
An Exercise with Dynamic Knowledge
Representation

José Júlio Alferes
Centro de Inteligência Artificial (CENTRIA)

FCT, Univ. Nova de Lisboa

P-2825-114 Caparica, Portugal

jja@di.fct.unl.pt

Lúıs Moniz Pereira
CENTRIA

FCT, Univ. Nova de Lisboa

P-2825-114 Caparica, Portugal

lmp@di.fct.unl.pt

Halina Przymusinska
Dept. Computer Science

California State Polytechnic Univ.

Pomona, CA 91768, USA

halina@cs.ucr.edu

Teodor C. Przymusinski
Dept. Computer Science

Univ. of California

Riverside, CA 92521, USA

teodor@cs.ucr.edu

Paulo Quaresma
Univ. Évora, and CENTRIA

R. Romão Ramalho, 59

P-7000 Évora, Portugal

pq@di.uevora.pt

Abstract

In [ALP+00] we proposed a comprehensive solution to the problem of
knowledge base updates. Given the original knowledge base KB and a set of
update rules represented by the updating knowledge base KB′, we defined a
new updated knowledge base KB∗ = KB⊕KB′ that constitutes the update
of the knowledge base KB by the knowledge base KB′. In [APPP99] we in-
troduced a fully declarative, high-level language for knowledge updates called
LUPS that describes transitions between consecutive knowledge states and can
therefore be viewed as a language for dynamic knowledge representation.

The main objective of the present paper is to show that the dynamic
knowledge representation paradigm introduced in [ALP+00] and the associ-
ated language LUPS, defined in [APPP99], constitute natural, powerful and
expressive tools for representing dynamically changing knowledge. We do so
by demonstrating the applicability of the dynamic knowledge representation

This work was partially supported by PRAXIS XXI project MENTAL, and a NATO schol-
arship while L. M. Pereira was on leave at the Department of Computer Science, University of
California, Riverside. We thank João Leite for helpful discussions.



2 APPIA-GULP-PRODE 2000

paradigm and the language LUPS to several broad knowledge representation
domains, for each of which we provide an illustrative example. In [APP+99],
we presented a preliminary exploration in the application of this paradigm
to examples in the domain of action. Here we show the application to other
domains, and also add some more insights in its application to the actions do-
main. All of the examples have been run and tested under our implementation
of the LUPS language.

1 Introduction

One of the fundamental issues in artificial intelligence is the problem of knowledge
representation. Intelligent machines must be provided with a precise definition of
the knowledge that they possess, in a manner, which is independent of procedural
considerations, context-free, and easy to manipulate, exchange and reason about.
A knowledge engineer also needs to have a precise description (specification) of the
knowledge base (KB) that he/she is expected to design in order to be able to verify
that the design meets all the requirements provided by the end user. Due to the
great complexity and high cost of knowledge engineering, serious design errors may
be difficult or impossible to correct without expensive modifications of the entire
knowledge base or of its major parts.

Any comprehensive approach to knowledge representation has to take into ac-
count the inherently dynamic nature of knowledge. As new information is acquired,
new pieces of knowledge need to be dynamically added to or removed from the
knowledge base. Such knowledge updates often not only significantly modify but
outright contradict the information stored in the original knowledge base. We must
therefore be able to dynamically update the contents of a knowledge base KB and
generate a new, updated knowledge base KB∗ that should possess a precise meaning
and be efficiently computable.

Most of the work conducted in the past in the field of knowledge representa-
tion has focused either on representing static knowledge, i.e., knowledge that does
not evolve with time, or, on updates of purely extensional knowledge bases (i.e.,
knowledge bases consisting entirely of facts rather than rules). This poses a seri-
ous limitation since in a majority of knowledge bases not only the extensional part
dynamically changes but so does the intensional part (i.e., the set of rules).

1.1 Dynamic Knowledge Representation

In [ALP+00] we proposed a comprehensive solution to the problem of knowledge
base updates. Given the original knowledge base KB, and a set of update rules
represented by the updating knowledge base KB′, we defined a new updated knowl-
edge base KB∗ = KB⊕KB′ that constitutes the update of the knowledge base KB
by the knowledge base KB′. In order to make the meaning of the updated knowledge
base KB⊕KB′ declaratively clear and easily verifiable, we provided a complete se-
mantic characterization of the updated knowledge base KB ⊕ KB′. It is defined
by means of a simple, linear-time transformation of knowledge bases KB and KB′

into a normal logic program written in a meta-language. As a result, not only the



An Exercise with Dynamic Knowledge Representation 3

update transformation can be accomplished very efficiently, but also query answer-
ing in KB⊕KB′ is reduced to query answering about normal logic programs. The
implementation is available at: http://centria.di.fct.unl.pt/~jja/updates/.

