Logic Programs as Abstract Domains

Fausto Spoto
Dipartimento di Informatica
Strada Le Grazie, 15, Ca’ Vignal, 37134 Verona, Italy
spoto@sci.univr.it
Ph.: +39 045 8027076 Fax: 439 045 8027982

Abstract

We show that logic programs provide a compact and efficient representa-
tion of some domains for the abstract interpretation of imperative programs.
Logic variables express here some regularity in the abstract behaviour of com-
mands. We show that sign analysis and class analysis can be implemented
through that representation. We compare its time and space costs with those
of an implementation through ground relationships. This comparison shows
that our technique leads to dramatic improvements both in time and in space.

1 Introduction

The use of denotational semantics as the basis for the abstract interpretation of
imperative languages is appealing since it leads to clean and compositional static
analyses. In that context, the abstract denotation of a piece of code is a function
from the abstract properties of its input to those of its output. This relational
approach can be naively implemented through a relational database or through a
ground logic program, provided the domain of abstract properties is finite. However,
it could be so large that this naive approach becomes useless in practice.

In this paper, we show that logic programs with variables can be used instead
of ground logic programs or relationships to represent the abstract denotation of a
piece of code. The advantage is that logic variables allow for a compact and efficient
implementation of dependences between the abstract input and the abstract output
of the code. For instance, the abstract values of the variables which are not used by
a given command can be just copied from its abstract input to its abstract output,
at least for a large class of static analyses. Similarly, an assignment statement copies
the abstract values of the right hand side in the abstract value of the left hand side.
Those dependences can be expressed through logic programs.

We apply here that technique to the sign analysis of integer variables through
the domain defined in [19], and to the class analysis of object-oriented programs
through the two domains formalised in [11] through abstract interpretation, and
derived from the ideas in [5] and [18], respectively. We show that our technique
results in faster and cheaper analyses than traditional implementations through
ground logic programs.

int foo(a:int,c:int) int foo(a:int,c:int)

{ {

let b:int in { ... a:=b; ...} let b:int in {... a:=b-1; ...}
} }
(a) (b)

Figure 1: Two simple programs.

2 A Motivating Example

Consider the sign analysis of the program in Figure 1(a). This means that we want
to approximate the sign (positive or negative) of the variables of type int. We
use here the domain for sign analysis defined in [19]. We refer to [19] for a formal
definition of the concrete domain and of the abstraction and concretisation maps.

Definition 1. A typing 7 is a map giving some type to a set of variables, which is
called its domain, is written dom(7) and is lexicographically ordered. O

Definition 2. For every typing 7, we define
S; = {empty} U {¢ : dom(7) — {*,+, —, u} | ¢(v) = = iff 7(v) # int} .

We define < as the minimal reflexive relation over {*, 4+, —, u} such that + < u and
— = u. The set S, is partially ordered w.r.t. = which is such that empty C s for
every s € S; and ¢; C ¢, if for every v € dom(7) we have ¢ (v) < 6 (v). O

The idea underlying the domain S is that the variables of type int are approx-
imated by + if they are positive or zero, they are approximated by — if they are
negative and by u if their sign is unknown. The other variables’ are approximated
by a don’t care mark x. We write an element ¢ € S, \ {empty} as a Prolog list
[X1,...,Xy] where dom(7) = {vy,...,v,}, v; is the ith variable in lexicographical
order among {vy,... ,v,} and ¢(v;) = z; for every i = 1,... ,n.

In the program of Figure 1(a), the denotation of the assignment a:=b is a function
from the abstract properties of the variables before the assignment to the abstract
properties of the variables after it. Since exactly the four variables a, b, ¢ and foo
are addressable in that program point? and they all have type int, that denotation
is a function f : S; — S, with 7 = {a, b, ¢, foo — int} which can be represented as

empty — empty
[+, 4+, 4] = [+ [+, +4,—] = [+t]
[+,+,—+] = [+,+,—,+] +,+,— -] = [+, +,—]
[+, =+ + = [= =+ [+, — ,+, -1 = [-—-+ -]
[+ = =4 =2 [-] + === = -] (1)
[—,+ +,+] O PR bt] =]
-, ,+] = [+,+, ,+] -, +,— -] = [+ +,— -]
[_ » 1] - [_ » 1] [’+’] - [_a v+’_]
[_ - _7+] - [_ - _a+] [] - - _7_’_]

Tn [19] all variables are assumed to have type int. Here we generalise the domain S .
2The variable foo holds the return value of the function, like in Pascal.

