
Deciding Modal Logics using

Tableaux and Set Theory

Carla Piazza and Alberto Policriti

Abstract

We propose a tableau-like decision procedure for deciding the satisfiability
of set-theoretical formulae with restricted universal quantifiers and the pow-
erset operator. Our result apply to a rather large class of set theories. The
procedure we define can be used as a subroutine to decide the same class of
formulae both in Set Theory and in non well-founded set theories, since we as-
sume neither Regularity nor any form of anti-foundation axiom. Moreover, the
decidability result presented allow to characterize a class of decidable modal
logics. Thanks to the 2-as-P (box-as-powerset) translation our procedure can
be used to uniformly study a large class of modal logics which includes K, T ,
S4, S5, S4.3.

1 Introduction
Since the late 1970’s decidability results for fragments of Set Theory have been
studied [13] with the long-term aim of providing a collection of procedures capable
of computing within the decidable core of Set Theory [10]. Two of the main features
of Set Theory are the Extensionality and the Regularity axioms. The first establishes
a strong link between membership and equality, while the second implies that the
membership relation forms no cycles or infinite descending chains. In the 1980’s the
necessity to consider theories non assuming these strong constraints (re-)emerged
in many communities, hence various proposals for (axiomatic) non well-founded set
theories (and universes) were developed (see [14, 1, 2, 3]). In general, as far as
the choice of the underlying axioms is concerned, when dealing with decidability
problems the safest (and often most reasonable) choice is a minimal one. Once a
decision procedure over a minimal theory is discovered one can usually tune it up
in order to deal with stronger theories (cf. [15]).
The flexibility provided by the absence of some axioms allows also to play with sets

in a rather peculiar way: in [12, 5, 6], exploiting the possibilities given by a weak set
theory, a set-theoretic translation—called 2-as-P (box-as-powerset) translation—
rewriting any modal formula into a set-theoretic one, was proposed. Such a method
shows that, with the limited amount of second-order logic introduced by means of

Dip. di Matematica e Informatica, Univ. di Udine. Via Le Scienze 206, 33100 Udine (Italy).
(piazza|policrit)@dimi.uniud.it

APPIA-GULP-PRODE 2001

the axiomatic set theory driving the translation, a mild form of deduction theorem
holds for a modal logic specified by any set of Hilbert’s axioms. Even tough the
proposed translation method was originally conceived as a way to automatize modal
deduction, it can also be used as a tool for proving decidability of classes of modal
logics (cf. [11]). The basic idea is that in the case of a first-order complete modal
logic it is possible to replace the 2-as-P translation of the axioms with the first-
order characterization of the modal logic. In (cf. [11]) is presented a way of reducing
modal decidability problems to set-theoretic ones. A conjecture stated at the end
of that paper has been our starting point for this work, for which a tableau-based
approach to the decidability problem turned out to be the right way to approach
the question.
In order to provide decision procedures for a set-theoretic class of formulae

obtained through the above mentioned translation technique, we propose here a
tableau-based procedure to decide satisfiability w.r.t. the minimal set theory Ω.
The decidability result presented here allows to cope with the powerset operator,
together with the usual operators of MLS, Multi-Level Syllogistic, and restricted-
universal quantifiers, in models of set theories that are neither well-founded nor
extensional. Similar decidability problems have already been treated in the well-
founded case,with a tableau-based decision procedure, in [7, 8, 9]. In [17] we pre-
sented a tableau method which works in the non-well-founded case. There are many
differences between the problem we consider here and the problem studied in [17]: in
[17] we did not allow universal quantifiers, we did not put restrictions on the use of
the powerset operator, and we used the anti-foundation axiom (AFA); here we allow
universal quantifiers, we put restrictions on the use of the powerset operator, con-
sidering only the formulae with powerset which could be obtained using the 2-as-P
translation, and we do not assume (AFA) or any other form of anti-foundation.
The paper is organized as follows. In Section 2 we introduce the theory Ω, and we

recall the 2-as-P translation. In Section 3 we present a construction which builds
models of Ω from graphs: the construction is interesting because it works as our
satisfiability procedure, but it uses the axioms of Ω instead of an input formula. In
Section 4, extending a result presented in [11], we motivate the satisfiability problem
we deal with. In Section 5 we define our tableau satisfiability procedure, while in
Section 6 we introduce a termination condition on our procedure and we show its
correctness and completeness w.r.t. a subclass of formulae. In Section 7 we analyze
the modal meaning of our result. Some conclusions and future works are presented
in Section 8. The proofs of the results in this paper can be found in [16].

2 Preliminaries and Motivations
The basic modal logic notions and the relationships between modal logic and first-
order logic through the language {R,=} we refer to in this paper, can be found in [4].
Consider the first-order language L = 〈F ,P〉, with F = {∪, \, ℘} and P = {∈,⊆}.
If ϕ is a formula, FV (ϕ) stands for the free variables in ϕ.
Let Ω be the theory in Figure 1.

Definition 2.1 If γ(p1, . . . , pn) is a modal formula, the set-term γ∗(x, z1, . . . , zn) is
inductively defined as follows:

Deciding Modal Logics using Tableaux and Set Theory

(∪) ∀x, y, z (x ∈ y ∪ z ↔ x ∈ y ∨ x ∈ z)
(\) ∀x, y, z (x ∈ y \ z ↔ x ∈ y ∧ x /∈ z)
(⊆) ∀x, y (x ⊆ y ↔ ∀z (z ∈ x→ z ∈ y))
(℘) ∀x, y (x ∈ ℘(y)↔ x ⊆ y)

Figure 1: The theory Ω.

