
Multiset Constraints and P Systems

Agostino Dovier [, Carla Piazza \ , and Gianfranco Rossi]

Abstract

Multisets are the fundamental data structure of P systems [12]. In this pa-
per we relate P systems with the language and theory for multisets presented
in [5]. This allows us, on the one hand, to define and implement P systems us-
ing multiset constraints in a constraint logic programming framework, and, on
the other hand, to define and implement constraint solving procedures used to
test multiset constraint satisfiability in terms of P systems with active mem-
branes. While the former can be exploited to provide a precise formulation of
a P system, as well as a working implementation of it, based on a first-order
theory, the latter provides a way to obtain a P system for a given problem
(in particular, NP problems) starting from a rather natural encoding of it in
terms of multiset constraints.

1 Introduction

The notion of multiset has been recently re-discovered, analyzed, and employed in
various areas of Logic and Computer Science. From the point of view of Computer
Science, a multiset is nothing but a data structure that can contain elements; dif-
ferently from sets, the number of occurrences of each element is taken into account
and differently from lists, the order of the elements does not matter. This peculiar-
ity makes multisets suitable for modeling phenomena where resources are generated
or consumed. For instance, multisets are used to model linear logic proofs, where
tokens are consumed to deduce new ones [15]. Multisets are the fundamental data
structure of a number of computational frameworks, such as the Gamma coordi-
nation language [2], the Chemical Abstract Machine [3], and P systems modeling
membrane computing [12]. In all of them, multisets are viewed as entities containing
data (possibly, other multisets) and programs are, basically, collections of multiset
rewriting rules that can be applied with an high degree of parallelism.

Efforts have also recently been put forward for introducing multisets as first-class
citizens in programming languages. Their high level of abstraction makes it natu-
ral to introduce multisets into declarative programming paradigms using constraint
(logic) programming languages (e.g., [1, 5]). In order to allow the user to write
declarative executable code the language interpreter should be able to solve the for-
mulae (i.e., the constraints) written by the user to describe the problems at hand.

[Dip. di Informatica, Univ. di Verona. Strada Le Grazie 15, 37134 Verona (Italy). dovier@sci.univr.it
\ Dip. di Mat. e Informatica, Univ. di Udine. Via Le Scienze 206, 33100 Udine (Italy). piazza@dimi.uniud.it
] Dip. di Matematica, Univ. di Parma. Via M. D’Azeglio 85/A, 43100 Parma (Italy). gianfr@prmat.math.unipr.it

APPIA-GULP-PRODE 2001

The correctness of such a solver must be proved on the basis of the properties that
characterize multisets. Thus, it is important to develop a simple (first-order) theory
of multisets that forces the desired behavior of the multiset data structure. If the
solver works correctly on a minimal theory, then it will work correctly in any con-
sistent extension of this theory. In [5] a minimal theory (called Bag) of multisets
is developed parametrically together with minimal theories for lists, compact lists,
and sets, and a solution to the multiset unification problem is provided (see also [4]).
In [6] the results are extended to more complex constraints and the constraint logic
programming language CLP (BAG), able to deal with this kind of constraints, is
presented.

This paper aims at establishing a connection between P systems and the con-
straint language of [5], based on multiset processing as the common denominator of
the two proposals. The approach adopted is, as usual, to show how to define one
formalism in terms of the other one and vice versa. Precisely, first we show how to
define P systems using the language and the theory for multisets presented in [5].
This provides a precise formulation of P systems inside a first-order theory. More-
over, it allows us to define a translation from P systems into CLP (BAG) programs
that can be used as a simple, executable—though sequential—implementation of P
systems. In defining this mapping we will exploit the flexible multiset processing
facilities offered by our multiset constraint solver, in particular multiset unification.
This kind of “semantic” unification can be used not only as a means to compare two
multisets, but also as an easy way to arbitrarily select a subset of elements satisfy-
ing some property from a given multiset. The possibility offered by the constraint
language to deal with also partially specified multisets turns out to be essential to
allow a concise definition of P systems inside our logic framework.

On the opposite side, we show how to implement part of the constraint solver
of CLP (BAG)—namely, the fundamental part dealing with equality constraints
(hence, multiset unification)—using P systems. The extension of this implementa-
tion to the whole constraint solver of CLP (BAG) is trivial. Thus, once we have a
description of the problem expressed as a multiset constraint we also have immedi-
ately a corresponding implementation as a P system. This constitutes an interesting
alternative approach to obtain P systems algorithms for all those problems (typi-
cally, NP-complete problems) which admit a rather “natural” formulation based on
multiset constraints.

The paper is organized as follows. First we review the above-mentioned multiset
language, the axiomatic theory Bag , the constraints allowed in that language, and
the constraint logic programming language CLP (BAG) (Section 2). Then, in Sec-
tion 3 we show how to use the multiset constraint language to define P systems and
in Section 4 we use the CLP (BAG) language to provide a simple implementation
of P systems. In Section 5 we show, instead, how both the standard unification and
the multiset unification algorithms can be encoded using P systems. Finally, some
conclusions are drawn in Section 6.