Note that f is not explicitly specified for the elements of S, binding some variables
to u. This is because those values can be recovered from those provided above
[12, 17, 19] (see Definition 5 later). For instance, f([+,u, +,+]) = f([+,+,+, +]) U
f(+, =+ +) =+ ++ +HU[-, =+, +] = [u,u,+, +]

The above representation of the function f can be naturally seen as a ground
logic program stating an input/output relationship:

io(emPtYa emptY)' io([+a+a+a+]7[+a+7+a+])' iO([+,+,+, _]a[+a+a+a _])

Its size grows exponentially with the number of program variables.

There is some regularity in the representation (1). For instance, f does not change
the values of b, ¢ and foo. Moreover, it copies the value of b in the value of a. We
can therefore represent f by using variables as

empty — empty [A,B,C,Foo| — [B,B, C,Foo] (2)

which is smaller than (1) and whose size grows linearly with the number of program
variables. This notation can be naturally seen as isomorphic to the logic program:

io(empty,empty). io([A,B,C,Fool,[B,B,C,Foo]). (3)

From now on, an arrow notation like (2) must be seen as a more evocative notation
for a logic program like (3).

Consider now the program in Figure 1(b). The denotation of the assignment
a:=b-1 can be represented by the following logic program:

empty — empty [A,—,C,Foo| — [—, —,C,Foo] [A,+,C,Foo] — [u,+,C,Foo] (4)

Note that program (4) is slightly more complex than (2), but is still much more
compact than an exhaustive representation. Moreover, its size still grows linearly
with the number of program variables.

3 The Framework of Analysis

We assume familiarity with logic programming [1] and abstract interpretation [3, 4].
Given a function f, the notation f[t/n| represents the function f modified in such
a way that it binds ¢ to n. The domain of f[t/n] is that of f expanded with n.

We briefly present here a simplified version of the framework of [19] for the lo-
calised static analysis of imperative programs. Its distinguishing feature is that the
resulting static analyses have a cost in time and space proportional to the number
of program points of interest. This is why we speak of a localised analysis frame-
work. Moreover, that framework is based on a denotational semantics and is thus
compositional. Note that we simplify the framework of [19] here, in the sense that
we consider just input/output denotations without information at internal program
points. However, the extension of what we are going to describe to the full-featured
watchpoint semantics of [19] does not introduce any technical problem.

From the point of view of abstract interpretation, the framework of [19] is appeal-
ing since it is based on the compilation of the high-level constructs (conditionals,

[op]® : Ary oy ifop s (B X - X Bp) = E;
oa : (ATla---aTnaT, X AT;TI e X ATaTn) = ATaT’

[op]® = Md.aP (op(v"(d))) T o (Ty,...,T,) = M.T(Ty(d),... ,Tp(d)) .

Figure 2: Signature and implementation of the combinators.

loops, function calls) into a very small set of combinators which work over denota-
tions. Thus, an abstract semantics is obtained by simply using abstract denotations
and the abstract combinators induced by the theory of abstract interpretation. Just
one abstract domain (that of abstract denotations) is used.

We take from [19] the following (simplified) definitions and results. The concrete
states Y, are maps from variables to values. Their formal definition can be found
in [19] (and has been made more concrete in [11]) and is not relevant to this paper.

An element of an abstract domain is (gamma-) union-reducible if its concretisation
if the union of the concretisations of the elements which precede it in the partial
ordering. This is a stronger notion than that of join-reducible element given in [12].

Definition 3. For 7 € Typing, let (D,,C) be a complete lattice and o~ and P~
the abstraction and concretisation maps of a Galois insertion from (p(3,), C) to
(D;,C). We say that d € D, is (y-)union-reducible if

v(d) = Ud’Ed’Y(dl) .

Otherwise, we say that d is union-irreducible. The set of the union-irreducible
elements of D, is denoted by ui(D,). O

Example 4. The union-irreducible elements of the domain S, of Definition 2 are
empty and those ¢ € S, such that ¢(v) # u for every v € dom(7). If, instead,
s(v) = u for exactly one v € dom(7), it can be shown that (for 757, see [19])

(<€) = v(s[+/v]) Ur(s[=/v]) Uv(empty) = Uszey(s) -
Definition 5. Given n > 1 and 7,... ,7,,7 € T'yping, let A, . . be

{aE(DTIX---xDTn)r—)DT

a is monotonic and if d; is union-reducible then
a(dy,... ,di,... .dn) =jrq aldy, ..., d,. .. .dy) 7

i.e., denotations in A,, are identified by the union-irreducible elements. This
set is a complete lattice w.r.t. the pointwise extension of LC. O

The fact that denotations are uniquely identified by the union-irreducible ele-
ments is similar to the use of component-wise additive denotations [12].