1. p∗i = zi;
2. (γ1 ∨ γ2)

∗ = γ∗1 ∪ γ
∗
2 ;

3. (¬γ)∗ = x \ γ∗;
4. (2γ)∗ = ℘(γ∗).

The set-theoretic translation γs(x) of the formula γ(p1, . . . , pn) is the formula

∀z1, . . . , zn(x ⊆ γ∗(x, z1, . . . , zn)).

One of the results in [12] is that if Λ is the complete modal logic obtained by adding
the axiom Ax to the modal logic K (see [4]), then

`Λ γ iff Ω ` ∀x(x ⊆ ℘(x) ∧ Axs(x)→ γs(x)).

One of the main feature of the above translation (2-as-P translation) is its ability
to deal with any modal logic, regardless the fact that such a logic is first-order
definable or not. On the other hand, the results presented in [11] were direct to a
study of the possibilities of transferring decidability results to and from Modal Logic
and Set Theory and first-order complete modal logic are taken into account. Λ is a
first-order complete modal logic (which extends K) with first-order correspondent δ
in the language {R,=} (see [4]) if it holds that

`Λ γ iff γ is valid in every frame in which δ is valid.

Notice that δ is a sentence (i.e., the set of free variables in δ is empty, FV (δ) = ∅).
It is possible to translate δ into a set-theoretic formula using the following definition.

Definition 2.2 Let δ be a first-order formula in the language {R,=}, and let x be
a variable which does not occur in δ. The formula δs(x) is the formula we obtain
from δ by:
1. replacing all the occurrences of R with ∈;
2. replacing all the ∀y and all the ∃y with ∀y ∈ x and ∃y ∈ x respectively.

Using a suitable extension Ω′ of Ω (that is Ω′ = Ω + Cc + s, cf. [11]) it has been
proved that if Λ is a first-order complete modal logic (which extend K) with first-
order correspondent δ, then

`Λ γ(p1, . . . , pn) iff Ω′ ` ∀x(x ⊆ ℘(x) ∧ δs(x)→ γs(x)). (1)

Spelling out all the variables and the meaning of the formulae, introduced in the
translation, we have that if the class of formulae of the form

∀x∀~z∀~v(x ⊆ ℘(x) ∧ ∀~y ∈ x(αs(x, ~y,~v))→ x ⊆ γ∗(x, ~z)), (2)

APPIA-GULP-PRODE 2001

where α is a quantifier-free conjunction of clauses over the language {R,=}, were
decidable over Ω′, then all first-order complete modal logics whose first-order corre-
spondent is in the class ∃∗∀∗ (formulae in prenex form with an arbitrary number of
∃ followed by an arbitrary number of ∀) would be decidable.
In the following sections we prove that in (1), and hence in (2), it is possible

to replace Ω′ with the much more elementary Ω. Then we present a procedure
which deals with this last decidability problem. We prove that when δ is in ∃∗∀2

and α does not contain equalities we are able to decide the satisfiability problem
adding a termination condition. In this way we obtain that using a unique decision
procedure, a sort of uniform method to build canonical counter-examples, we can
uniformly decide over a large class of modal logics.

3 From Graphs to Models of Ω
In order to build a model of Ω in which an unquantified formula ψ is satisfiable, one
natural idea is to build a graph whose nodes are the variables in ψ and whose edges
mimic the membership atoms of ψ ([17]). Then we need to embed this graph into a
model of Ω. In this section we define how to build a model of Ω out of a graph and
during the construction we need to saturate the graph in order to satisfy the axioms
of Ω. The procedure Check (see Section 5) in a certain sense generalizes such kind
of construction dealing with formulae in the class we want to decide. We will use
the result we give in this section both to extend to Ω the validity of (1) above and
to prove the correctness of our procedure Check.
Let G = 〈N,E〉 be a graph, with N possibly infinite. We define a method which

allows us to map G into a model Gω of Ω such that G is a sub-graph of Gω, without
adding out-going edges to the nodes of G (i.e., maintaining G as a complete subgraph
of Gω).
First, we introduce some notations. Let G = 〈N,E〉, let v, u ∈ N be two nodes,

and let V ⊆ N be a set of nodes:
- in(G, v, u,∪) iff there exists a node w in N such that
∀x ∈ N((〈v, x〉 ∈ E ∨ 〈u, x〉 ∈ E)↔ 〈w, x〉 ∈ E);

- in(G, v, u, \) iff there exists a node w in N such that
∀x ∈ N((〈v, x〉 ∈ E ∧ 〈u, x〉 6∈ E)↔ 〈w, x〉 ∈ E);

- sb(G, V, v) iff ∀x ∈ N(x ∈ V → 〈v, x〉 ∈ E);
- in(G, V, v,⊆) iff there exists a node w in N such that
∀x ∈ N((x ∈ V ∧ 〈v, x〉 ∈ E)↔ 〈w, x〉 ∈ E);