Multiset Constraints and P Systems

2 Multiset Theory, Constraints, and Language

2.1 The theory Bag

The first-order language LBag we consider here is based on a signature Σ = 〈FBag , ΠBag〉
and a denumerable set V of logical variables. FBag is a set of constant and function
symbols containing the constant symbol nil, the binary multiset constructor {[· | ·]},
plus possibly other (free) constant and function symbols. ΠBag = {“=”, “∈”} is the
set of predicate symbols.

The distinguishing properties of multisets can be precisely stated by the first-
order axiomatic theory Bag , defined parametrically in [5]. Bag is a hybrid theory :
the objects it deals with are built out of interpreted as well as uninterpreted symbols.
In particular, multisets may contain uninterpreted Herbrand terms as well as other
multisets. A multiset can be built starting from any ground uninterpreted Herbrand
term—called the kernel of the data structure—and then adding to this term the
other elements that compose the multiset. We refer to this kind of data structures
as colored hybrid multisets.

We use simple syntactic conventions and notations for terms denoting multi-
sets. In particular, the multiset {[s1 | {[s2 | · · · {[sn | t]} · · ·]}]} will be denoted by
{[s1, . . . , sn | t]} or simply by {[s1, . . . , sn]} when t is nil (i.e., the empty multiset).
We will use capital letters for variables, small letters for constant and function sym-
bols.

Example 2.1

1. {[a, b, a]} (i.e., {[a | {[b | {[a | nil]}]}]}) is a term in LBag which, intuitively, de-
notes the multiset containing two occurrences of the element a and one occurrence
of the element b;

2. {[a |X]} is a term in LBag which, intuitively, denotes any multiset containing
at least one occurrence of the element a (in other words, it denotes a partially
specified multiset);

3. {[a, {[b]} | c]} is a multiset containing two elements, a and {[b]} (i.e., a nested
multiset), and colored by the kernel c. We also say that ker({[a, b | c]}) = c, where
ker is the function returning the kernel of a ground multiset.

The axiomatic theory Bag is shown in Fig. 1. For a detailed discussion, see [5].
We focus here only on the meaning of axiom (Em

k). The behavior of the multiset
constructor symbol {[· | ·]} is regulated by the following equational axiom

(Em
p) ∀xyz {[x, y | z]} = {[y, x | z]}

which, intuitively, states that the order of elements in a multiset is immaterial (per-
mutativity property). This axiom forces syntactically different terms to possibly rep-
resent the same multiset. However, axiom (Em

p) lacks in a criterion for establishing
disequalities between multisets, even if it is considered together with KWF ′

1F2F3.
Therefore, axiom (Em

k) is introduced in [5] to model (Em
p) and characterizing the

multiset extensionality property: Two (hybrid) multisets are equal if and only if they
have the same number of occurrences of each element, regardless of their order.

APPIA-GULP-PRODE 2001

(K) ∀x ȳ (x 6∈ f(y1, . . . , yn)) f ∈ FBag , f 6≡ {[· | ·]}
(W) ∀x y v (x ∈ {[y | v]} ↔ x ∈ v ∨ x = y)

(F ′
1) ∀x̄ȳ

(
f(x1, . . . , xn) = f(y1, . . . , yn)
→ x1 = y1 ∧ · · · ∧ xn = yn

)
f ∈ FBag , f 6≡ {[· | ·]}

(F2) ∀x̄ȳ (f(x1, . . . , xm) 6= g(y1, . . . , ym)) f, g ∈ FBag , f 6≡ g
(F3) ∀x (x 6= t[x])

where t[x] denotes a term, having x as proper subterm

(Fm
3) ∀x̄ȳz

({[x1, . . . , xm | z]} = {[y1, . . . , yn | z]}
→ {[x1, . . . , xm]} = {[y1, . . . , yn]}

)
m,n > 0

(Em
k) ∀ȳv̄

{[y1 | v1]} = {[y2 | v2]} ↔

(y1 = y2 ∧ v1 = v2)∨
∃z (v1 = {[y2 | z]} ∧ v2 = {[y1 | z]})

Figure 1: The theory Bag

2.2 The constraints

A multiset constraint is a conjunction of atomic formulae or negation of atomic
formulae in LBag , that is, literals of the form t1 = t2, t1 6= t2, t1 ∈ t2, t1 /∈ t2, where
ti is a first-order term in LBag .

Example 2.2

1. X ∈ {[a, b |Y]} ∧X /∈ Y ∧X 6= a;

2. {[{[h, h, o]}, {[o, o]}]} = {[W,O]} ∧ Y1 ∈ W ∧ Y2 ∈ W ∧ Y1 6= Y2;

3. {[e, e, e, e, e]} = {[X |R]} ∧X /∈ {[e |S]}.
Let EBag be the equational theory consisting of the equational axiom (Em

p). The
standard model BAG for the theory Bag is defined in the following way:

• Let T (FBag) be the set of first-order ground terms built from symbols in FBag

(i.e., the ordinary Herbrand Universe).

• The domain of the model is the quotient T (FBag)/ ≡EBag
of T (FBag) over the

smallest congruence relation ≡EBag
induced by the equational theory EBag on

T (FBag).

• The interpretation of a term t is its equivalence class [t].

• = is interpreted as the identity on the domain T (FBag)/ ≡EBag
.

• The interpretation of membership is the following: [t] ∈ [s] is true if and only
if there is a term in [s] of the form {[t | r]} for some term r.