Proposition 6 ([19]). An abstract semantics for the properties expressed by D,
can be defined through the combinators on denotations of Figure 2.]

nopt (<) = ¢ (getinti)* (¢ {j::z iz 0
(getvart)*(c) = cs(v)/res] (putvart)(c) = sls(res) /vl —res

=5 (1) (2) = {cz[/res] if c1(res) # sa(res) +2(e1)(e2) = { s2[s1(res)/res] if ci(res) = sa(res)

s2[u/res] otherwise s2[u/res] otherwise
(restrict?®)*(¢) = ¢|—vs (expand?i*)*(c) = <[+/v]
if = - if =
is_true? (c) = empty i c(res.) is falses (¢) = empty i c(res-) +
s[+/res] otherwise s[—/res] otherwise

U2 (empty)(z) = Us(z)(empty) =z U2 (s1)(s2) = Av € dom(T). {ZI(U) i)ft;t:gi;.g(v)

Figure 3: Some abstract operations over the domain of signs.

The operations op of Figure 2 work over concrete states and implement the basic
constructs of the language (assignment, access to variables, arithmetic operations,
comparisons, tests, or even object-oriented operations like field access). Our abstract
combinators need their optimal abstract counterparts a®opy?. Figure 3 defines
them for the case of sign analysis (Definition 2). To better understand the operations
in Figure 3, we recall that in conditionals a non-negative integer stands for true, a
negative integer for false. Moreover, the variable res is an accumulator which holds
intermediate results. If not otherwise stated, those operations should be implicitly
considered strict on empty. Note that they are defined on the union-irreducible
elements only (Definition 5). The operations in Figure 3 are taken from [19].

4 Logic Programs as Abstract Domains

In Section 2 we have shown that logic programs can be used to represent abstract
denotations (Definition 5) in a compact way. The idea is that a variable stands for
all its instantiations compatible with its type.

Definition 7. Let 7 € T'yping. Assume that we are able to represent every element
of D, with a ground term. In the following, an element will stand for its representa-
tion and vice versa. Assume that we have a set D of (possibly non-ground) terms
with variables of different types. We say that the term d* € D7 is union-irreducible
if it has an instance d € ui(D;). Otherwise, d* is said to be union-reducible. The
set of the union-irreducible elements of D is denoted by ui(Dy). O

Definition 8. Let 7 € T'yping and consider the terms in D}. We assume that for
every type T for the variables in those terms we have a non-empty set P(T’) of terms.
A substitution o is legal if o(v) € P(T) where T is the type of v. The set of legal
substitutions is denoted by A. Its grounding subset by AY.

Given d* € D?, we define its set of legal ground instantiations £(d*) = {d*o |
o € AN}, We require that D is closed w.r.t. £ and that if d* € ui(D}) then

£(d*) = {d € ui(D;) | d is an instance of d*}. O
Definition 9. Let n > 1 and 7,...,7,,7 € Typing. A (71,...,Tn, T)-clause is
1y... 05 — r* where the tail I7,... [y is such that [} € ui(D},) for every i =

1,...,n, and the head r* is such that r* € D}. Moreover, we require that the
variables in 7* occur in I7, ..., [}.
The &-notation is extended to tails as (I, ... ,0%) = {ljo,... ,llo | o€ A9}. O

Example 10. Consider the domain S, of Definition 2. We have already introduced
the ground terms empty and [x4, ... ,%,| (2; € {*,+, —, u}) to represent its elements.
We define a set Vars of variables, all of the same type, and the set

x; € {*,+,—,ufUVarsfori=1,... ,n
Sy = {empty} U< [X1,..., Xy | xs = * if and only if 7(v) # int . (5)
where v is the ith variable in dom(r)

If 7 ={a,b,c,d — int}, the set S’ contains the non-ground union-irreducible term
[+, —,X,Y], as well as the non-ground union-reducible term [+, u, X, Y]. Moreover,
[+, =, X, Y] = [u,Y,+, +] is a (7, 7)-clause. O]

Example 11. A set of legal substitutions for a term in S} (Equation (5)) is
{o | for every v € Vars we have o(v) € VarsU {+, —}},

i.e., we do not allow variables to be bound to u. This is because a set of legal

substitutions must not lose union-irreducibility (Definition 8). O
Definition 12. The set Ay ~ of compact denotations is made of sets {l; —
T1yene sl = T} of (11,..., 7, T)-clauses such that

o {(L;)NE(l;) =0 for every 4,5 € 1,...,m with i # j (tails are disjoint),

o Ui . .mé(li) ={di,... ,d, | d; € ui(D,,), i=1,... ,n} (tails are exhaustive).

A compact denotation is mapped into a ground one by £ : A7, . — Ay 5o
Ea)={U},... .l =")o | l],..., I, > r"€a” and 0 € A7} .