- csb(G, V, v) iff ¬sb(G, V, v) ∨ in(G, V, v,⊆);
- in(G, v, ℘) iff there exists a node w in N such that
∀x ∈ N(∀y ∈ N(〈x, y〉 ∈ E → 〈v, y〉 ∈ E)↔ 〈w, x〉 ∈ E).
Intuitively in(G, v, u,∪) means that there is a node in G which can be used has

v ∪ u (i.e., it satisfies the axiom (∪) w.r.t. v and u). Since x ∈ v is interpreted on
the graph has 〈v, x〉, sb(G, V, v) means that V is a subset of v, while in(G, V, v,⊆)
stands for the fact that there is a node in G which can represent the subset V ∩ v
of v. It follows that not csb(G, V, v) is equivalent to the fact that V is a subset of v
and there is no node in G which represents this subset.
Starting from G = G0 we introduce a sequence of graphs Gn and then we show

Deciding Modal Logics using Tableaux and Set Theory

that the graph obtained as the union of all the graphs in the sequence is the model
of Ω we are looking for.
If we have defined Gn, with n = 4m we inductively define Gn+i = 〈Nn+i, En+i〉, for
i = 1, 2, 3, 4, as follows:

Nn+1 = Nn ∪ {〈v, u,∪〉 | v, u ∈ Nn, not in(Gn, v, u,∪)}
En+1 = En ∪ {〈〈v, u,∪〉, x〉 | 〈v, u,∪〉 6∈ Nn, 〈v, x〉 ∈ En or 〈u, x〉 ∈ En}

Nn+2 = Nn+1 ∪ {〈v, u, \〉 | v, u ∈ Nn+1, not in(Gn+1, v, u, \)}
En+2 = En+1 ∪ {〈〈v, u, \〉, x〉 | 〈v, u, \〉 6∈ Nn+1, 〈v, x〉 ∈ En+1, 〈u, x〉 /∈ En+1}

Nn+3 = Nn+2 ∪ {〈v, V,⊆〉 | {v}, V ⊆ Nn+2, not csb(Gn+2, V, v)}
En+3 = En+2 ∪ {〈〈v, V,⊆〉, x〉 | 〈v, V,⊆〉 6∈ Nn+2, x ∈ V }

Nn+4 = Nn+3 ∪ {〈v, ℘〉 | v ∈ Nn+3, not in(Gn+3, v, ℘)}
En+4) = En+3 ∪ {〈〈v, ℘〉, x〉 | 〈v, ℘〉 6∈ Nn+3, sb(Gn+3, {y | 〈x, y〉 ∈ En+3}, v)}

Let Gω = 〈Nω, Eω〉, with Nω =
⋃

n∈N Nn and Eω =
⋃

n∈NEn

Let τ be a well-ordering over Nω. From Gω we obtain an interpretation of L
defining ∀v1, v2,∈ Nω:
- u ∈ v if and only if 〈v, u〉 ∈ Eω;
- v ∪ u = w, with w the min (w.r.t. τ) such that ∀x(x ∈ w ↔ x ∈ v ∨ x ∈ u);
- v \ u = w, with w the min (w.r.t. τ) such that ∀x(x ∈ w ↔ x ∈ v ∧ x /∈ u);
- u ⊆ v if and only if ∀x(x ∈ u→ x ∈ v));
- ℘(v) = w, with w the min (w.r.t. τ) such that ∀x(x ∈ w ↔ x ⊆ v).
We use Gω to refer to this interpretation of L, forgetting that it is τ -dependent. We
have to prove that Gω is a model of Ω and that G is a complete subgraph in Gω.
First we prove that this last property holds for all the Gm, hence we use this fact to
prove that Gω is a model of Ω.

Lemma 3.1 For all m ∈ N, Gm is a complete subgraph in Gω

Another important property of our construction is that we never add a node whose
set of outgoing edges is equal to the set of outgoing edges of a node which was
already in the graph at the previous iteration.

Lemma 3.2 Let u and v be two nodes in Gω, such that {x | 〈v, x〉 ∈ Eω} =
{x | 〈u, x〉 ∈ Eω}. If u ∈ Em, then v ∈ Em.

Lemma 3.3 Gω is an interpretation of L, and a model of Ω.

4 Ω and Modal Logic
In Section 2 we recalled the definition of the 2-as-P translation (see [5]). Here we
precisely extend to Ω the result (1) at the ground of the technique for transferring
set-theoretic decidability results to Modal Logic. In particular, we introduce the
specific satisfiability problem we deal with in the rest of the paper.
Let Λ be a first-order complete modal logic (which extends K) with first-order

correspondent δ in the language {R,=}.

APPIA-GULP-PRODE 2001

Proposition 4.1 For any modal formula γ(p1, . . . , pn) we have that

`Λ γ(p1, . . . , pn) iff Ω ` ∀x(x ⊆ ℘(x) ∧ δs(x)→ ∀~z(x ⊆ γ∗(x, z1, . . . , zn))).

Now if we want to decide
`Λ γ,

from Proposition 4.1 it follows that we can equivalently decide

Ω ` ∀x(x ⊆ ℘(x) ∧ δs(x)→ ∀~z(x ⊆ γ∗(x, z1, . . . , zn))).

This is equivalent to decide the unsatisfiability in Ω of

¬(∀x(x ⊆ ℘(x) ∧ δs(x)→ ∀~z(x ⊆ γ∗(x, z1, . . . , zn)))).

Bringing this formula towards its prenex normal form, we obtain that we can equiv-
alently decide the unsatisfiability in Ω of

∃x∃~z∃w(x ⊆ ℘(x) ∧ δs(x) ∧ w ∈ x ∧ w 6∈ γ∗(x, z1, . . . , zn)).

