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Abstract

This paper presents techniques for a component-based style of programming in the
context of attribute grammars (AG). Attribute grammar components are “plugged
in” into larger attribute grammar systems through higher-order attribute grammars
(HAG). Higher-order attributes are used as (intermediate) “gluing” data structures.

This paper also presents two attribute grammar components that can be re-used
across different language-based tool specifications: a pretty-printing and a graphical
user interface AG component. Both components are reused in the definition of a
simple language processor. The whole processor is specified within a single paradigm
and a single notation: (higher-order) attribute grammars. Indeed, the main tasks
of the processor, namely: parsing/unparsing, static semantics, semantic functions
and graphical user interface, are specified with attributes and attribute equations.
The techniques presented in this paper are implemented in LRC: a purely functional,
higher-order attribute grammar-based system that generates language-based tools.

1 Introduction

Recent developments in programming languages are changing the way we construct pro-
grams. Programs are now a collection of generic, reusable, off-the-shelf program compo-
nents that are “plugged in” to form larger and powerful programs. In such an architec-
ture, intermediate gluing data structures are used to convey information between different
program components: a component constructs (produces) an intermediate data structure
which is used (consumed) by other component.

In the context of the design and implementation of language-based tools, attribute
grammars provide powerful properties to improve the productivity of their users, namely,
the static scheduling of computations. Indeed, an attribute grammar writer is neither
concerned with breaking up her/his algorithm into different traversal functions, nor is
she/he concerned in conveying information between traversal functions (i.e., how to pass
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intermediate values computed in one traversal function and used in following ones). A
second important property is that circularities are statically detected. Thus, the existence
of cycles, and, as a result, the non-termination of the algorithms, is detected statically.
That is to say that for (ordered) attribute grammars the termination of the programs
for all possible inputs is statically guaranteed. A third characteristic is that attribute
grammars are declarative. Furthermore, they are executable: efficient declarative (and
non-declarative) implementations (called attribute evaluators) are automatically derived
by using well-known AG techniques. Finally, incremental implementations of the specified
tools can be automatically generated from an attribute grammar.

Despite these advantages attribute grammars are not of general use as a language-based
tool specification formalism. In our opinion, this is due to three main reasons: firstly,
there is no efficient, clear and elegant support for a component-based style of programming
within the attribute grammar formalism. Although an efficient form of modularity can be
achieved in AGs when each semantic domain is encapsulated in a single AG component
[GG84, LJPR93, KW94, CDPR98, SS99b, dMBS00], the fact is that there is no efficient
support within the AG formalism for an easy reuse of such components. That is, how can a
grammar writer “plug in” an AG component into her/his specification? How are those AG
components glued together? How is information passed between different AG components?
How can the separate analysis and compilation of components be achieved? Obviously we
wish to provide answers to these questions within the attribute grammar formalism itself.
Secondly, there is a lack of good generic, reusable attribute grammar components that
can be easily “plugged in” into the specifications of language-based tools. Components
that are themselves written in the AG formalism. The third reason is that there are too
many notational issues involved in the writing of large attribute grammars. Indeed, most
attribute grammar-based systems provide special notation for: parsing, unparsing, the
attribute equations, a declarative language for defining the semantic functions, notation
for defining the interface, etc.

In this paper, we show how a style of component-based programming can be achieved
within the attribute grammar formalism. Our techniques rely on higher-order attribute
grammars [VSK89]: an extension to the classical AG formalism where attributes, the so-
called higher-order attributes, are tree-valued attributes. We may associate, once again,
attributes with such higher-order trees. Attribute grammar components are efficiently and
easily “plugged-in” into an AG specification via higher-order attributes: one AG compo-
nent defines a higher-order attribute which is decorated according to the attribute equations
defined by other AG component for that attribute/tree. The separate analysis and com-
pilation of AG components can be achieved by using the techniques we have introduced
in [SS99b]: The HAG component (that reuses other AG component as an higher-order
attribute) knows the pattern of attribute propagation of the reused component. The pat-
tern of attribute propagation of the reused component is given by the attribute partitions
[Kas80] infered by the Kastens’ ordered algorithm [Kas80] when analysing such attribute
grammar independently.