This model is a very important one. As a matter of fact in [6] we prove that if
C is a constraint, its satisfiability (unsatisfiability) in BAG implies that it will be
satisfiable (resp., unsatisfiable) in all the models of Bag (correspondence property).

The notion of satisfiability of a formula ϕ in a model A is based on the notion
of valuation. A valuation σ is a function from a subset of V to the domain A of A,
extended to terms and formulas as usual. σ is said to be a successful valuation of
a formula ϕ if σ(ϕ) = true. Thanks to the correspondence property here we can
safely restrict ourselves to consider the satisfiability in the model BAG.

Example 2.3

Multiset Constraints and P Systems

1. Consider the constraints of Example 2.2. The first two are satisfiable. In particu-
lar, any successful valuation for constraint 1 needs to map X to b (actually to the
equivalence class [b] containing b—we admit this slight abuse of notation), while
any successful valuation for constraint 2 needs to map W to {[h, h, o]} (water)
and O to {[o, o]} (oxygen). The third constraint, instead, is unsatisfiable.

2. Consider the constraint X = {[Y, Z]} ∧ a 6= Y ∧ nil /∈ Y ∧ b 6= Z. A successful
valuation for it is X 7→ {[a, b]}, Y 7→ b, Z 7→ a.

The technique used in [6] to check satisfiability of multiset constraints is based
on a constraint solving procedure which is able to reduce non-deterministically any
given constraint C to a simplified special form—called the solved form—if and only
if C is satisfiable (otherwise, C is reduced to false).

A constraint C is in solved form if all its literals are in one of the following forms:

• X = t and X does not occur neither in t nor elsewhere in C

• X 6= t and X does not occur in t

• t /∈ X and X does not occur in t.

For instance, the constraint of Example 2.3.2 is in solved form. If C is a LBag

constraint in solved form, then C is satisfiable in BAG. A solved form constraint
therefore can be seen as a finite representation of the possible infinite set of its
solutions. From a solved form constraint C it is possible to assign terms to the
variables occurring in it in order to obtain a solution. Moreover, all the solutions of
C can be obtained in this way. Solved form constraints can be obtained via suitable
rewriting procedures. In Section 5 we will show how to implement some of them
into P systems.

Example 2.4 Consider the instance of 3-SAT:

(X1 ∨ ¬X2 ∨X3) ∧ (¬X1 ∨ ¬X2 ∨X3) ∧ (X1 ∨X2 ∨ ¬X3)

It can be translated into the following LBag constraint:

{[{[X1, Y1]}, {[X2, Y2]}, {[X3, Y3]}, {[X1, Y2, X3]}, {[Y1, Y2, X3]}, {[X1, X2, Y3]}]}
= {[{[0, 1]}, {[0, 1]}, {[0, 1]}, {[1 |R1]}, {[1 |R2]}, {[1 |R3]}]}

where the variables Yi take the place of ¬Xi. Each successful valuation for this
constraint is also a solution for the given 3-SAT problem and, vice versa, from each
solution for the 3-SAT problem it is immediate to assign values to the variables Yi

and Ri in order to obtain a successful valuation for the constraint. One such solution
is, for instance:

X1 = 1 ∧X2 = 1 ∧X3 = 1

(and Y1 = 0, Y2 = 0, Y3 = 0, R1 = {[0, 1]}, R2 = {[0, 0]}, R3 = {[0, 1]}).

2.3 The language CLP (BAG)

The availability of a constraint solver which is able to prove satisfiability of multiset
constraints in a selected structure makes it immediate to define a CLP language deal-
ing with multiset constraints of the kind we have considered so far. This language—
called CLP (BAG)—is obtained as an instance of the general CLP scheme [9, 10]

APPIA-GULP-PRODE 2001

by instantiating it over the language, the theory, and the structure of multisets
presented in the previous sections.

The syntactic form of a CLP (BAG) program, as well as its operational, alge-
braic, and logical semantics are those of the general CLP scheme [9, 10] suitably
instantiated on the specific constraint domain of multisets. This is very similar to
what is described in greater detail in [7] for the case of sets. A working prototype
of the CLP language which embeds both sets and multisets is available at [14].

CLP (BAG) defines a simple, yet very expressive, framework that allows us to
program using multisets in a very flexible way.

3 Defining P Systems in LBag

A P system is a computational model based on transitions governed by multiset
rewriting rules. P systems have been defined to mimic the evolution of biological
systems (see, e.g., [12]). Their definition formalizes the intuitive idea that biological
reactions can be seen as computations. In this section we show how P systems can
be naturally defined using the first-order language LBag and the theory Bag .

3.1 Membrane Structures

The language MS of membrane structures is defined in [12] to be the set of strings
over the alphabet {“[”, “]”} generated by the infinite set of rules:

• [] ∈ MS

• for n ≥ 1, if s1, . . . , sn ∈ MS, then [s1, . . . , sn] ∈ MS.

A membrane is characterized by a pair of open and closed parentheses [,]. The
degree of a membrane structure is the number of membranes in it. An equivalence
relation ∼ is defined to govern membrane equivalence and an ad-hoc notion of depth
is given. The outer membrane is called the skin.

Moving to LBag , this is equivalent to say that MS is the set T (Σ) of first-order
ground terms over the signature Σ = {nil, {[· | ·]}}. Such set is generated by the
two rules:

• nil ∈ MS

• if s, t ∈ MS, then {[s | t]} ∈ MS.