When δ is of the form ∃∗∀∗α we can give to the above formula the equivalent form

∃x∃~z∃w∃~v(x ⊆ ℘(x) ∧ ∀~y ∈ x(αs(x, ~y,~v)) ∧ w ∈ x ∧ w 6∈ γ∗(x, z1, . . . , zn)).

The above argument shows that:

Proposition 4.2 If the satisfiability problem w.r.t. Ω of the class of formulae of
the form1

∃x∃~z∃w∃~v(x ⊆ ℘(x) ∧ ∀~y ∈ x(αs(x, ~y,~v)) ∧ w ∈ x ∧ w 6∈ γ∗(x, z1, . . . , zn)),

where α∗ is quantifier-free, is decidable, then the decidability of all the first-order
complete modal logics with first-order correspondent in the class ∃∗∀∗ follows.

In the next two sections we study the above satisfiability problem. In the general
case we are able to give a procedure which could not terminate. In the case δ is in
the class ∃∗∀2 and in αs there are no positive equality literals we are able to add a
test to the procedure in order to obtain a procedure which decide the satisfiability
problem.

5 The Tableau Satisfiability Procedure
As we explained in the previous section, the class of formulae we are interested in
is the class C1 of formulae of the form

x ⊆ ℘(x) ∧ ϕ1 ∧ . . . ∧ ϕn ∧ w ∈ x ∧ w 6∈ t(x, ~z)

where
ϕi ≡ ∀~y ∈ x(p

i
1(~y,~v) ∨ . . . ∨ p

i
mi
(~y,~v)) (3)

1A formula F is satisfiable w.r.t. a theory T if and only if there exists a model of T in which F

is satisfiable.

Deciding Modal Logics using Tableaux and Set Theory

with pi
j(~y) in one of the following forms

yh ∈ yk, yh /∈ yk, yh 6= yk, yh = yk

yh ∈ vk, yh /∈ vk, yh 6= vk, yh = vk

vh ∈ yk, vh /∈ yk, vh 6= yk, vh = yk

and
t(x, ~z) ::= zj |x | t1 ∪ t2 |x \ t1 |℘(t1). (4)

We want to test if there exists at least one model of Ω in which a formula ψ of this
class is satisfiable. Notice that FV (ψ) = {x,w,~v, ~z}. Let us recall the connection
between this satisfiability problem and the problem `Λ γ, when Λ has δ as first order
correspondent:
• the variable x represent the frame we are looking for, i.e. a frame in which δ
is valid and γ is not;

• ϕ1 ∧ . . . ∧ ϕn is our δ
s;

• the variables y’s and v’s are worlds of our frame x;

• the variable w represent the world in which we want to falsify γ;

• t(x, ~z) is the 2-as-P translation of γ, i.e. it is the set of world at which γ is
true;

• the z’s represent the values (set of worlds) we must assign to the propositional
letters in γ in order to make that w falsify γ.

The main idea behind our decision procedure is the following: we build the frame
(set) x starting from its world (element) w; at each iteration we add the new worlds
(elements) that are necessary to satisfy δ and to ensure that w does not satisfy γ
(w does not belong to γ∗).
The fact that we look at the problem from a set-theoretic perspective gives us

the advantage that:
• in order to add the new elements to x (and to the subterms of t(x, ~z), when it
is necessary), we can use the rules we obtain from the natural meaning that
Ω gives to the set-operators;

• in order to ensure termination it is sufficient to check to which subsets of x
we are adding elements: if these subsets are already “big enough” we can stop
our procedure.

In order to decide whether a formula in the class C1 is satisfiable it is convenient to
deal with a larger class C of formulae.

Definition 5.1 Let {x, z1, . . . , zp, v1, . . . , vq}(= {x, ~z,~v}) be a finite set of distinct
variables, and Term = {t1(x, ~z), . . . , ts(x, ~z)} be a finite set of terms of the form
(4). Let A,B ⊆ Iq × Is and C,D,E ⊆ Iq × Iq.

2 A formula ψ(x, ~z,~v) is in the class
C if and only if it is of the form

ψ∀(x,~v) ∧ x ⊆ ℘(x) ∧ ψterm(x, ~z,~v) ∧ ψvar(~v),

2Let n ∈ N, n > 0, we use In to refer to {1, . . . , n}.

APPIA-GULP-PRODE 2001

where

ψ∀(x,~v) ≡
n

∧

i=1

ϕi,

with the ϕi’s of the form (3),

ψterm(x, ~z,~v) ≡
∧

〈a1,a2〉∈A

(va1
6∈ ta2

(x, ~z)) ∧
∧

〈b1,b2〉∈B

(vb1 ∈ tb2(x, ~z)),

and
ψvar ≡

∧

〈c1,c2〉∈C

(vc1 6∈ vc2) ∧
∧

〈d1,d2〉∈D

(vd1
∈ vd2

) ∧
∧

〈e1,e2〉∈E

(ve1
6= ve2

).