Furthermore, we present two generic, reusable, off-the-shelf attribute grammar compo-
nents: a pretty-printing and an advanced graphical user interface (GUI) AG component.
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A key feature of our approach is that a complete language-based tool can be specified
within a single formalism: the higher-order attribute grammar formalism. No specific
formalism /notation has to be used to define, for example: the “gluing” of an AG com-
ponent, the mapping between concrete and abstract syntaxes, the parsing/unparsing, the
static semantics, the semantic functions, the graphical user interface. Everything is defined
through (higher-order) attributes and attribute equations. By expressing the complete tool
specification within the AG formalism, we inherit all the nice properties of attribute gram-
mars. For example, by expressing the interface of the tools via the AG GUI component,
we can derive incremental implementations of such tools where the GUIs are incrementally
computed. Our techniques are implemented in the LRC system: an AG-based system that
generates incremental language-based tools [KS98, SSKO00).

This paper is organized as follows: Section 2 presents higher-order attribute grammars,
its notation and provides a simple example that will be used throughout the paper. Sec-
tion 3 introduces AG component-based programming and presents two generic AG compo-
nents: a pretty-printing component (Section 3.1) and graphical user interface component
(Section 3.2). Section 4 discusses related work and Section 5 contains the conclusions.

2 Higher-Order Attribute Grammars

The techniques presented in this paper are based on the higher-order attribute grammar
formalism [VSK89]. Higher-Order Attribute Grammars are an important extension to
the attribute grammar formalism. Conventional attribute grammars are augmented with
higher-order attributes, the so-called attributable attributes. Higher-order attributes are
attributes whose value is a tree. We may associate, once again, attributes with such a
tree. Attributes of these so-called higher-order trees, may be higher-order attributes again.
Higher-order attribute grammars have four main characteristics:

e First, when a computation can not be easily expressed in terms of the inductive
structure of the underlying tree, a better suited structure can be computed before.
Consider, for example, a language where the abstract grammar does not match the
concrete one. Consider also that the semantic rules of such a language are easily
expressed over the abstract grammar rather than over the concrete one. The mapping
between both grammars can be specified within the higher-order attribute grammar
formalism: the attribute equations of the concrete grammar define a higher-order
attribute representing the abstract grammar. As a result, the decoration of a concrete
syntax tree constructs a higher-order tree: the abstract syntax tree. The attribute
equations of the abstract grammar define the semantics of the language.

e Second, semantic functions are redundant. In higher-order attribute grammars every
computation can be modelled through attribution rules. More specifically, inductive
semantic functions can be replaced by higher-order attributes. For example, a typical
application of higher-order attributes is to model the (recursive) lookup function
in an environment. Consequently, there is no need to have a different notation
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(or language) to define semantic functions in AGs. Moreover, because we express
inductive functions by attributes and attribute equations, the termination of such
functions is statically checked by standard AG techniques (e.g., the circularity test).

e The third characteristic is that part of the abstract tree can be used directly as a
value within a semantic equation. That is, grammar symbols can be moved from the
syntactic domain to the semantic domain.

e Finally, as we will describe in this paper, attribute grammar components can be
“glued” via higher-order attributes.

These characteristics make higher-order attribute grammars particularly suitable to
model language-based tools [TC90, Pen94, KS98, Sar99].

2.1 The Block Language

Consider a very simple language that deals with the scope rules of a block structured
language: a definition of an identifier x is visible in the smallest enclosing block, with the
exception of local blocks that also contain a definition of x. In the latter case, the definition
of x in the local scope hides the definition in the global one.