Membranes are therefore identified with multisets. ∼ is exactly the equivalence
relation ≡EBag

induced on T (Σ) by the (Em
p) permutativity axiom (c.f. Section 2).

To compute the degree of a term s it is sufficient to count the number of occur-
rences of the constant symbol nil in s. This assertion is justified by the following
observations:

• if nil occurs as element of a multiset (i.e., as the first argument of a term of the
form {[|]}), such as in {[s1, . . . , sn, nil | r]}, then it must be counted as a pair
of open and immediately closed brackets.

• Otherwise, if nil occurs as the tail of a multiset (i.e., as the second argument of
a term of the form {[|]}), such as in {[s1, . . . , sn | nil]}, then it exactly identifies
one non-empty multiset.

Multiset Constraints and P Systems

The notion of depth is the well-established notion of rank of a (multi)set:

rank(s) =

{
0 if s = nil

1 + max{rank(t) : t ∈ s} otherwise

A compact way to state that a multiset {[s1, . . . , sm]} is included in a multiset
{[t1, . . . , tn]} is that of imposing the constraint (R is a logic variable):

{[t1, . . . , tn]} = {[s1, . . . , sm |R]} .

3.2 Super-Cells

A super-cell is a membrane structure s in which each membrane (i.e., each multiset)
can contain elements coming from a (possibly denumerable) universe U of other
objects (i.e., non-membrane objects) [12]. Each membrane is uniquely identified by
a natural number (its label).

An active super-cell is a super-cell which may contain more than one occurrence
of membranes with the same label. Active super-cells are introduced in [13] to model
the notion of membrane division.

To naturally represent labeling of membranes in LBag we will adopt the notion
of kernel.1 We fix the signature Σ to be defined as Σ = {{[· | ·]}} ∪ Nnil ∪ U where
Nnil = {nil = nil1, nil2, nil3, . . .} is the denumerable set of constant symbols (to
be used as multiset kernels), and U is a set of constant symbols (the objects) disjoint
from Nnil.

An active super-cell is a ground Σ-term such that for all subterms of the form
{[s1, . . . , sm | k]}, where m > 0 and k is not of the form {[|]}, it holds that k ∈ Nnil

(in other words, symbols from U cannot be used as kernels). A super-cell is an active
super-cell such that each nili occurs at most once. Figure 2 shows a super-cell of
degree 5 and the corresponding representation as an LBag term. As for membrane
structures, equivalence between super-cells is multiset equivalence ≡EBag

. The notion
of degree, instead, must be refined: the degree of an active super-cell s is the number
of occurrences of constant symbols of Nnil in it. Hereafter, we usually refer to super-
cells where there is exactly one occurrence of each constant nil1, . . . , nildegree(s).

3.3 Transition P Systems

We give here the notion of P system using the language LBag . A transition P system
of degree n can be defined as a tuple

Tn = 〈U, µ, (R1, ρ1), . . . , (Rn, ρn), iO〉
where U is a universe of objects, µ is a super-cell of degree n, iO is the output
membrane, and, for all i = 1, . . . , n, Ri is a finite set of evolution rules (to be
described below) and ρi is a partial order relation over Ri.

1As explained in Section 2, if there is at least one constant symbol c ∈ Σ, then it is possible to
write a term t of the form {[s1, . . . , sn | c]}. t identifies a multiset with the n elements s1, . . . , sn

(not necessarily all distinct) and colored (labeled) by the constant c. We also say that c is the
kernel of t, briefly ker(t) = c.

APPIA-GULP-PRODE 2001

'

&

$

%

'

&

$

%

¾

½

»

¼
¨
§

¥
¦

'

&

$

%

a
a

a a b

a b

b

b

b

1 2 3

4

5

{[a,
b,
{[a, a, b, {[a, a, nil5 | nil4]} | nil2]},
{[b, b, b | nil3]} | nil1]}

Figure 2: A super-cell of degree 5 and the corresponding term

A computation of Tn is a sequence of super-cells µ = µ0, µ1, . . . , µm where µj+1 is
obtained from µj by applying one or more evolution rules.

Observe that the n membranes occurring in µ are uniquely identified by their in-
teger label i. Referring to the multiset representation, this means that the multisets
in µ are distinguished each other by their kernels, nili, . . . , niln. Hereafter, we will
denote these multisets by m1, . . . , mn.

An evolution rule is a pair of the form u → v where u is a string of elements of
U and v is either of the form v′ or v′δ where v′ is a string over

(V × {here, out}) ∪ (V × {in1, . . . , inn}).

and V is an alphabet. A rule in Ri applies to the multiset mi. Applying a rule
causes some effects to occur either on mi or on the multiset possibly containing mi

according to the form of the right-hand side of the rule. More precisely, the semantics
of evolution rules, expressed in terms of the multiset representation introduced so
far, can be described as follows. Let us consider first rules of the form u → v′, that
is without δ. Consider a rule in Ri with the following general form:

u1 . . . uh 7→ (v1, here) · · · (vk1 , here)(w1, out) · · · (wk2 , out)(z1, inx1) · · · (zk3 , inxk3
)

The rule can be applied to the multiset mi if mi contains (in any order) all the
objects u1, . . . , uh. In the language of multiset constraints, this fact can be expressed
by requiring that the constraint

mi = {[u1, . . . , uh |M]} ∧ ker(M) = nili

holds, for some multiset M . Applying this rule yields the following effects:

a. local effect:
replace mi in µ by {[v1, . . . , vk1 |M]} (if k1 = 0 replace mi by M).

b. exit effect:
if mi ∈ mj then replace mj in µ by {[w1, . . . , wk2 |mj]}; if mi is the skin then
simply remove the elements w1, . . . , wk2 from it.

c. adjacency effect:
for j = 1, . . . , k3, if mi ∈ mxj

or mxj
∈ mi (i.e. the two membranes are adjacent),

then add zj to mxj
. If for some j = 1, . . . , k3 the adjacency condition is not

fulfilled, the application of the rule is not allowed.