The fact that in ψvar we do not have equalities is not a restriction: it is possible to
map a formula in which there are equalities of the form vh = vk into an equivalent
formula in C. The class C1 is a subclass of C. A formula in C still have a modal
interpretation: we are looking for a frame x whose accessibility relation satisfies
certain conditions (ψ∀ ∧ ψvar) and in which there are worlds which do not satisfy
and do satisfy certain modal formulae (ψterm).
We now start to describe a procedure to test the satisfiability of formulae of

C w.r.t. the theory Ω. Let us consider the set of rules, ∃-reductions, in Figure
2. The notation used in rules (2∃) and (5∃) means that it is necessary to choose

w 6∈ s1 ∪ s2
w 6∈ s1 ∧ w 6∈ s2

(1∃)
w 6∈ k \ s1

w 6∈ k | w ∈ s1
(2∃)

w 6∈ ℘(s1)

w1 ∈ w ∧ w1 6∈ s1
(3∃)

w1 ∈ w w ∈ k k ⊆ ℘(k)

w1 ∈ k
(4∃)

w ∈ s1 ∪ s2
w ∈ s1 | w ∈ s2

(5∃)
w ∈ k \ s1

w ∈ k ∧ w 6∈ s1
(6∃)

w1 ∈ w w ∈ ℘(s1)
w1 ∈ s1

(7∃)

Figure 2: The rules ∃-reductions.

(non-deterministically) one out of two alternatives. The rule (4∃) is needed only to
deal with the inclusion x ⊆ ℘(x), since in our class of formulae there are no other
inclusions. Notice that rule (3∃) is the only one which leads to the introduction of
a new variable. In these rules we make use of the variables w,w1, si, k. When we
apply these rules to formulae in C we have that: w’s, w1’s correspond to variables in
~v; the variables si’s correspond to terms of Term; the variable k corresponds to x.
Later we will use variables ~h, which for formulae in C correspond to the variables ~y.
Let l

r
be one of rules in ∃-reductions. Applying once this rule to a formula ψ in

the class C consists in:

1. check if there exists a subformula ` in ψterm ∧ x ⊆ ℘(x) and a substitution σ
such that l[σ] = `;

2. check if r[σ] is already a subformula of ψterm∧ψvar and, if this is not the case,
map ψ into ψ ∧ r[σ].

Deciding Modal Logics using Tableaux and Set Theory

Intuitively, what we want to do is to apply all the rules of ∃-reductions, until a fix-
point is reached. Rule (3∃) can cause a problem since it introduces new variables.
However, in ψ there are only a finite number of ℘ operators and, moreover, the
r.h.s. of (3∃) is of ‘lower complexity’ than its l.h.s.; hence the fix-point will always
be reached in a finite number of iterations.
Our next problem is that we must apply the ∃-reductions rules together with other

rules we will introduce later in this section. It is an uncontrolled interaction of the
∃-reductions with these other rules that can lead to non-termination. This is why we
introduce a procedure in which we control the application of the ∃-reductions. The
procedure apply-∃ (Figure 3) takes as input a formula ψ in the class C, a variable
v, and a term t, and allows to apply rule (3∃) only if σ(w) = v and σ(℘(s1)) = t.
In Figure 4 we give the second set of rules we need and by the procedure apply-∀

apply-∃(ψ, v, t):
repeat

ϕ := >;
for all ` subformulae of ψ do

if there is i ∈ {1∃, 2∃, 4∃, 5∃, 6∃, 7∃} and σ such that ` = li[σ] then
if ri[σ] is not subformula of ψ then

ψ := ψ ∧ ri[σ];
ϕ := ⊥;

if ` = v 6∈ t and t = ℘(t1) then
if there is not v1 such that (v1 ∈ v ∧ v1 6∈ t1) is subformula of ψ then

ψ := ψ ∧ v1 ∈ v ∧ v1 6∈ t1;
ϕ := ⊥;

until ϕ.

Figure 3: The Procedure apply-∃.

(Figure 5) we explain how we control the application of these rules. apply-∀ takes a

~w ∈ k ∀~h ∈ k(p1 ∨ . . . ∨ pm)

p1[~h/~w] | . . . | pm[~h/~w]
(1∀)

Figure 4: The rule ∀-reductions.

formula ψ as input and applies the rule in ∀-reductions until a fix-point is reached. It
also performs a collapsing of the variables on which an equality has been introduced.
It is clear that a sufficient large number of applications of ∀-reductions to a formula
ψ always reaches a fix-point (immediate consequence of the fact that this rule never
adds new variables). As we mentioned before, a problem with termination could
arise when we mix ∃-reductions and ∀-reductions.
To conclude, we need to give the rules to close the branches of the tableau: such

general-reductions are presented in Figure 6. and it is clear how to apply them to a
formula ψ in C. The procedure in Figure 7 gives the details. Notice that if ψ is a

APPIA-GULP-PRODE 2001

apply-∀(ψ):
repeat

ϕ := >;
for all ∀y1, . . . , yh ∈ x(p1 ∨ . . . ∨ pm) subformulae of ψ do

for all (v1 ∈ x ∧ . . . ∧ vh ∈ x) subformulae of ψ do
if there is not k ≤ m such that pk[~y/~v] is subformula of ψ then

let k ≤ m;
ψ := pk[~y/~v] ∧ ψ;
ϕ := ⊥;

until ϕ.
for all (v1 = v2) subformulae of ψ do

ψ := ψ[v1/v2];

Figure 5: The Procedure apply-∀.

w1 ∈ s1 w1 6∈ s1
⊥

(1g)
w1 6= w1
⊥

(2g)

Figure 6: The rules general-reductions.

formula in C, then also apply-∃(ψ,w, s), apply-∀(ψ), and apply-gen(ψ) are in C.
We introduce an auxiliary function part, which takes as input three sets and

returns a Boolean value. part(A,B,C) returns true if and only if A and B partition
C into one or two blocks.

part(A, B, C) := (A ∩B = ∅ and A ∪B = C).