We shall analyse these scope rules via our favorite (toy) language: the BLOCK language.
One sentence in BLOCK cousists of a block, and a block is a (possibly empty) list of state-
ments. A statement is one of the following three things: a declaration of an identifier (such
as decl a), the use of an identifier (such as use a), or a nested block. Statements are
separated by the punctuation symbol “;” and blocks are surrounded by square brackets.
A concrete sentence in this language looks as follows:

sentence = [ use x ; use y ; decl x ;
[ decl y ; usey ; use w ] ;
decl y ; decl x
]

This language does not require that declarations of identifiers occur before their first use.
Note that this is the case in the first two applied occurrences of x and y: they refer to their
(latter) definitions on the outermost block. Note also that the local block defines a second
identifier y. Consequently, the second applied occurrence of y (in the local block) refers to
the inner definition and not to the outer definition. In a block, however, an identifier may
be declared once, at the most. So, the second definition of identifier x in the outermost
block is invalid. Furthermore, the BLOCK language requires that only defined identifiers
may be used. As a result, the applied occurrence of w in the local block is invalid, since w
has no binding occurrence at all.

We aim to develop a program that analyses BLOCK programs and computes a list con-
taining the identifiers which do not obey to the rules of the language. Thus, this program,
called block, is a static semantic analyzer for the BLOCK language. It has the following
type: block : Prog— [Namel] , where Name is the type of the BLOCK identifiers.
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In order to make the problem more interesting, and also to make it easier to detect
which identifiers are being incorrectly used in a BLOCK program, we require that the list of
invalid identifiers follows the sequential structure of the input program. Thus, the semantic
meaning of processing the example sentence is [w,x], i.e.: block sentence = [w,x]

2.2 The Attribute Grammar for the Block Language

In this section we shall describe the program block in the traditional attribute grammar
paradigm. To define the structure of the BLOCK language we introduce two context-free
grammars: one defining the concrete structure of BLOCK sentences and the other the
abstract structure. We use the following notation: productions are labelled with a name
for future references. To distinguish between both grammars we use lower (capital) letter
for the concrete (abstract) grammar, respectively. As usual in AGs we distinguish two
classes of terminal symbols: the literal symbols (e.g., >:?, *decl’, etc) which do not play
a role in the attribution rules and the pseudo terminal symbols (e.g., Name), which are
non-terminal symbols for which the productions are implicit (traditionally provided by an
external lexical analyser).

prog ’[ stats ’]?

stats = Iststs Tts T It Its
| _
Iststs = stat It T x:zz
| stat ;7 lststs | Its
stat = ’decl’ Name
| ‘use’ Name
| ' stats °1?

Fragment 1: The BLOCK concrete (left) and abstract context-free grammar (right).

That is to say that the two grammars do not match. The mapping between them
will be defined via HAGs in Section 2.3. To specify the semantics of BLOCK we shall
use the abstract grammar. Before we extend that grammar with attributes and attribute
equations, let us discuss the semantics of BLOCK informally.

The BLOCK language does not force a declare-before-use discipline. Consequently, a con-
ventional implementation of the required analysis naturally leads to a program that tra-
verses each block twice: once for processing the declarations of identifiers and constructing
an environment and a second time to process the uses of identifiers (using the computed
environment) in order to check for the use of non-declared identifiers. The uniqueness of
identifiers is checked in the first traversal: for each newly encountered identifier declaration
it is checked whether that identifier has already been declared at the same lexical level.
In this case, the identifier has to be added to a list reporting the detected errors. The
straightforward algorithm to implement the BLOCK processor looks as follows:

1st Traversal 2nd Traversal
- Collect the list of local definitions - Use the list of definitions as the global
environment
- Detect duplicate definitions - Detect use of non defined names

(using the collected definitions) - Combine “both” errors
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As a consequence, semantic errors resulting from duplicate definitions are computed
during the first traversal and errors resulting from missing declarations, in the second one.

We associate an inherited attribute dcli of type Env to the non-terminal symbols Its and
It that define a block. The inherited environment is threaded through the block in order
to accumulate the local definitions and in this way synthesizes the total environment of
the block. To distinguish between the same identifier declared at different levels, we use an
attribute lev that distributes the block’s level. We associate a synthesized attribute dclo
to the non-terminal symbols Its and It, which defines the newly computed environment.
The total environment of a block is passed downwards to its body in the attribute enwv
in order to detect applied occurrences of undefined identifiers. Every block inherits the
environment of its outer block. The exception is the outermost block: it inherits an empty
environment. To synthesize the list of errors we associate the attribute errs to Its and It.