Multiset Constraints and P Systems

'

&

$

%

'

&

$

%

a
a

a

1
2

'

&

$

%

'

&

$

%

'

&

$

%

b

a

b
c
a

1
2 2

aa → (b) (bc)

Figure 3: Membrane division

Consider now the scheme of a δ rule (dissolving rule):

u1 . . . uh 7→ (v1, here) · · · (vk1 , here)(w1, out) · · · (wk2 , out)(z1, inx1) · · · (zk3 , inxk3
)δ

After having obtained the local, exit, and adjacency effects as in the rule of the
first kind, δ causes the further effect of destroying mi and carrying out its elements
(unless mi is the skin that cannot be destroyed). Thus, if mj = {[mi |m′

j]} (i.e.
mi ∈ mj) and mi = {[c1, . . . , c` | nili]} then replace mj by {[c1, . . . , c` |m′

j]}.

3.4 P Systems with Active Membranes

In [13] new rules are allowed to occur in P systems. In particular we are interested
here in the possibility of creating a copy of a membrane. Thus we consider the
following simplified version of the division rule [13]

u1 . . . uk → ((v1 . . . vh)(w1 . . . wj))

The semantics of this rule, expressed in terms of the multiset representation of
super-cells introduced in this section, can be described as follows. The rule can
be applied—like other rules—to the multiset mi if mi contains u1, . . . , uk, that is if
the constraint mi = {[u1, . . . , uh |M]} ∧ ker(M) = nili holds, for some multiset M .
Applying this rule yields the following effects:

• remove elements u1, . . . , uk from mi; since mi = {[u1, . . . , uk |M]}, M represents
what remains of the multiset mi;

• make two copies of M (both having the same kernel nili) and add all the elements
v1, . . . , vh to the first copy and w1, . . . , wj to the second copy; that is, in terms of
our multiset representation, replace mi in µ with the two new multisets

{[v1, . . . , vh |M]} {[w1, . . . , wj |M]}.
Fig. 3 shows an example of the effect of the application of the membrane division

rule. Observe that this rule can be applied to more than one membrane, possibly
simultaneously.

4 Implementing P Systems in CLP (BAG)

We show that a transition P system can be written in an easy way as a program
in a CLP language which supports a decision procedure for multiset constraints. In

APPIA-GULP-PRODE 2001

particular, we show how to translate a P system into a CLP (BAG) program.
The main predicate governing the application of the evolution rules is:

p interpreter(Membrane, Membrane) :−
not rule(Membrane,).

p interpreter(MembraneIn, MembraneOut) :−
rule(MembraneIn, MembraneInt),
p interpreter(MembraneInt, MembraneOut).

Note that the multiset transformation process terminates as soon as no rule can be
applied successfully to the input multiset (first argument of p interpreter). Each
evolution rule of each set Ri of the given P system can be (automatically) translated
into a single CLP (BAG) clause, according to the multiset-based representation of
membranes and of computations described in Section 3.3. As an example, consider
the rule:

u1 . . . uh 7→ (v1, here) · · · (vk1 , here)(w1, out) · · · (wk2 , out).

Assume that mi is not the outer membrane (in that case the clause must be slightly
changed):

rule(MembrIn, MembrOut) :−
choose(MembrIn, nili, Mi, Mj),
Mi = {[u1, . . . , uh | M′i]},
replace(MembrIn, Mi, {[v1, . . . , vk1 | M′i]}, M′j),
replace(MembrIn, Mj, {[w1, . . . , wk2 | M′j]}, MembrOut).

Mj is the membrane such that Mi ∈ Mj. Multiset unification in the second sub-goal
is used to test applicability of this rule to Mi (find whether u1, . . . , uh belong to
Mi). v1, . . . , vk1 are the here elements. The last sub-goal updates the membrane
containing Mi using the out elements w1, . . . , wk2 .

The auxiliary predicates choose and replace can be simply programmed in
CLP (BAG) as follows:

choose({[Mi | R]}, Kernel, Mi, {[Mi | R]}) :− replace(A, A, C, C).
kernel(Mi, Kernel). replace({[B | R]}, B, C, {[C | R]}).

choose({[M | R]}, Kernel, Mi, Mj) :− replace({[M | R]}, B, C, {[M′ | R]}) :−
choose(M, Kernel, Mi, Mj). M 6= B,

replace(M, B, C, M′).

choose(Membrane, Kernel, Mi, Mj) chooses a multiset Mi in Membrane with kernel
Kernel and the multiset Mj that contains it. replace(A,B,C, D) finds one occur-
rence of B in A and replaces it with C obtaining D. choose uses a predicate
kernel(M, K) stating that the kernel of the multiset M is K, which can be defined as
follows:

kernel(nil1, nil1).
...