The procedure Check (Figure 8) combines all the subroutines introduced up to this
point in our general tableau procedure. A declarative version of Check would simply
apply all the rules until a fix-point is reached. Our version considers also whether
we entered in an infinite branch or not. Let us assume that in ψterm there are m
terms of the form t(x, ~z) and that the set T of all their subterms has cardinality p.
For each variable v in ~v we can guess to which elements of T v has to belong (the set
ECv) and, hence, to which elements of T v does not belong (the set NCv). From the
point of view of Kripke semantics this guess correspond to guess the subformulae of γ
which holds at v. The ∃-reductions rules infer, using ECv and NCv, the membership
relations and together with the general-reductions rules, they check the consistency
of ECv. The ∀-reductions rules add the membership literals which are necessary if
we want that x satisfies ψ∀. Modally this corresponds to the fact that these rules
“adjust” the frame in such a way that δ is valid. We know that rule (3∃) can be
applied using v at most p times, hence we put p occurrences of v in the queue new.
Its meaning in modal logic’s terms is that since there are at most p occurrences of
2 in γ, we need to consider at most p immediate successors of v. At each iteration
of the repeat-loop at most a new variable u is added. We initialize the values ECu

and NCu and we add p occurrences of u in the queue new; the 〈v, i〉 which is taken

Deciding Modal Logics using Tableaux and Set Theory

apply-gen(ψ):
for all ` subformulae of ψ do

if there is i ∈ {1, 2}, and σ such that ` = li[σ] then
ψ := ⊥.

Figure 7: The Procedure apply-gen.

Check(ψ(x, ~z,~v)):
V := {v | v ∈ ~v};
T := {t′ | t(x, ~z) is a term in ψterm and t

′ is a subterm of t(x, ~z) or t′ ∈ V ∪ {x}};
p := |T |;
let ord be an ordering on T ;
new := [];
old := []; % only for termination
Inf := ⊥; % only for termination
for all v ∈ V do % only for termination

Ev := {t
′ | t′ ∈ T and v ∈ t′ is a subformula of ψterm};

Nv := {t
′ | t′ ∈ T and v 6∈ t′ is a subformula of ψterm};

let 〈ECv, NCv〉 such that
ECv ⊇ Ev and NCv ⊆ Nv and part(ECv, NCv, T);

ψ := ψ ∧
∧

t′∈ECv
v ∈ t′ ∧

∧

t′∈NCv
v 6∈ t′

new := append(new, [〈v, 1〉, . . . , 〈v, p〉]);
repeat

ϕ := ψ;
〈v, i〉 := head(new);
new := cons(new);
old := append(old, [〈v, i〉]); % only for termination
apply-∃(ψ, v, ord(i));
apply-∀(ψ);
if u ∈ FV (ψ) \ FV (ϕ) then % only for termination

Eu := {t
′ | t′ ∈ T and u ∈ t′ is a subformula of ψterm};

Nu := {t
′ | t′ ∈ T and u 6∈ t′ is a subformula of ψterm};

let 〈ECu, NCu〉 such that
ECu ⊇ Eu and NCu ⊆ Nu and part(ECu, NCu, T);

ψ := ψ ∧
∧

t′∈ECu
u ∈ t′ ∧

∧

t′∈NCu
u 6∈ t′

new := append(new, [〈u, 1〉, . . . , 〈u, p〉]);
apply-gen(ψ);

% if {w | 〈w, j〉 ∈ new} ∩ V = ∅ then
% if {ECw | 〈w, j〉 ∈ old} ⊇ {ECw | 〈w, j〉 ∈ new} and i = p then
% Inf := >;
until ϕ = ψ ∨ ψ = ⊥ ∨ Inf.

Figure 8: The Procedure Check.

APPIA-GULP-PRODE 2001

out from the queue new is put in the queue old. We will explain later the meaning
of the two commented line in the procedure: they will ensure the termination.
The rules in ∃-reductions, applied by the procedure apply-∃, build the solution

adding new elements (variables) when it is necessary. Moreover, they establish to
which subterms of t(x, ~z) these elements (variables) have to belong.
The rule in ∀-reductions, applied by the procedure apply-∀, ensures that all the

new elements of x satisfy the universal conditions which are in ψ∀.
The rules in general-reductions, applied by the procedure apply-gen, determine

whether there is a contradiction in the formula. Such a contradiction could derive
from a wrong guess of the sets EC’s and NC’s or from the fact that the formula is
not satisfiable. Intuitively, since all the possible choices are taken into consideration,
if all the non-deterministic branches of Check(ψ) terminates with ψ = ⊥, then the
formula ψ is not satisfiable.

Lemma 5.2 If all the non-deterministic branches of the Check procedure on input
ψ terminate with ψ = ⊥, then ψ is not satisfiable in any model of Ω.