Having defined this notion of compact representation, the next step needed to
define a static analysis consists in finding elements of A* representing the abstract
counterparts of the op operations (denotations) used in Figure 2 (namely, in the case
of sign analysis, we look for elements of A* representing the operations of Figure 3).
Moreover, we need an operation o* which mimics over A* what o® does over A.

Figure 4 shows some of those abstract operations in the case of sign analysis
assuming that 7 is such that dom(7) = {a, b, ¢} for all operations except for put_var®,
=° and is_true®, for which we assume that dom(7) = {a, b, ¢, res}, and except for U?,
for which we assume that dom(7) = {a, b}. All variables are assumed to have type
int. Note that the tails of the clauses are union-irreducible (Definition 9).

More generally, those operations are implemented by the domain specific opera-
tions whose signature is given in Figure 5 (last four lines).

Consider the definition of o* now. If we have compact representations for the
denotations 7', Ty, ... ,T,, Figure 2 suggests that a compact representation for 7" o®
(Ty,...,T,) can be obtained through some sort of folding of clauses. But the inputs
of a representation are union-irreducible elements, while T(d),...,T,(d) are not

nopZ empty — empty [A,B,C] — [A,B,C]
(get-int’)*, 1 >0 empty — empty [A,B,C] — [A,B,C,+]
(get-int?)®, i <0 empty — empty [A,B,C] — [A,B,C,—]
(getvar?)® empty — empty
assuming that v = a [A,B,C] — [A,B,C,A4]
(put_var?)® empty — empty
assuming that v = a, [A,B,C,Res] — [Res,B,(]
empty,empty — empty
empty, [A,B,C,Res] — empty
L [A,B,C Res]empty — empty
7 [A1,Bl,C1,+],[A2,B2’C2,] — [AQ,BQ,CQ,—]
[AlaBlacla][A2,B2ac2,+] - [A27B2ac2’_]
[Al,Bl,C1,Res] [AQ,BQ,CQ,RGS] — [AQ,BQ,Cz,u]
(restrict?®)® empty — empty
assuming vs = {a} [A,B,C] — [B,(]
i< trues empty — empty
4 [A,B,C,—] — empty [A,B,C,+] — [A,B,C,+]
empty,empty — empty empty,[A,B] — [A,B]
[A,B],empty — [A,B] [A,B],[A,B] — [A,B]
Us (A, +],[A =] — [Au] [A-L[A4] = [Aq]
: B8 - [wB B[+ - [
[+t [=-] = [wu] [+-L=+] = [wy]
[)]7[+a] - [uau] [_7_] [+ +] - [uau]

Figure 4: The compact representations over A* of the operations of Figure 3.

necessarily union-irreducible. If their are not, Definition 5 allows us to compute
T o*(Ty,...,T,) from the values provided by T for the union-irreducible elements.

But things are still more difficult because of the variables we allowed in clauses.
For instance, we can fold the clause [A,+] — [—,u] in the clauses [B,+] — [—] and
[B, —] — [+] provided that we bind B to —. The result is that for the abstract input
[A,+] the abstract output is [—] or [+]. Then Definition 5 allows us to conclude
that the clause [A, +] — [u] is the result of those two foldings.

4.1 The Simpler Case of o*.

The above considerations suggest an algorithm for o*. We tackle the simpler case
of computing T o* (T}) for the moment. Our algorithm tries to fold every clause
[— r € T in every clause I’ — r' € T}, by binding the variables in ' and [in such a
way that the resulting instance of [entails that of 7’ (see domain entails in Figure
5). Then it computes the join over D of the heads of the clauses with the same tails.
The first part of this algorithm is accomplished by the following Prolog program:

comb_compose (_Tau,Taul,_Tauprime,T,T1,Result) :-findall(Inl->0ut2,
(member (In1->0ut1,T1) ,member (In2->0ut2,T) ,domain_entails(Taul,Outl,In2)),
Result).

Example 13. Consider the domain S} of Equation (5). Let 7 = {a,b + int}. In
our implementation (Section 5) the call domain entails(r, [+,u], [X,-]) succeeds

‘ Operation ‘ Semantics

domain _entails(7,A,B) computes 61,... ,0, legal such that
with A € D} and B € ui(D}) {Bo |o €AY, Bo Cp, A} = Uj=1,... n£(BY;)
domain_intersectui(r,A,B) computes 64, .. ;] , 0 legal such that
with A,B € ui(D*) for every o € A9 we have AG;0c = BO;o
and £(A) NE(B) = Ui=1,... n€(A0;)
dc?maln_subt.ract_ul(T,A,B) computes 61, ... ,0, legal such that
with &8 € uilDr) Uicr,.. n§(46) = €(0) \ £(B)
and £(A) N f(B) 7& (b i=1,...,n 7
computes 61,... ,60, legal such that
domain lub(7,A,B,L) Uizt,... n& (86;) = &(A), Ui=1,... n£(BO;) = £(B)
with A,B € D} and for every 1 = 1,... ,n and o € A9 we have
LO,0c = AB;o Up, BO;o
domain_bottom (7, Tout ,B) computes B € A7 s.t. ¢ (B)=1 Ari oy
domain_the_same (Tiy , Tout »A,B) checks whether {(A) = {(B), with A,B€ A} .
domain nop(7,N) computes N € A7 s.t. {(N) = [nop,]*
domain get_int (7,I,GI) computes GI € A7 ;.00 S-t- £(GI) = [get_intl]
domain union(7,U) computes U € A7 . s.t. {(U) = [U]*