...
...

kernel(niln, niln).
kernel({[A | B]}, K) :−

kernel(B, K).

Multiset Constraints and P Systems

Furthermore, to implement the division rule it is convenient to introduce also a
predicate replace2(A,B, C1, C2, D) whose definition is similar to that of replace but
B in A is replaced by both C1 and C2.

We give here an example of a P system computing the function n2, running on
the interpreter of CLP (BAG) [14]

Example 4.1 Consider the P system such that U = {a, b},
µ = {[{[a, b, . . . , b︸ ︷︷ ︸

n

| nil2]} | nil1]}

The set of rules R1 is empty, while the rules in R2 are:

(1) abb 7→ ((bb)(ab))
(2) ab 7→ b
(3) bb 7→ b(b, out)(b, out)
(4) b 7→ (b, out)δ

ordered as (1) > (2) > (3) > (4). (As common in P systems, we assume that
u 7→ (v1, here) can be abbreviated as u 7→ v1). At the end of each computation,
n2 occurrences of the object b are present in the outer membrane. All other mem-
branes in it have disappeared. Basically, we have used the well-known fact that
n2 =

∑n
i=1(2i − 1). We first produce membranes containing bn, bn−1, . . . , b1. Then

we move out the tokens, in accordance with the mathematical law. The following
CLP (BAG) clauses can be used to simulate these rules:

rule(MembrIn, MembrOut) :− %(1)
choose(MembrIn, nil2, Mi, Mj),
Mi = {[a, b, b | M′i]},
replace2(MembrIn, Mi, {[b, b | M′i]}, {[a, b | M′i]}, MembrOut).

rule(MembrIn, MembrOut) :− %(2)
choose(MembrIn, nil2, Mi, Mj),
Mi = {[a, b | M′i]},
replace(MembrIn, Mi, {[b | M′i]}, MembrOut).

rule(MembrIn, MembrOut) :− %(3)
choose(MembrIn, nil2, Mi, Mj),
Mi = {[b, b | M′i]},
replace(MembrIn, Mi, {[b | M′i]}, MembrInt),
replace(MembrIn, Mj, {[b, b | MembrInt]}, MembrOut).

rule(MembrIn, MembrOut) :− %(4)
choose(MembrIn, nil2, Mi, Mj),
Mi = {[b | M′i]},
Mj = {[Mi | MembrInt]}, % δ removes Mi from Mj

replace(MembrIn, Mj, {[b | MembrInt]}, MembrOut).

The CLP (BAG) program that simulates the given P system, therefore, is com-
posed by the clauses for predicates p interpreter and rule along with those for the
auxiliary predicates choose, replace, and replace2. A goal for this program is:

:− p interpreter({[{[a, b, b, b | nil2]} | nil1]}, MembrOut),

APPIA-GULP-PRODE 2001

from which we get the computed answer

MembrOut = {[b, b, b, b, b, b, b, b, b | nil1]}

Note that rule ordering is obtained by exploiting the corresponding CLP (BAG)
clause ordering. This solution works correctly for the first successful computation;
however, if other alternative computations are attempted through backtracking,
clause ordering is no longer sufficient to guarantee rule ordering. To force the desired
ordering is always preserved one could add a unique identifier to each rule and
slightly modify the definition of p interpreter so as to apply rules according to a
list of rule identifiers which explicitly states the rule ordering for each membrane.

5 Implementing Constraint Solvers by P Systems

Given a first-order language L, an interpretation structure A, and the corresponding
theory, we show how to implement the algorithm for deciding satisfiability in A of a
L-constraint C using a transition P system derived from C. Basically, the condition
for this translation to be fully automatized is that the constraint solving algorithm
is given via rewriting rules (a condition often fulfilled in constraint decision proce-
dures). In this section we focus our attention on the solution of equality constraints,
that is on the unification problem. We show how to implement both standard and
extended unification (namely, multiset unification) algorithms using P systems.

5.1 Standard Unification

We start from the classical first-order unification problem. Let Σ be a first-order
signature and C, s1 = t1 ∧ · · · ∧ sn = tn, be a constraint. Let T (C) be the transition
P system

〈U, µ, (R1, ρ1), (R2, ρ2), iO〉
where:

• the universe U is the set of all ground equations, {s = t : s, t ∈ T (Σ)}
• µ = {[m= | nil1]}
• m= = {[s1 = t1, . . . , sn = tn | nil2]}
• iO = 1 (i.e. the output membrane is the skin)

• R1 and R2 are the sets of evolution rules for multisets with kernels nil1 and nil2,
respectively, that implement the unification test.

Evolution rules for R2 (see Figure 4) are obtained from the usual non-deterministic
presentation of the standard unification algorithm [11]. Actually, each rule is a meta-
rule consisting of all its infinite possible instances. However, only a finite number
of instances depending on C is needed, as explained below. R1, instead, is assumed
to be empty in this case.