The third rule of ∃-reductions introduces a new variable, hence one, or more, of
the non-deterministic branches of Check(ψ) could not terminate. This happens, for
instance, when we are dealing with a formula ψ of C which has only solutions with
an infinite number of elements.
From a set-theoretic point of view, recalling that we are not assuming Exten-

sionality and that the Regularity axiom has not been replaced by any form of anti-
foundation, we start by showing how to build a solution in the case that one of
the possible non-deterministic branches of Check(ψ) terminates with ψ 6= ⊥ or does
not terminates. Let us use the term infinitary formula 3 to refer to a formula in
our language in which we allow conjunctions of infinitely many literals. We extend
the class C to the class Cω of generalized formulae in which we allow an infinite
number of ~v variables. In particular ψω(x, ~z,~v) is in Cω if and only if ψ

ω(x, ~z,~v) is
a generalized formula of the form

ψω
∀ (x,~v) ∧ x ⊆ ℘(x) ∧ ψω

term(x, ~z,~v) ∧ ψ
ω
var(~v),

where ψω
var(~v) and ψ

ω
term(x, ~z,~v) can be conjunctions of ω literals, provided that there

are only a finite number of variables in ~z.
Consider the formula ψω obtained after at most ω iterations of the repeat-loop

of Check(ψ). Each model of Ω in which ψω is satisfied is also a model of Ω in which
ψ is satisfied, since ψ is a subformula of ψω.
Let G(ψ) = 〈N(ψ), E(ψ)〉 be the following graph:

N(ψ) = FV (ψω)
E(ψ) = {〈u1, u2〉 |u2 ∈ u1 is an atom in ψ

ω}.

Let Gω(ψ) be a model of Ω obtained from G(ψ) as described in Section 3.

3The use of an infinitary language here is justified by convenience in dealing with quantifiers
only, being easily eliminable from our argument.

Deciding Modal Logics using Tableaux and Set Theory

Lemma 5.3 All the literals that are in ψω \ ψ∀ are in one of the following forms:
- v = v, with v ∈ V;
- v1 6= v2, with {v1, v2} ⊆ V and v1 6≡ v2;
- v ∈ s, with v ∈ V;
- v 6∈ s, with v ∈ V;
- x ⊆ ℘(x).

The above result is nothing but a formal proof of the fact that the rules in Check
maps formulae of the class C into formulae of the class C (formulae of the class Cω,
if we allow infinite branches).

Lemma 5.4 Gω(ψ) is a model of Ω and a model of ψω.

Theorem 5.5 If there exists a non-deterministic branch of Check(ψ) which termi-
nates with ψ 6= ⊥ or which does not terminate, then ψ is satisfiable in a model of
Ω.

Corollary 5.6 A formula ψ in the class C is satisfiable in a model of Ω if and only
if not all the non-deterministic branches of Check(ψ) terminates with ψ = ⊥.

Notice that in the case Check terminates after a finite number of iterations with
ψ 6= ⊥, we have implicitly proved that ψ has a finite model. In this case the whole
model Gω(ψ) is infinite but the part of model (the graph) used to give a solution is
finite, since in a finite number of iterations we can only add a finite number of new
variables.

6 The Procedure TCheck: Correctness and Termi-

nation
In the case that ψ∀ is in the class ∀

2 with no positive literals of equality (we use C2no=

to refer to this class) we modify the procedure Check in order to obtain a procedure
TCheck which decides the satisfiability problem. This means that in this particular
case we are able to add a termination condition which ensures the existence of a
solution. The procedure TCheck is obtained from Check by simply removing the
comment symbols % at the beginning of the last three lines of the repeat-loop.

Lemma 6.1 Let ψ be a formula in C such that in ψ∀ there are no literals of the
form yh = yk, yh = vk, vh = yk, and let ψω be a formula obtained after at most ω
iterations of Check(ψ). In ψω there are no literals of the form v = v.

Lemma 6.2 Let ψ be a formula in C2no=. The procedure TCheck on input ψ always
terminates.

Lemma 6.3 If there exists a non-deterministic branches of TCheck(ψ) which ter-
minates with Inf = ⊥ and which maps the formula ψ into the formula ψ ′, then
there exists a non-deterministic branch of Check(ψ) which terminates and maps the
formula ψ into the formula ψ′.

APPIA-GULP-PRODE 2001

Lemma 6.4 If there exists a non-deterministic branch of TCheck(ψ) which termi-
nates with Inf = >, then there exists a branch of Check(ψ) which does not termi-
nate.

Lemma 6.5 If all the non-deterministic branches of TCheck map ψ into ⊥, then
all the non-deterministic branches of Check terminate and map ψ into ⊥.

Theorem 6.6 Let ψ be a formula in the class C2no=. ψ is satisfiable in a model of
Ω in which ψ is satisfiable if and only if there exists a non-deterministic branch of
TCheck at the end of which ψ 6= ⊥. Moreover, if there exists a non-deterministic
branch of TCheck at the end of which Inf = ⊥ and ψ 6= ⊥, then ψ is finitely
satisfiable in a model of Ω.

Notice that in order to force termination in this particular case we check to which
subsets of x the new variables we are adding belong. When we are in a situation
in which all the variables we have to process present a situation similar to variables
already processed we are able to generate an infinite branch. This is similar to what
we did in [17], where we analyzed what we called pictures. But in that case from
the existence of an infinite branch we were not able to deduce the existence of a
solution. That problem was mainly caused by the presence of the ℘ operator on the
l.h.s. of inclusions. This never arises when the formulae we consider are translations
of modal formulae.
We are working on a general termination condition which added to Check gives a

decision procedure for the whole class C. However, the objects required to express
this condition are much more complicate than the EC’s, which remain at the basis
of the condition. In particular this makes the correctness proof, on which we are
working, much more hard than the one we give here for the class C2no=.

7 Modal Consequences
Definition 7.1 Let Λ be a first-order complete modal logic with first-order corre-
spondent δ. If δ is of the form ∃∗∀2α such that α is in conjunctive normal form
and there are not positive literals of equality in α, then we say that Λ is an ∃∗∀2-
equality-free modal logic.