Forthwith, we extended the notion of a single knowledge base update to updates
of sequences of knowledge bases, defining dynamic knowledge base updates. The idea
of dynamic updates is very simple and yet quite fundamental. Suppose we are given
a set of knowledge bases KBs. Each knowledge base KBs constitutes a knowledge
update that occurs at some state s. Different states s may represent different time
periods or different sets of priorities or perhaps even different viewpoints. The
individual knowledge bases KBs may therefore contain mutually contradictory as
well as overlapping information. The role of the dynamic update KB∗ of all the
knowledge bases {KBs : s ∈ S}, denoted by

⊕
{KBs : s ∈ S}, is to use the mutual

relationships existing between different knowledge bases (as specified by the ordering
relation on s ∈ S) to precisely determine the declarative as well as the procedural
semantics of the combined knowledge base, composed of all the knowledge bases
{KBs : s ∈ S}.

Consequently, the notion of a dynamic program update allows us to represent
dynamically changing knowledge and thus introduces the important paradigm of
dynamic knowledge representation. Given individual and largely independent knowl-
edge bases KBs describing knowledge updates at different states of the world (for
example, new knowledge acquired at different times), the dynamic update⊕

{KBs : s ∈ S }

specifies the exact meaning of the union of these knowledge bases. Dynamic knowl-
edge representation significantly facilitates modularization of knowledge and, thus,
modularization of non-monotonic reasoning as a whole.

Whereas traditional knowledge bases concerned themselves mostly with repre-
senting static knowledge, we showed how to use knowledge base updates to repre-
sent dynamically changing knowledge. In [ALP+00] we restricted our investigation
to knowledge bases represented by generalized logic programs. Logic programs con-
stitute a relatively simple and yet quite broad and expressive class of non-monotonic
knowledge bases, and thus provide an excellent application domain for research on
the theory and implementation of knowledge base updates. They not only have a
well-defined and precise semantics, but also constitute reasonably efficient programs,
which can be executed and tested without being first compiled into some other lan-
guage. Generalized logic programs permit (default) negation not only in rule bodies
but also in their heads, which allows us to specify that some atoms or rules must
become false, i.e., must be deleted or retracted.

It is worth noting why, in the dynamic knowledge representation setting, gener-
alizing the language to allow default negation in rule heads is more adequate than
introducing explicit negation in programs (both in heads and bodies). Suppose we
are given a rule stating that A is true whenever some condition Cond is met. This
is naturally represented by the rule A← Cond. Now suppose we want to say, as an
update, that A should no longer be the case (i.e. should be deleted or retracted),
if some condition Cond′ is met. How to represent this new knowledge? By using



4 APPIA-GULP-PRODE 2000

extended logic programming (with explicit negation) this could be represented by
¬A ← Cond′. But this rule says more than we want to. It states that A is false
upon Cond′, and we only want to go as far as to say that the truth of A is to be
deleted in that case. All is wont to be said is that, if Cond′ is true, then notA
should be the case, i.e. notA← Cond′. As argued in [GL90], the difference between
explicit and default negation is fundamental whenever the information about some
atom A cannot be assumed to be complete. Under these circumstances, the former
means that there is evidence for A being false, while the latter means that there is
no evidence for A being true. In the deletion example, we desire the latter case.
Note, however, that the adequacy of generalized logic program for this purpose is in
facilitating the intuitive writing of updates. Indeed, as proven in [DP96], generalized
logic programs and extended logic programs have the same expressive power.

1.2 Language for Dynamic Representation of Knowledge

Knowledge evolves from one knowledge state to another as a result of knowledge up-
dates. Without loss of generality we can assume that the initial, default knowledge
state, KS0, is empty1. Given the current knowledge state KS, its successor knowl-
edge state KS ′ = KS[KB] is generated as a result of the occurrence of a non-empty
set of simultaneous (parallel) updates, represented by the updating knowledge base
KB. Consecutive knowledge states KSn can be therefore represented as

KS0[KB1][KB2]...[KBn]

where KS0 is the default state and KBi’s represent consecutive updating knowledge
bases. Using the previously introduced notation, the n-th knowledge state KSn is
denoted by

KB1 ⊕KB2 ⊕ ...⊕KBn.

However, in reality, the updating knowledge bases KBi (i.e., the actual updates)
are not given explicitly but are instead generated implicitly as a result of some update
laws, which define transitions between consecutive knowledge states KSn. For ex-
ample, an update law that states “wake up when alarm rings” results in “wake-up”
being true in the next knowledge state KSn+1 if “alarm rings” is true in the current
state KSn. Note that such an update command cannot be simply represented by
adding to the knowledge state KSn+1 a new rule wake up← alarm rings. With the
latter, if the alarm stops ringing (i.e., if not alarm rings is later asserted), wake up
becomes false. In the former, we expect wake up to remain true (until retracted)
even after the alarm stops ringing, i.e., from then on, no direct connection between
wake up and alarm rings should persist.