The static semantics of the BLOCK language are defined in the attribute grammar pre-
sented in Fragment 2. We use a standard AG notation: within the attribution rules of a
production, different occurrences of the same symbol are denoted by distinct subscripts.
Inherited (synthesized) attributes are prefixed with the down (up) arrow | (1). Pseudo ter-
minal symbols are syntactically referenced in the AG, i.e., they are used directly as values
in the attribution rules. The attribution rules are written as HASKELL-like expressions.
Copy rules are included in the AG specification (although there are well-known techniques
to omit copy rules, in this paper, we prefer to explicitly define them). The semantic func-
tions mBIn (standing for “must be in”) and mNBIn (“must not be in”) define usual symbol
table lookup operations'.

Its <} lev: Int,| dcli: Env,| env : Env > It <} lev: Int,| dcli : Env,| env: Env >
<tddco: Env,t errs : Err > <tdclo: Env,t errs : Err >
Its = It = Name
Its.dclo = Its.dcli It.dclo = It.dcli
Its.errs = [1] It.errs = mBIn (Name,It.env)
| It Its | Name
It.dcli = Itsy.dcli It.dclo = ( Name It.lev) : It.dcli
Itsy.env = Itsy.env It.errs = mNBIn ( Name It.lev, I't.dcli)
It.env = Itsi.env | Its
Itsy.dcli = It.dclo It.dclo = TIt.dcli
Itsy.dclo = Itssy.dclo Its.dcli = It.env
It.lev = TItsy.lev Its.lev = Tt.lev+1
Itsy.lev = Itsy.lev Its.env = Its.dclo
Itsy.errs = It.errs ++ Itsy.errs It.errs = TIts.errs

Fragment 2: The BLOCK attribute grammar.
It is common practice in attribute grammars to use additional non-terminals and pro-
ductions to define new data types and constructor types, respectively. The type Env and
the constructor function are examples of that:

!These inductive functions can be defined via higher-order attributes. Indeed, in the BLOCK higher-
order attribute grammar presented in [Sar99], those functions are defined through higher-order attributes.
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Tuple = Name Int

Env = Tuple Env
|

Err = Name Err
|

Note that, the type Fnv is isomorphic with non-terminal Env: the term constructor
functions and correspond to the HASKELL built-in list constructor functions
: and [], respectively. We will use both notations to define and to construct value types.

Usually, inherited attributes are not associated with the root non-terminal of the gram-
mar. However, to make the AG more readable, we introduce a root non-terminal: so,
we can easily write the attribution rules specifying that the initial environment of the
outermost block is empty (i.e., the root is context-free) and that its lexical level is 0.

P <terrs: Err >

P = Its
Its.deli = [1
Itsllev = 0
Its.env = Its.dclo
P.errs = Its.errs

The above AG fragment together with Fragment 2 formally specify the static semantics
of the BLOCK language. We call this AG the plain BLOCK attribute grammar. A higher-
order variant mapping the concrete into the abstract syntax will be defined in section 2.3.

2.3 The Higher-Order Attribute Grammar for the Block Lan-
guage

In order to show some characteristics of HAGs we shall consider a higher-order variant of
the plain BLOCK attribute grammar. We define the mapping between the concrete and the
abstract syntax of BLOCK within the AG formalism. Note that most attribute grammar-
based systems provide a special notation [RT89, LJPR93]|, or use single purpose tools, e.g.,
the Ast [Gro90] and the maptool [KW95], to map such grammars.

We shall build up the higher-order variant of the BLOCK AG by adding new fragments
to the plain one. We begin by introducing a higher-order attribute, which represents the
abstract tree. The type of this higher-order attribute is the type of the abstract tree,
i.e., Its. Thus, we associate our first higher-order attribute, called ast, to the production
applied on the start symbol of the concrete grammar. Its declaration and its instantiation
look as follows:

prog = Y[ stats °]?
ata ast: Its
ast = stats.ast

The above semantic equation defines the initial value of the attribute ast as the synthe-
sized attribute ast of stats®>. Next, we define the attribution rules that compute the abstract

2The declaration of a higher-order attribute is denoted with the keyword ata, which stands for at-
tributable attribute, i.e., an attribute that can be attributable.