Classical results for the (non-deterministic) unification algorithm ensure termi-
nation of the computation of the transition P system independently of the ordering

Multiset Constraints and P Systems

(r1) X = X
} 7→ ε (remove tautologies)

(r2)
t = X

t is not a variable

}
7→ X = t (i.e., (X = t, here))

(r3)
X = t X = s

X does not occur in t

}
7→ X = t t = s

(r4)
X = t Y = X

X does not occur in t

}
7→ X = t Y = t

(r5)
X = t

X 6≡ t and X occurs in t

}
7→ (false, out)

(r6)
f(s1, . . . , sm) = g(t1, . . . , tn)

f 6≡ g

}
7→ (false, out)

(r7) f(s1, . . . , sm) = f(t1, . . . , tm)
} 7→ s1 = t1 · · · sm = tm

Figure 4: Unification as evolution rules (R2)

chosen when rules are applied. Moreover, each non-deterministic execution is equiv-
alent (equivalence of m.g.u.’s modulo variants) Thus, no ordering is needed between
rewriting rules to ensure termination, and all the possible non-deterministic compu-
tations of the P system can be considered equivalent.

By analyzing the computations of the P system it is easy to prove that the
dimension of the terms involved can be bounded by the size of the initial constraint
C used to define T (C). More precisely, let size and height be defined as follows:

size(t) =

0 if t is a variable
1 +

∑n
i=1 size(ti) if t = f(t1, . . . , tn)∑m

i=1 size(si) + size(ti) if t = s1 = t1 ∧ · · · ∧ sm = tm

height(t) =

{
0 if t is a variable
1 + maxn

i=1 height(ti) if t = f(t1, . . . , tn)

Proposition 5.1 Let s = t be an equation occurring at some point during the com-
putation of Unify(C). Then height(s) ≤ size(C) and height(t) ≤ size(C).

Proof. Immediate, by classical results. 2

Thus, the number of rules in R2 can be chosen to be finite. Let S be the set
of terms built using the function, constant, and variable symbols occurring in C of
height bounded by size(C). R2 is chosen as the set of instances of the meta-rules of
Fig. 4 over the set S.

Proposition 5.2 Let µ = µ0, . . . , µm be a terminating computation of the P system
T (C). C does not admit solutions if and only if false ∈ m1 ∈ µm.

Proof. The evolution of m2 mimics the execution of standard unification algorithm
Unify (which is terminating and correct). A successful termination does not produce
false. Otherwise, false is stored in the membrane m1 and never removed. 2

Observe that the P system obtained in this way, although generated starting from
a specific constraint C, is able to deal with a wider family of equation systems as its
inputs. Precisely, all input systems with variables, function and constant symbols
from those of C, and with initial size bounded by that of C.

APPIA-GULP-PRODE 2001

5.2 Multiset Unification

We consider now the more complex problem of multiset unification and we show
how to map the multiset unification algorithm of [5] to a P system with active
membranes (using membrane division). This allows one, for instance, to obtain an
alternative (polynomial-time) implementation of SAT using P systems, since SAT
can be reduced to multiset unification (cf. Example 2.4).

Let Σ = {[nil, {[· | ·]}, . . .]} be the signature of LBag . The transition system
T (C) is the same as in Section 5.1, save for the rewriting rules R1 and R2. They are
chosen in order to simulate the multiset unification algorithm of [5] and are reported
in Fig. 5 and Fig. 6. Moreover, some ordering on the rules of R2 should be imposed
to ensure termination in all possible cases as described in [5].

(r1)−−(r4) same as syntactic unification (Fig. 4)

(r5)
X = t

X 6≡ t and X occurs in t

}
7→ δ

(r6)
f(s1, . . . , sm) = g(t1, . . . , tn)

f 6≡ g

}
7→ δ

(r7)
f(s1, . . . , sm) = f(t1, . . . , tm)

f 6≡ {[· | ·]}
}

7→ s1 = t1 · · · sm = tm

(r8) {[t1, . . . , tm |N]} = {[s1, . . . , sn |N]} } 7→ {[t1, . . . , tm]} = {[s1, . . . , sn]}
(r9) {[t | s]} = {[t′ | s′]} } 7→ ((t = t′ s = s′)

(s = {[t′ |N]} {[t |N]} = s′))

Figure 5: Multiset Unification as evolution rules (R2)

(r1) s = t
} 7→ ε (remove equations)

Figure 6: Evolution rules for the skin (R1)

Consider the rules for membranes with label 2 (i.e., multisets with kernel nil2).
Rules r1–r4 are the same as for the standard unification case. Rule r7 is now re-
stricted to non-multiset terms. Rules r8 and r9 treat the case of equalities between
two multisets. Rule r8 deals with the special case of two non-ground multiset terms
with the same tail variable. Rule r9, instead, deals with the general case. It requires
the ability to express a (don’t know) non-deterministic choice between two possible
computations, corresponding to the two alternatives in the right-hand part of axiom
(Em

k). It is implemented by membrane division.2

Rules r5 and r6 dealing with failures cause now the deletion of the membrane with
label 2 in which the condition is fulfilled, putting all its remaining elements (if any)
in the outer membrane. Therefore, equalities can be present in membrane 1 as effect

2These two rules introduce a slight notational ambiguity. As a matter of fact, the multisets
occurring in those rules are not membranes but multiset terms in the first-order language in which
the equations are written. This kind of confusion should be avoided by using different function
symbols for building multiset terms in equations (e.g., [[]] and [[· | ·]]).

