimensional dynamic logic
programming. In F. Sadri and K. Satoh, editors, Proceedings of the CL-2000
Workshop on Computational Logic in Multi-Agent Systems (CLIMA’00), pages
17-26, 2000.

J. A. Leite, J. J. Alferes, and L. M. Pereira. Minerva - a dynamic logic pro-
gramming agent architecture. In J. J. Meyer and M. Tambe, editors, Procs.
of the FEighth International Workshop on Agent Theories, Architectures, and
Languages ATAL 01, pages 133-145, 2001.

J. A. Leite, J. J. Alferes, and L. M. Pereira. Multi-dimensional dynamic knowl-
edge representation. In T. Eiter, W. Faber, and M. Truszczynski, editors,
Proceedings of the 6th International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR-01), volume 1919 of LNAI Springer, 2001.
To appear.

J. A. Leite, F. C. Pereira, A. Cardoso, and L. M. Pereira. Metaphorical mapping
consistency via dynamic logic programming. In G. Wiggins, editor, Proceedings
of the AISB’00 Symposium on Creative and Cultural Aspects and Applications
of AI and Cognitive Science, pages 41-50. AISB, 2000.

V. Lifschitz and T. Woo. Answer sets in general non-monotonic reasoning (pre-
liminary report). In B. Nebel, C. Rich, and W. Swartout, editors, Proceedings
of the 3th International Conference on Principles of Knowledge Representation
and Reasoning (KR-92), pages 603-614. Morgan-Kaufmann, 1992.

I. Niemela and P. Simons. Smodels: An implementation of the stable model and
well-founded semantics for normal LP. In J. Dix, U. Furbach, and A. Nerode,
editors, Proceedings of the 4th International Conference on Logic Programing
and Nonmonotonic Reasoning (LPNMR-97), volume 1265 of LNAI, pages 420—
429, Berlin, July 28-31 1997. Springer.

P. Quaresma and I. P. Rodrigues. A collaborative legal information retrieval
system using dynamic logic programming. In Proceedings of the Seventh In-
ternational Conference on Artificial Intelligence and Law (ICAIL-99), ACM
SIGART, pages 190-191, N.Y., June 14-18 1999. ACM Press.

Combining Societal Agents’ Knowledge

[17] F. Sadri and F. Toni. Computational logic and multiagent systems: A roadmap,
1999. Available from http://www.compulog.org.

[18] C. Sakama and K. Inoue. Updating extended logic programs through abduction.
In Michael Gelfond, Nicola Leone, and Gerald Pfeifer, editors, Proceedings of
the 5th International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR-99), volume 1730 of LNAI pages 147-161, Berlin, 1999.
Springer.

[19] XSB-Prolog. The XSB logic programming system, version 2.0, 1999. Available
at http://www.cs.sunysb.edu/ sbprolog.

[20] Y. Zhang and N. Y. Foo. Updating logic programs. In H. Prade, editor,
Proceedings of the 1998 European Conference on Artificial Intelligence (ECAI-
98), pages 403-407. Morgan Kaufmann, 1998.