APPIA-GULP-PRODE 2001

tree. Since in this simple example the grammars are very similar, a single synthesized at-
tribute suffices. Thus, we associate the synthesized attribute ast to the non-terminals of
the concrete grammar. In this case, the attribute equations just use the constructor func-
tions of the abstract grammar as the semantic functions that construct the abstract tree

(e.g., , , , and ).

stats <t ast: Its > stat <t ast:It>
stats = Iststs stat = ’decl’ Name
stats.ast = lststs.ast stat.ast = Name
| stat = 'use’ Name
stats.ast = stat.ast = Name
stat = ’ [ stats ’]?
Iststs <t ast: Its > stat.ast = stats.ast
lststs = stat
Iststs.ast = stat.ast
| stat ?;° lststs
lststsy.ast = stat.ast lststss.ast

Fragment 3: Mapping concrete to abstract syntax.

In the HAG formalism, we have to include now the semantic equations that instantiate
the inherited attribute occurrences of the higher-order attribute. The inherited attributes
induced by the higher-order attribute ast are: ast.dcli, ast.lev and ast.env, while the
synthesized are: ast.dclo and prog.errs. Those are the attributes associated to the non-
terminal symbol Its: the type of ast.

prog <terrs:Err >

prog = Y[ stats ’]?
ata ast: Its
ast = stats.ast
ast.dcli = T[]
ast.lev = 0
ast.env = ast.dclo
prog.errs = ast.errs

Fragment 4: Abstract syntax as one higher-order attribute.
Observe that this grammar corresponds to the fragment that defines the attribute equa-
tions of production of the plain attribute grammar. That fragment is replaced by
this one in the higher-order variant of the AG.

3 Gluing Grammar Components via Higher-Order At-
tribute Grammars

One of the key characteristics of higher-order attribute grammars is the fact that they
allow a component-based style of programming. More precisely, higher-order attributes
are used to “glue” AG components. The key idea in this approach is that a higher-order
AG defines a higher-order attribute whose attribute equations are defined in a different
component: the reused AG component. Recall that higher-order attributes are tree-valued
attributes, which are themselves trees that can be decorated.
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Consider, for example, that an AG component AG; expresses some algorithm A over a
grammar rooted X, and suppose that we wish to express the same algorithm when defining
a new grammar, say AG5. Under the higher-order formalism this is done as follows: firstly,
we define an attributable attribute, say o with type X, in the productions of AG, where
we need to express algorithm A. Secondly, we extend AG5 with attributes and attribute
equations which define attributes whose values are tree-valued of type X. Thus, we use
the productions of AG; to construct such values. After that, we instantiate the higher-
order attribute with such tree-value. By definition of HAGs the generated synthesized
attribute occurrences of « are defined by the attribute equations of AG,. Finally, we just
have to “plug in” such grammar component into the whole specification, by using the
usual modular approach to define AGs. That is, the two grammars are “merged” into an
equivalent monolithic HAG, before they are analised. In [SS99b] we present techniques to
achieve the separate analysis and compilation of AG components.

This is exactly the approach we have taken to define the processor for the BLOCK
language: first, we have defined a generic AG fragment (component) expressing the static
semantics of the language. Next, we have reused such component as a higher-order attribute
to build the complete language processor. This technique is similar to attribute coupled
grammars [GG84, LJIPR93], where the output of a grammar component is a grammar (i.e.,
a tree-valued attribute in our case) that is the input grammar of the next component.

Noticed that by expressing the gluing of AG components within the AG formalism
itself, we are able to use all the standard attribute grammar techniques, e.g., the efficient
scheduling of computations and the static detection of circularities. For example, the
inherited /synthesized attributes of the AG components can be “connected” in any order.
The HAG writer does not have to be concerned with the existence of cyclic dependencies
among AG components: the circularity test will detect them for her/him. Furthermore, we
can use attribute grammar techniques to derive efficient implementations for the resulting
HAG. For example, we can use our deforestation techniques to eliminate the intermediate
trees that glue the different components [SS99a].