Figure 5: Domain-specific operations.

and binds X to +. The call domain_entails (7, [+,ul, [+,X]) succeeds twice and
binds X to + the first time and X to - the second time. Note that we do not allow
X to be bound to u (Example 11). The call domain entails(r, [+,ul, [+,+]) just
succeeds, while the call domain_entails (7, [+,+], [+,-]) fails. O

Example 14. Consider the computation of

{ empty — empty } o ({ empty — empty })
A -]) A+ -])
The above algorithm for o* proceeds as follows. It considers every clause of the
program on the right. Thus it starts with empty — empty, whose head is entailed
by the tail of the clause empty — empty of the program on the left. Folding those
clauses results in the clause empty — empty itself. It then considers the clause
[A,+] — [—,u] on the right. Its head [—,u] is entailed by both the tails [A, +] and
[A, —] of the program on the left, provided we bind the variable A of the clauses on
the left to —. This results in two clauses [A,+] — [—] and [A, +] — [+]. Finally, it
considers the clause [A, —] — [+, +] on the right. Its head [+, +] is entailed by the
tail [A, 4] on the left provided we bind this last A to +. This results in the clause
A, —] = [

In conclusion, the first part of the computation above yields the program {empty —
empty [A,+] — [—] [A,+] — [+] [A, =] — [-]}- If we compute the join of the clauses
with the same tails, we obtain {empty — empty [A,+] —[u] [A,—]—[-]}. O

However, the above algorithm can yield clauses whose tails just overlap.

Example 15. The above algorithm over the domain S, computes

empty — empty empty — empty
[A,+] = [+] o* ({ empty — empty }) _) K=
[+, =] =[] [X] — [X,4] [+] =[]
[=] = [+] (-] = [+
The tail of [X] — [+] overlaps with that of both [+] — [=] and [—] — [+]. O

To solve this problem, we use a procedure make_disjunctive which uses three
domain specific operations: domain_intersect_ui computes the intersection of the
tails, and domain_subtract_ui computes their difference. When the tails are finally
mutually disjoint, it uses the domain_lub operation to compute the join of the heads
of the clauses with the same tails (Figure 5). The make_disjunctive procedure can
be consulted in the module combinators of our implementation (Section 5).

Example 16. In the case of Example 15, the call domain_intersect_ui(7, [X], [+])
binds X to + while the call domain_subtract_ui (7, [X], [+]) binds X to -. The two
clauses [X] — [+] and [+] — [—] can be split obtaining the program

{empty —empty [+]=[+] [+ =[] [H =[]},

After the domain_lub operation we obtain the normalised program

{empty — empty [+] = [u] [-]—=[+]}.
U
4.2 The General Case of o*.
Consider the operation o* in its general form. If the tails of the clauses in T}, ... , T},
cover {dy,...,d, | d; € ui(D,), i = 1,...,n} with the same elements of D, for
every such element ! we append the outputs ry,...,r, for all | — r; € T; with
1 =1,...,n. We obtain just one program and we can proceed like in Subsection

4.1.
Example 17. Consider the computation over S of

empty, empty — empty

empty, [A] — empty

o* empty — empty empty — empty
m: Fﬁ)z [_J:]empty ({ [X] — [X] } ’ { [Y] = [+] }) -
[A], [=] = [-]

We merge the two arguments into one and, like in Subsection 4.1, we compute

empty, empty — empty

empty, [A] — empty

o* empty — empty, empty _ empty — empty
ey e ({2) = {)
[A], [=] = [-]

O

Otherwise, we must reduce the arguments to the case above. This can be done by

choosing all possible tuples of clauses [; — r; € T; with ¢ = 1,... ,n and computing
the intersection of their tails /1, ... ,[, through domain_intersect_ui (Figure 5). If
it succeeds with computed answer 6, then the clause (10 — (ry,... ,r,)0 is generated.