Multiset Constraints and P Systems

of deletion of membranes with label 2. Rule r1 in R1 removes all of them. At the
end of the execution, membrane 1 is either empty or it contains some membranes
with label 2, each one corresponding to a successful non-deterministic branch of the
computation.

Proposition 5.3 Let µ = µ0, . . . , µm be a terminating computation of the P system
T (C). C is unsatisfiable if and only if m1 is empty.

Proof. Immediate from the fact that we mimic the algorithm in [5]. 2

As an example consider the equality constraint C that models the instance of
3-SAT of Example 2.4. The P system T (C) which tests the satisfiability of this
constraint can be seen as (yet another) implementation of an algorithm to solve the
3-SAT problem using P systems. Computations of T (C) run in non-deterministic
polynomial time. If membrane division is implemented in an effective way, this
yields a polynomial time method for solving 3-SAT (see also [13]).

The constraint solver of CLP (BAG) (see [6]) deals not only with equality con-
straints, but also with disequality, membership, and not-membership constraints.
The same technique used for implementing unification as evolution rules can be ap-
plied almost unaltered to implement the rewriting procedures for the other kinds of
constraints. Thus the whole constraint solver of CLP (BAG) can be implemented
as a P system. Therefore, any problem which can be easily expressed as a mul-
tiset constraint (containing equalities, disequalities, memberships, and negation of
memberships) can be automatically implemented using a P system.

6 Conclusions

We have described how to use the language LBag to define P systems in a fairly
natural way. This gives a precise formulation of P systems inside a first-order the-
ory. Moreover, we have shown that the CLP language CLP (BAG) is particularly
well-suited to simulate P systems, thanks to its capabilities of manipulating multi-
sets in a very general and flexible way. Then, showing that the constraint solvers of
CLP (BAG) can be implemented by P systems (endowed with the membrane divi-
sion rule), we have suggested an alternative way to encode, in a rather natural way,
NP problems which are easily described using LBag constraints into P systems.

As a future work it could be interesting to analyze if using a Prolog system that
supports some form of parallelism (e.g., [8]) as the execution environment where to
embed our CLP language would provide a way to enhance also our simulation of P
systems in the direction of a real parallel execution.

References

[1] P. Arenas-Sánchez, F. J. López-Fraguas, M. Rodŕıguez-Artalejo. Embedding
Multiset Constraints into a Lazy Functional Logic Language In C. Palamidessi,
H. Glaser, K. Meinke, editors, Principles of Declarative Programming, LNCS
1490, Springer-Verlag, pp. 429–444, 1998.

APPIA-GULP-PRODE 2001

[2] J. Bânatre and D. Le Métayer. Programming by Multiset Transformation.
Communications of the ACM, 36(1):98–111. January 1993.

[3] G. Berry and G. Boudol. The Chemical Abstract Machine. Theoretical Com-
puter Science, vol. 96 (1992) 217–248.

[4] E. Dantsin and A. Voronkov. A Nondeterministic Polynomial-Time Unification
Algorithm for Bags, Sets and Trees. In W. Thomas ed., Foundations of Software
Science and Computation Structure, LNCS Vol. 1578, pages 180–196, 1999.

[5] A. Dovier, A. Policriti, and G. Rossi. A uniform axiomatic view of lists, multi-
sets, and sets, and the relevant unification algorithms. Fundamenta Informati-
cae, 36(2/3):201–234, 1998.

[6] A. Dovier, C. Piazza, and G. Rossi. A uniform approach to constraint-
solving for lists, multisets, compact lists, and sets. Technical Report, Diparti-
mento di Matematica, Università di Parma, no. 235, July 2000. Available at
http://prmat.math.unipr.it/∼gianfr/PAPERS/RR PR235.ps.

[7] A. Dovier, C. Piazza, E. Pontelli, and G. Rossi. Sets and constraint logic
programming. ACM Transaction on Programming Language and Systems
(TOPLAS), 22(5) 2000, pp. 861–931.

[8] G. Gupta and E. Pontelli. Optimization Schemas for Parallel Implementation
of Nondeterministic Languages. Int. Parallel Proc. Symposium, IEEE, pp. 428–
435, 1997.

[9] J. Jaffar and M. J. Maher. Constraint Logic Programming: A Survey. Journal
of Logic Programming, 19–20:503–581, 1994.

[10] J. Jaffar, M. J. Maher, K. Marriott, and P. J. Stuckey. The Semantics of
Constraint Logic Programs. Journal of Logic Programming 37 (1–3), 1–46, 1998.

[11] A. Martelli and U. Montanari. An efficient unification algorithm. ACM Trans-
actions on Programming Languages and Systems 4 (1982), 258–282.

[12] G. Pāun. Computing with Membranes. Journal of Computer and System
Science, 61(1):108–143, 2000.

[13] G. Pāun. Attacking NP Complete Problems. Journal of Automata, Languages
and Combinatorics, 6(1):75–90, 2001.

[14] G. Rossi. The Languages CLP (SET) and CLP (BAG).
User Manuals and Running Interpreters. Available at
http://prmat.math.unipr.it/∼gianfr/setlog.Home.html.

[15] A. Tzouvaras. The Linear Logic of Multisets. Logic Journal of the IGPL, Vol.
6, No. 6, pp. 901–916, 1998.