3.1 An Attribute Grammar Component for Pretty-Printing

This section presents a generic pretty-printing AG component®. This AG component is
based on the processor for HTML style tables we have presented in [SAS98]. Such processor
formats possibly nested HTML tables. It computes a “pretty-printed” textual (ascii) table
from a HTML (table) text. An example of accepted input and the associated output is
given next.

3 Actually, attribute grammar systems provide a special notation (i.e., a fixed number of combinators)
to pretty-printing the syntax tree (usually called unparsing rules). We have omitted such rules from the
BLOCK AG since, in a different way, we present them in this section.
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</TABLE>

<TABLE> [This | |
<TR> <TD> This </TD> </TR> |T ————————————————— |
<TR> <TD> is </TD> <TD> a </TD> </TR> lis la |
<TR> <TD> <TABLE> | ——— e |
<TR> <TD> This </TD> <ID> is </TD> </TR> || -~~~ ~lltablel

<TR> <TD> another </TD> </TR> |IThis  |is]]| |

<TR> <TD> table </TD> </TR> | | ==mmm———m- [ |

</TABLE> | |lanother| || |

</TD> <TD> table </TD> </TR> e I |
|ltable | || I

|

In the computed textual table, all the lines have the same number of columns and the
columns have the same length. Both features are not required in the HTML language*. The
abstract structure of (HTML) nested tables is defined by the following abstract grammar:

Table = Rows
Rows = Row Rows
|
Row = Elems
FElems = Elem Elems
|
Elem = String
| Table

Fragment 5: The abstract grammar for nested tables.

In [SAS98], we have defined the attribute grammar over the abstract grammar and
not over the HTML concrete grammar. As a result, we may use this attribute grammar
component in several contexts where we need to format (abstract) tables and not to process
HTML style tables only. Indeed, we wish to use this AG as a generic pretty-printing AG
component. More recently we have extended our original AG in order to compute a XTEX, a
XML, a VRML, and HTML table representation. Thus, we have a representation for abstract
tables in all these concrete languages. We omit here the attribute grammar rules defining
the pretty-printing for two reasons: firstly, they are not relevant for this paper, since we
are interested in a component-back-box reuse, and secondly, we do not need to see/know
them to be able to reuse the component. We only need to know the abstract grammar
and the interface, i.e., the inherited and synthesized attributes of component root symbol.
This grammar component is context-free (it does not have any inherited attributes) and
synthesizes all the mentioned representations: one per synthesized attribute of the root’s
symbol.

Table <71 ascii: String, T html : Table,t xml : Xml, 1 latex : Table,t vrml : Vrml >

4Tt is easy to see that the processor performs two traversals over the abstract tree. First, it computes
the maximal height and width of each row and column, respectively. Then, it passes such values down in
the tree to add “glue” where needed. Things get a bit more complicated with the nesting of the tables.
As we have shown in [SAS98] it is complex to hand-write this language processor.
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Although the attribute html and later have the same type, i.e., Table, they define dif-
ferent tables: while the attribute hitml does not require that all the rows have the same
number of columns, the attribute /atez, which computes IXTEX tables expressed by the tab-
ular environment, does require it. Actually, the table synthesized in [ater is a higher-order
attribute used as an intermediate data structure to express the pretty-printing algorithm:
this algorithm is easier to express if the table has a uniform number of columns. That is to
say that the pretty-printing AG is itself a higher-order attribute grammar: first it builds a
more suitable data structure (i.e., the table with the same number of columns), and then
it expresses the algorithm on that structure.

Let us now glue the pretty-printing into the BLOCK HAG. A BLOCK program can be
viewed as sequence of lines (rows), each of which consists of a single element (column):
a declaration, or, a use statement. Nested blocks can be viewed as nested tables. Thus,
we add a new fragment to the BLOCK HAG in order to synthesize a table representation
of a sentence. So, we declare a new synthesized attribute, named Zable. The additional
equations simply use the constructors (productions) of the grammar component to define
the abstract table’.

Its <1 table : Rows >
Its =
Its.table =
| It Its
Itsy.table = Itq.table Itsy.table
It <t table : Row >
It = Name
It.table = ( ( (“use“ ++ Name)) )
| Name
It.table = ( ( (“decl“ ++ Name)) )
| Its
It.table = ( ( ( Its.table)) )

Fragment 6: Constructing the abstract table.