This computation is done by the pave procedure of our implementation, which can
be consulted in the module combinators (Section 5). The final algorithm for o* is

comb_compose(Tau, [Taul,...,Taun] ,Tauprime,T, [T1,...,Tn] ,Result) :-
pave(Tau, [T1,...,Tn] ,Pavement),
findall(In1->0ut2,
(member (In1->0ut1,Pavement) ,member (In2->0ut2,T),
entails_list([Taul,...,Taun] ,Outl,In2)),Temp),
make_disjunctive (Tau,Tauprime,Temp,Result).

entails_list([1,[1,[1).
entails_list([TauH|TauT], [H1|T1],[H2|T2]):-
domain_entails(TauH,H1,H2),entails_list(TauT,T1,T2).

Example 18. Consider the computation over S of

empty, empty — empty

empty, [A] — empty empty — empty
[A], empty — empty o* { empty —» empty } ;&[] = [+]
(], [+] > [+ = [] - o

(A], [-] = [-]
We apply pave to the two arguments and, like in Subsection 4.1, we compute

empty, empty — empty

empty, [A] — empty empty — empty, empty empty — empty
[A], empty — empty o |y =14 =q = :
[Al, [+] = [+] (=] =[], [v] (=] = [u]
(Al [=] = [-]
H

Figure 5 collects all the operations which must be implemented by an abstract
domain. We have not introduced domain bottom yet, which is used to start the
fixpoint computation, and domain_the_same, which is used to stop it.

5 Implementation

5.1 Overview of the LOOP Analyser

The LOOP (Localised for Object-Oriented Programs) analyser is a generic analyser
for simple object-oriented programs, i.e., Pascal procedures with objects, fields and
virtual calls. LOOP is an implementation in Prolog of the watchpoint semantics of
[19] extended to deal with object-oriented features through the operations of [11].
Figure 6 draws a picture of the structure of LOOP. The highest-level module
analyser implements a fixpoint engine for a denotational semantics in terms of

analyser

. _= i
semantic domain
combinators

typing _— program

aux

LOOP

Figure 6: The structure of the LOOP analyser.

Procedure swap : [(a, int), (i, int), (j, int)] -> [(swap, int)]

empty— > empty

[+7 +a +]7 > [+] [+7 +) 717 > empty [+a] +]7 > empty [+7] 7}7 > empty
-+ +]=->[-] [-+ -]->empty [—,—,+]- >empty [—,—,—]— > empty
Procedure nested : [(a, int), (b, int), (n, int)] -> [(nested, int)]

empty— > empty
H+t=->H] Hh-=->H] Eot=> 0 -] >]
[_7+7+]_ > [u} [_’+’ _}_ > [+] [_’_,+]_ > [_H [_’_’_]_ > [+]

Figure 7: The sign analysis of nested without variables.

the operations in semantic (for instructions, conditionals, loops). Those operations
are themselves compiled in terms of calls to the module combinators which imple-
ments the combinators® of Figure 2. The module typing implements the typings
(Definition 2). The module aux implements auxiliary and logging functions.

As Figure 6 shows, LOOP does not contain any abstract domain which is, instead,
an erternal module implementing the operations of Figure 5. The program to be
analysed is another external module which contains the abstract syntax of the code.

LOOP is able to perform both an abstract interpretation and a combination of
abstract compilation [7] and partial evaluation of the program. The result is the
same in both cases, but abstract compilation is often cheaper in time and space. We
will always apply abstract compilation in our experiments.

More information about the LOOP analyser can be found at the following web
address: http://www.sci.univr.it/~spoto/loop/index.html.

5.2 Experimental Evaluation

We have implemented six abstract domains for LOOP. The domain signs imple-
ments the domain of Definition 2 through ground logic programs. Since we do
not have variables, the domain_subtract_ui operation always fails. The version
of signs which uses variables is implemented by signs_vars. The domain df im-
plements in a ground way the df domain for class analysis defined in [11] as a
formalisation through abstract interpretation of the ideas of [5]. Class analysis of
object-oriented programs overapproximates the set of classes which an expression

3The full-featured watchpoint semantics needs more combinators than those in Figure 2.

Procedure swap : [(a, int), (i, int), (j, int)] -> [(swap, int)]

empty— > empty [A,—,B]— > empty [A,+,—]- >empty [A,+,+]- > [4]
Procedure nested : [(a, int), (b, int), (n, int)] -> [(nested, int)]
empty— >empty [A,B,—]—>[+] [+, +,+]- > [4]

[—t]=->+ [-++H=->0 [+ —+]->[4]

Figure 8: The sign analysis of nested with variables.

can have at run-time in a given program point. Indeed, an expression can have every
type (class) compatible with its declared type, but only some of them actually arise
at run-time. The df domain approximates program variables with a set of possible
classes, but it provides a trivial approximation for the fields of the objects. Its non-
ground version which uses Prolog variables is implemented by df_vars. The domain
ps implements in a ground way the ps domain for a more precise class analysis. It
has been defined in [11] through abstract interpretation from the technique of [18].
It improves the df domain above by providing a set of classes for fields too, and not
just for program variables. Its non-ground version which uses Prolog variables is
ps_vars. The domains df and ps have been implemented by using lists to represent
the set of classes allowed for variables and fields (see [11]). The union-irreducible
elements are those which allow at most one class for every variable.