Dynamic knowledge updates, as described above, did not provide any language
for specifying (or programming) changes of knowledge states. In other words, they
did not provide any means of describing in a formal and declarative way what makes
knowledge evolve and how knowledge evolves.

1And thus in KS0 all predicates are false by default.



An Exercise with Dynamic Knowledge Representation 5

Accordingly, in [APPP99] we introduced a fully declarative, high-level language
for knowledge updates called LUPS (“Language of UPdateS”) that describes tran-
sitions between consecutive knowledge states2 KSn. It consists of update commands,
which specify what updates should be applied to any given knowledge state KSn

in order to obtain the next knowledge state KSn+1. In this way, update commands
allow us to implicitly determine the updating knowledge base KBn+1. The language
LUPS can therefore be viewed as a language for dynamic knowledge representation.
A program written in LUPS will be called an update program. Below we provide
a brief description of LUPS that does not include all of the available update com-
mands and omits some details. The reader is referred to [APPP99] for a detailed
description.

The simplest update command consists of adding a rule to the current knowledge
state and has the form:

assert (L← L1, . . . , Lk).

For example, when a law stating that abortion is illegal is adopted, the knowledge
state might be updated via the command:

assert (illegal← abortion).

In general, the addition of a rule to a knowledge state may depend upon some
preconditions being true in the current state. To allow for that, the assert command
in LUPS has a more general form:

assert L← L1, . . . , Lk when Lk+1, . . . , Lm (1)

The meaning of this assert command is that if the preconditions Lk+1, . . . , Lm are
true in the current knowledge state, then the rule L← L1, . . . , Lk should hold true
in the successor knowledge state. Normally, the so added rules L← L1, . . . , Lk are
inertial, i.e., they remain in force from then on by inertia, until possibly defeated
by some future update or until retracted. This is for example the case for the rule
illegal ← abortion, which remains in effect by inertia beginning from the successor
state onwards, unless later invalidated (i.e. until the rule is retracted or a rule with
true body and not illegal in the head is later asserted).

However, in some cases the persistence of rules by inertia should not be assumed.
Take, for instance, the simple fact alarm ring. This is likely to be a one-time
event that should not persist by inertia after the successor state. Accordingly, the
assert command allows for the keyword event, indicating that the added rule is
non-inertial. Assert commands thus have the form (1) or3:

assert event L← L1, . . . , Lk when Lk+1, . . . , Lm (2)

2It is perhaps useful to remark at this point that in imperative programming the programmer
specifies only transitions between different knowledge states while leaving the actual (resulting)
knowledge states implicit and thus highly imprecise and difficult to reason about. On the other
hand, dynamic knowledge updates, as described above, enabled us to give a precise and fully
declarative description of actual knowledge states but did not offer any mechanism for specifying
state transitions. With the high-level language of dynamic updates, we are able to make both the
knowledge states and their transitions fully declarative and precise.

3In both cases, if the precondition is empty we just skip the whole when subclause.



6 APPIA-GULP-PRODE 2000

Update commands themselves (rather than the rules they assert) may either be
one-time, non-persistent update commands or they may remain in force until can-
celled, and we must distinguish the two cases syntactically. For example, an update
command like:

assert illegal← abortion when republican congress, republican president

or
assert wake up when alarm sounds

could be intended as a one ocasion command triggered once by the when clause,
or it could be intended as a command to be triggered everytime the when clause
is true, or at least remain true until cancelled. This means, in the latter case,
that the update command applies to all the subsequent knowledge states (or until
cancelled) rather than just to the current one. Such persistent update commands
enable knowledge states to dynamically evolve without the occurrence of any truly
new external updates, though that is not the case in this example. Knowledge bases
subject to persistent updates become in effect active knowledge bases, because a
command may produce an update that triggers another command, or even itself.
For example, an intendedly persistent update command:

assert set hands(T ) when get clock time(C) ∧ get real time(T ) ∧ (T − C) > ∆

defines a perpetually operating clock whose hands move to the actual time position
whenever the difference between the clock time and the real time is sufficiently large.

In order to specify such persistent update commands (which we call update laws)
we introduce the syntax:

always [event] L← L1, . . . , Lk when Lk+1, . . . , Lm (3)

To disable persistent update commands, we use:

cancel L← L1, . . . , Lk when Lk+1, . . . , Lm (4)

The existence of persistent update commands requires a “trivial” update, which
does not specify any truly new updates but simply triggers all the already defined
persistent updates to fire, thus resulting in a new modified knowledge state. Such
“no-operation” update, which may be formally represented by assert (true), ensures
that the system continues to evolve, even when no truly new updates are specified.
It represents a tick of the clock or a virtual timer operating within the modelled
world.