In order to reuse the table formatter AG, we have to glue it to the BLock AG. We
glue both grammars by instantiating the higher-order attribute with the table defined by
the previous fragment. Such higher-order is decorated according to the attribution rules
defined in the AG component. The instantiation of the attributable attribute is defined as
follows:

prog <torml:Vrml >

prog = Y[ stats °]1°
ata table : Table
table = ast.table
prog.vrml = table.vrml

Recall that ast is a higher-order attribute with type Its that defines the abstract syntax
tree (see Fragment 4). The attribute table is one of its synthesized attributes, as defined in

5We explicitly use the constructor functions induced by the abstract table grammar. We could, instead,
define a set of combinator functions to construct the table using a “concrete” language.
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Figure 1: The 3D pretty-printed BLOCK’s example sentence.

the previous fragments. Figure 1 shows the VRML representation of the example sentence.
In a VRML browser an inner table appears in a different dimension than its outer one.

3.2 An Attribute Grammar Component for Graphical User In-
terface

As it was previously stated, types can be defined within the attribute grammar formalism.
Roughly speaking, non-terminals define tree type constructors and productions define value
type constructors. So, we may use this approach to introduce a type that defines an abstract
representation of the interface of language-based tools. In other words, we use an abstract
grammar to define an abstract interface. The productions of such a grammar represent
“standard” graphical user interface objects, like menus, buttons, etc. Next, we present the
so-called abstract interface grammar.

Visuals — VisualsO

| Visuals2 Toplevel Visuals ListBox Entrylist

PullDownMenu  String Menuentrylist
PushButton String

Unparse Pir

HList Frames

VList Frames

Toplevel — Toplevel Frame String String

Frames — FramesO

Frame — Label String
|
|
|
|
| Frames2 Frame Frames I

The non-terminal Visual defines the type of the abstract interface of the tool: it is a
list of Toplevel objects, that may be displayed in different windows. A Toplevel construct
displays a frame in a window. It has three arguments: the frame, a name (for future
references) and the window title. The productions applied to non-terminal Frame define
concrete visual objects. For example, production PushButton represents a push-button,
production ListBox represents a list bor, etc.
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Block E ditor =] E3

Add Statement

[ uselg ; usey ; decx ;
[ decly : usey : usew
: decy : dedx

1

<

|W X

|

Figure 2: The BLOCK environment’s interface generated from the HAG.

The production represents a visual object that provides structured text editing
[RT89]. It displays a pretty-printed version of its (tree) argument and allows the user
to interact with it (e.g., to edit it). Those productions are the building blocks of the
user interface. The productions and define combinators: they vertically and
horizontally (respectively) combine visual objects into more complicated ones. These non-
terminals and productions can be directly used in the attribute grammar to define the
interface of the environments, exactly as we have done for pretty-printing in the previous
section. Thus, the interface is specified through attribution, i.e., within the AG formalism.

The above fragment defines the abstract structure of the interface only. To have a
concrete interface, however, we have to map such abstract interface into a concrete one.
Rather than defining a concrete interface from scratch and implementing a library for
graphical 1/O (and reinventing the wheel!), we can synthesize a concrete interface for
existing high quality GUI toolkits, e.g., the TcL/ Tk GUI toolkit [Ous94]. Indeed, the GUI
AG component synthesizes TCL/TK code defining the interface in the attribute named k.

Next, we present an attribute grammar fragment that glues the BLOCK HAG with this
GUI AG component. It defines an interactive interface consisting of three visual objects
that are vertically combined, namely: a push-button, the unparsing of the input under
consideration and the unparsing of the list of errors. The root symbol prog synthesizes the
TcL/TK concrete code in the attribute occurrence concretelnterface.

prog <71 concretelnterface: Tk >

prog = Y[ stats °]°

ata absInterface : Visuals

absInterface = let {  button = ”Add Statement”
editor = &stats.ast
errors = &prog.errs
comb = button : editor : errors :
in ( comb edit” ”Block Editor”) :

prog.concretelnterface = absInterface.tk

Fragment 7 The BLOCK graphical user interface.