We have used variance to implement domain the_same (Figure 5). Variance is
correct but incomplete. In our experiments, we never noticed any case of incom-
pleteness. Note that programs larger than our benchmarks are usually made of small
procedures. Thus we do not expect problems of incompleteness for larger programs,
too. Anyway, after a given number of iterations, a complete test should be used.

For sign analysis, we have used three benchmarks. £ib is the Fibonacci procedure,
nested is a recursive procedure over an array where the recursive call is inside a
while loop. It uses an auxiliary swap procedure which swaps two elements of an
array*. arith implements some arbitrary precision arithmetic operations.

Our experiments have been performed by using SWI-Prolog version 3.4.5 on a
Pentium III 736 Mhz machine with 256 Mbytes of RAM.

Figure 7 shows the analysis of the nested benchmark through the signs domain.
Figure 8 shows the same analysis through the signs_vars domain. Both domains
yield the same results, but variables provide a more compact representation.

For class analysis we use two benchmarks. inv inverts twice the class of a variable
through two calls to a virtual function. That pair of calls is inside a while loop.
clone implements a generic cloning of a list. This operation is performed by a
virtual call to the clone method of the elements of the list.

Figure 9 compares the time (in seconds) and space (amount of data structures
built during the analysis) costs of the sign analysis performed with signs and with
signs_vars. It even shows how the analysis scales with the number of watchpoints.
Figure 10 does the same for class analysis. It considers both the df and the ps
domains. As you can see, in all cases the X_vars domain performs better than the X
domain. It gains up to three orders of magnitude in time and space. Note how the

‘signs and signs_vars deal with arrays as if they were a single integer.

Benchmark | # wpnts S1gns signs-vars

time | space || time | space
fib 0 1.25 315732 || 0.04 | 10262
fib 3 1.62 443200 || 0.06 | 22866
fib 6 1.64 465952 || 0.08 | 29940
nested 0 99.20 | 12493527 || 0.42 | 99909
nested 7 99.78 | 12860167 || 0.70 | 262543
nested 13 || 100.31 | 13172359 || 1.00 | 417630
arith 0 92.72 | 12425933 || 0.14 | 38386
arith 7 92.88 | 12485517 || 0.15 | 46364
arith 14 93.20 | 12620077 || 0.17 | 59888

Figure 9: Time and space required for sign analysis.

Burk | # df df _vars ps ps_vars
time | space | time | space time | space || time | space
inv 0| 0.40| 130773 || 0.03 | 11089 0.43 146007 || 0.03 | 12343
inv 2| 0.42] 139001 || 0.03 | 13619 0.45 155199 || 0.03 | 15189
inv 41 043 | 145093 || 0.04 | 15273 0.47 162003 || 0.04 | 17047
clone | 0 9.39 | 2388093 | 0.07 | 22109 || 258.62 | 29721631 || 0.12 | 49017
clone | 6 9.42 | 2444777 || 0.10 | 40397 | 259.19 | 29951489 || 0.21 | 106513
clone | 11 || 12.58 | 3378142 || 0.25 | 133754 || 350.11 | 40318492 || 0.66 | 398586

Figure 10: Time and space required for class analysis.

domains which use variables are more sensitive to the number of watchpoints.

The cost in space of the analyses, i.e., the amount of data structures built during
them, is independent from the language used to implement LOOP. Thus we think
that even their time cost is not related to that language.

6 Related Works

There are many frameworks for the abstract interpretation of imperative languages
based on denotational semantics [4, 15, 16, 19, 20]. We followed here the approach
of [19] which allows to specify the program points of interest for the analysis. Note,
however, that the present work can be applied to the other frameworks, too.

Logic programs with variables have been used to model type dependences in the
input/output behaviour of a piece of ML code [8, 14]. However, abstract denotations
there are just made of one clause (a single type dependence). A similar technique
has been applied to the logic programs themselves [9, 13]. Their applicability to
other kinds of analyses and programming paradigms has not been studied before.

The reduction of the dimension of the abstract denotation of a piece of code
and, consequently, of the number of iterations needed to reach the fixpoint, has
been considered in [12, 17]. W.r.t. [12], our notion of union-irreducible elements
(Definition 3) might lead to consider more points in the input of a denotation, but
it allows to represent more precisely non-(component-)additive denotations.