Corollary 7.2 If Λ is an ∃∗∀2-equality-free modal logic, then Λ is decidable.

Some ∃∗∀2-equality-free modal logics are K, T , B.
In the case that Λ is a first-order complete modal logic with first-order correspon-

dent δ in the class ∃∗∀∗ it is possible to use the procedure Check to test `Λ γ. In the
way that the procedure is presented here it is possible that it does not terminate.
However, what is interesting is that it allows to deal in a uniform way with a large
class of modal logics: we do not have to define a set of tableau rules for each modal
logic; there is only one rule, the rule (3∃), which takes care of the introduction of
new worlds; while the rule in ∀-reduction manages the encoding of the axioms of the
modal logic. Some famous modal logics in this class are K4, S4, S5, K4.3, S4.3 (no
branching to the right).

Deciding Modal Logics using Tableaux and Set Theory

8 Conclusion and Future Developments
The results presented in this paper go towards establishing a strong link between
decision problems in Set Theory and Modal Logic. The two main tools used are the
2-as-P translation method and the tableau technique, intended as a general tool for
coordinating a semantic and syntactic interplay in the analysis of a formula. The set-
theoretic approach, on the one hand, guarantees an entirely uniform point of view on
modal logics characterized via Hilbert’s axioms4. Such a point of view, on the other
hand, allows a tableau-like analysis that, abstracting from the specific modal logic
under consideration concentrates on the model construction in completely general
and intuitive (set-theoretic) terms. In this respect consider, for example, the fact
that the only rule introducing new variables in our procedure is (3∃).
The decidability result presented here is an example of the possible fruitfulness of

the approach and we are convinced that such a result can be generalized to the entire
class of modal logic with first-order correspondent of the form ∃∗∀∗. Major stum-
bling block towards this achievement is the specification of the correct termination
condition of the tableau procedure presented in Section 5.
Further studies relative to the possibilities given by the technique presented here

for classes of modal logics differently specified are also planned.

References

[1] P. Aczel. Non-well-founded sets., volume 14 of Lecture Notes, Center for the Study

of Language and Information. Stanford, 1988.

[2] J. Barwise and L. Moss. Hypersets. The Math. Intelligencer, 13(4):31–41, 1991.

[3] J. Barwise and L. Moss. Vicious Circles. On the Mathematics of non-well-founded

phenomena. CSLI, Stanford, 1996.

[4] J. F. A. K. van Benthem. Modal Logic and Classical Logic. Bibliopolis and Atlantics
Heights, 1985.

[5] J. F. A. K. van Benthem, G. D’Agostino, A. Montanari, and A. Policriti. Modal
deduction in second-order logic and set theory-I. Journal of Logic and Computation,
7(2):251–265, 1997.

[6] J. F. A. K. van Benthem, G. D’Agostino, A. Montanari, and A. Policriti. Modal
deduction in second-order logic and set theory-II. Studia Logica, 60(3):387–420, 1998.

[7] D. Cantone. A fast saturation strategy for set-theoretic tableaux. In D. Galmiche,
editor, Proceedings of TABLEAUX’97, pages 122–137. Springer-Verlag LNAI, vol.
1227, 1997.

[8] D. Cantone and Zarba C. A new fast saturation tableau-based decision procedure
for an unquantified fragment of set theory. In Proc. of the International Workshop

in First-Order Theorem Proving, FTP’98, 1998.

4It is possible to specify modal logics by adding modal formulae as axioms to K (à la Hilbert)
or, semantically, through a description of their models. For non-complete modal logics these
characterizations are not equivalent.

APPIA-GULP-PRODE 2001

[9] D. Cantone and Zarba C. A tableau calculus for integrating first-order and elementary
set theory reasoning. In Proceedings of TABLEAUX’00, 2000.

[10] D. Cantone, A. Ferro, and E. G. Omodeo. Computable Set Theory. Vol. 1. Oxford
University Press, 1989. Int. Series of Monographs on Computer Science.

[11] G. D’Agostino, A. Montanari, and A. Policriti. Set theoretic decidability results for
modal theorem proving. In Proceedings of ICTCS-95, 1996.

[12] G. D’Agostino, A. Montanari, and A. Policriti. A set-theoretic translation method
for polymodal logics. Journal of Automated Reasoning, 15:317–337, 1996.

[13] A. Ferro, E. G. Omodeo, and J. T. Schwartz. Decision Procedures for Elementary
Sublanguages of Set Theory I. Multilevel Syllogistic and Some Extensions. Comm.

Pure App. Math., 33:599–608, 1980.

[14] M. Forti and F. Honsell. Set theory with free construction principles. Annali Scuola

Normale Superiore di Pisa, Cl. Sc., IV(10):493–522, 1983.

[15] E. G. Omodeo and A. Policriti. Solvable set/hyperset contexts: I. Some decision
procedures for the pure, finite case. Comm. Pure App. Math., 48(9-10):1123–1155,
1995. Special Issue in honor of J.T. Schwartz.

[16] C. Piazza and A. Policriti. Deciding modal logics using tableaux and set theory.
UDMI/RR 37/00, University of Udine, 2000.

[17] C. Piazza and A. Policriti. Towards tableau-based decision procedures for non-well-
founded fragments of set theory. In Proceedings of TABLEAUX’00, 2000.