Figure 2 shows the concrete interface of the BLOCK processor.
It should be noticed that the use of the abstract interface grammar (i.e., an intermedi-
ate interface representation language) makes the interface highly modular: new concrete
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interactive interfaces can be “plugged in” into the AG system by just defining the cor-
responding mapping function. This approach has another important property: under an
incremental attribute evaluation scheme, the interface is incrementally computed, like any
other attribute value [Sar99, SSK00].

The constructor simply displays a push-button. To assign an action to the
displayed button we have to define such an action. Once again we use the same technique,
i.e., we define an abstract grammar to describe the abstract events handled by interactive
interfaces. Basically, we associate an abstract event-handler to each visual object.

Event — String
| Entrylist
| String
| Char

The constructor is the event-handler associated with . Next, we

show a possible action associated with this event-handler.
Its =
bind on ” Add Statement”
Its — ( ’a”) ;

The bind expression is used to specify how user interactions are handled by the language-
based environment. In this case, it simply defines that every time the push-button "Add Statement"
is pressed, the rooted subtree Its is transformed into ("a”) . Note that
this event-handler constructor is defined in the context of a production. Thus, a new
declaration is added at the end of the program being edited.

4 Related Work

The work presented in this paper is closely related to attribute coupled grammars [GG84,
LJPR93, CDPR98]|, composable attribute grammars [FMY92] and Kastens and Waite work
on modularity and reusability of attribute grammars [KW94].

Attribute coupled grammars consist of a set of AG components each of which (concep-
tually) returns a tree-valued result that is the input for the next component. Grammars
are coupled by defining attribute equations that build the required tree-valued attributes,
very much like the values of higher-order attributes are defined in our approach (e.g., Frag-
ments 3 and 6). In attribute coupled grammars, however, the flow of data is strictly linear
and unidirectional. In our approach the data can flow freely throughout the components,
provided that no attribute depends directly nor indirectly on itself. Under our techniques
such cyclic dependencies are statically detected.

In [GG84] descriptional composition is defined to eliminate the creation of the inter-
mediate trees. That is, from the coupling attribute grammar (modules) a grammar is
constructed that defines the same equations, but that eliminates the construction of the
intermediate trees. The descriptional composition, however, can result in a non-absolute
circular AG. Furthermore, descriptional composition does not allow the separate analysis
and compilation of grammar components.
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Composable attribute grammars [FMY92] use a particular grammar module for gluing
AG components. Grammar modules con be analised and compiled separately. However,
the gluing of the components is expressed with a special notation outside the AG formalism.

Kastens and Waite [KW94] aim at a different form of modularity. They show that a
combination of notational concepts can be used to create reusable attribution modules.
They also define a set of modules to express common operation on programming lan-
guages. However, such modules are not defined within the AG formalism, thus, making
the maintenance, updating and understanding of such components much harder.

5 Conclusions

This paper presented techniques for writing attribute grammars under a component-based
style of programming. Such techniques presented rely on the higher-order attribute gram-
mar formalism: attribute grammar components are glued into a larger AG system through
higher-order attributes.

The complete specification of the BLOCK’s programming environment was presented in
this paper. That specification is defined within a single declarative formalism, using a single
notation: higher-order attribute grammars. Indeed, the mapping between concrete and
abstract syntaxes, the parsing/unparsing, the static semantics, the semantic functions, the
advanced interactive graphical user interface and the gluing of AG components are specified
with attributes and their equations. By expressing all the language-based tool within
HAGs we inherit all the nice features of attribute grammars, namely the static detection
of circularities (and termination of the AG implementations), the static scheduling of
computations, and the automatic generation of incremental implementations.

We have also presented two generic, reusable and off-the-shelf AG components for pretty-
printing and graphical user interface. Such components are been used to construct powerful
programming environments (e.g., the BiTeX environment [Sar99]). These techniques are
implemented in the LRC system. The programming environment presented in figure 1 and
2 was produced by LRrRcC from the AG specification defined in this paper.
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