7 Conclusion

We have shown how abstract denotations can be implemented by using logic pro-
grams whose variables represent dependences between the input and the output
of a denotation. We have provided an experimental evaluation which shows that
this technique improves both the time and the space requirements of sign and class
analysis w.r.t. traditional, ground implementations.

We plan to apply the same technique to other analyses, like escape analysis [2].

We want to use constraint logic programs [10] instead of logic programs to repre-
sent abstract denotations. They allow a flexible representation of the dependences
contained in a denotation. In particular, abstract domains based on sets (like the
two domains for class analysis considered in this paper) should benefit from the rep-
resentation of abstract denotations in terms of programs over set-constraints [6].

References

[1] K. R. Apt. Introduction to Logic Programming. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B: Formal Models and Se-
mantics, pages 495-574. Elsevier and The MIT Press, 1990.

[2] B. Blanchet. Escape Analysis for Object Oriented Languages. Application to
JavaT™ . In Proc. of OOPSLA’99, volume 34(10) of SIGPLAN Notices, pages
20-34, Denver, CO, USA, October 1999. ACM Press.

[3] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints.
In Proc. of POPL’77, pages 238252, 1977.

[4] P. Cousot and R. Cousot. Systematic Design of Program Analysis Frameworks.
In 6th ACM Symp. on Principles of Programming Languages, pages 269282,
1979.

[5] A. Diwan, J. E. B. Moss, and K. S. McKinley. Simple and Effective Analysis of
Statically Typed Object-Oriented Programs. In Proc. of OOPSLA’96, volume
31(10) of ACM SIGPLAN Notices, pages 292—-305, New York, 1996. ACM Press.

[6] A. Dovier, C. Piazza, E. Pontelli, and G. Rossi. Sets and Constraint Logic
Programming. ACM Transactions and Programming Languages and Systems,
22(5):861-931, September 2000.

[7] M. Hermenegildo, W. Warren, and S.K. Debray. Global Flow Analysis as a
Practical Compilation Tool. Journal of Logic Programming, 13(2 & 3):349—
366, 1992.

[8] R. Hindley. The Principal Type-Scheme of an Object in Combinatory Logic.
Trans. Amer. Math. Soc., 146:29-60, 1969.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

J. M. Howe and A. King. Implementing Groundness Analysis with Definite
Boolean Functions. In G. Smolka, editor, ESOP 2000, volume 1782 of Lecture
Notes in Computer Science, pages 200-214, Berlin, Germany, 2000. Springer-
Verlag.

J. Jaffar and M. J. Maher. Constraint Logic Programming: A Survey. Journal
of Logic Programming, 19-20:503-581, 1994.

T. Jensen and F. Spoto. Class Analysis of Object-Oriented Programs through
Abstract Interpretation. In F. Honsell and M. Miculan, editors, Proceedings
of the FOSSACS 2001 Conference, volume 2030 of Lecture Notes in Computer
Science, pages 261-275, Genova, Italy, April 2001. Springer-Verlag.

J. Koller and M. Mohnen. A New Class of Function for Abstract Interpretation.
In A. Cortesi and G. Filé, editors, Proc. of the Static Analysis Symposium,
SAS°99, volume 1694 of Lecture Notes in Computer Science, pages 248263,
Venice, Italy, September 1999. Springer-Verlag.

G. Levi and F. Spoto. An Experiment in Domain Refinement: Type Domains
and Type Representations for Logic Programs. In C. Palamidessi, H. Glaser,
and K. Meinke, editors, Principles of Declarative Programming, volume 1490
of Lecture Notes in Computer Science, pages 152-169, Pisa, Italy, September
1998. Springer-Verlag.

R. Milner. A Theory of Type Polymorphism in Programming. Journal of
Computer and Systems Sciences, 17-3:348-375, 1978.

F. Nielson. A Denotational Framework for Data Flow Analysis. Acta Informat-
ica, 18:265-287, 1982.

F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis.
Springer-Verlag, 1999.

H. R. Nielson and F. Nielson. Bounded Fixed Point Iteration. In Proc. of the
19th Symposium on Principles of Programming Languages, POPL’92, pages
71-82, Albuquerque, New Mexico, January 1992. ACM Press.

J. Palsberg and M. 1. Schwartzbach. Object-Oriented Type Inference. In Proc.
of OOPSLA’91, volume 26(11) of ACM SIGPLAN Notices, pages 146-161.
ACM Press, November 1991.

F. Spoto. Watchpoint Semantics: A Tool for Compositional and Focussed
Static Analyses. In P. Cousot, editor, Proceedings of Static Analysis Symposium,
SAS’01, Lecture Notes in Computer Science, Paris, July 2001. Springer-Verlag.

G. Winskel. The Formal Semantics of Programming Languages. The MIT
Press, 1993.