To deal with rule deletion, we employ the retraction update command:

retract L← L1, . . . , Lk when Lk+1, . . . , Lm (5)

meaning that, subject to precondition Lk+1, . . . , Lm, the rule L ← L1, . . . , Lk is
retracted. Note that cancellation of a persistent update command is very different
from retraction of a rule. Cancelling a persistent update means that the given



An Exercise with Dynamic Knowledge Representation 7

update command will no longer continue to be applied, but it does not remove any
inertial effects of the rules possibly asserted by its previous application(s).

Knowledge can be queried at any knowledge state KSq with:

holds B1, . . . , Bk, not C1, . . . , not Cm at state q?

and is true if and only if the conjunction of its literals holds at the state KSq. If
the state is implicitly known, we just skip the phrase “at state q”.

In [APPP99] we provided a precise declarative and procedural semantics for the
language LUPS so that the update commands not only admit a definite declar-
ative meaning but also can be readily implemented. The declarative semantics
is obtained by translating a LUPS program into a dynamic update KB0 ⊕ · · · ⊕
KBn discussed above. The procedural semantics for LUPS is obtained by the
translation of the LUPS program into a normal logic program, written in a meta-
language. The translation is linear-time and thus it offers an efficient mechanism
for implementing LUPS programs: after a pre-processor performs the necessary
linear-time translation, query answering in LUPS is reduced to query answering
in normal logic programs. The complete implementation of LUPS is available at:

http://centria.di.fct.unl.pt/~jja/updates/lups.p.

1.3 Main Objective of the Paper

The main objective of this paper is to show that the new dynamic knowledge repre-
sentation paradigm and the language LUPS represent natural, powerful and expres-
sive tools for representing dynamically changing knowledge. We do so by demon-
strating the applicability of the dynamic knowledge representation paradigm and
LUPS to several broad knowledge representation domains. In [APP+99] we have
explored the application of LUPS to the domain of actions. Here we enlarge to
scope of application domains by including: active databases, legal reasoning, intel-
ligent agents, and software specifications. They are not intended by any means to
constitute an exhaustive list of potential application domains but just to serve as
their sample representatives.

We argue that all of these domains (and many others) can significantly benefit
from the dynamic knowledge representation paradigm introduced in [ALP+00] and
from the expressive power of the language LUPS defined in [APPP99]. For each
one of the selected application domains we present an illustrative example, each of
which having been run and tested under our implementation of the LUPS.

2 Application Domains

In this section we discuss and illustrate by examples the applicability of the dy-
namic knowledge representation paradigm and the language LUPS to several broad
knowledge representation domains.



8 APPIA-GULP-PRODE 2000

2.1 Active Knowledge Bases

Persistent update laws allow us to handle not only knowledge states that dynamically
change due to newly received updates, but they also enable us to model the much
more involved case of self-updating or active knowledge bases, which undergo change
even though no truly new updates occurred. For example, the watch’s hands moves
whether new updates are received or not. Since the high-level language of updates
LUPS outlined above has a built-in capability to define persistent updates, it permits
us to model active knowledge bases. The following example illustrates the language’s
ability to handle persistent updates.

Example 1 (Heating) When a certain set minimum temperature is reached, the
heater is switched on. This triggers a gradual increase in the temperature of the room,
for a while. The heater is switched off when the estimated temperature reaches a
maximum set value. The temperature will the gradually decrease, until an estimated
minimum value is reached. We assume that from state to state the estimated increase
or decrease of the temperature is fixed by an absolute amount ∆.

This situation can be modelled in LUPS, by the following persistent rules:

always event temperature(V −∆) when not on, temperature(V )
always event temperature(V + ∆) when on, temperature(V )
always not on when temperature(V ), setMax(M), V > M
always on when temperature(V ), setMin(M), V < M

Note that the current temperature is represented as an event. This is so because, in
this example, its value does not persist by inertia. Given an initial temperature by a
command assert event temperature(aV alue), and the set minimum and maximum
values by assert setMin(min) and assert setMax(max), the system starts and
then evolves by itself. For example, if the initial value of the temperature is less
than the minimum, the predicate on is asserted, and the temperature will increase
until the maximum is surpassed. Conversely, when this occurs, on is retracted, and
the temperature begins to decrease . . .

The problem of building, querying and modifying active databases is studied by
many researchers in the database community, and is considered to be an impor-
tant research topic. However, to the best of our knowledge, none of the approaches
proposed so far in the literature resulted in a solution based on clear and precise
declarative semantics while retaining the immediate availability of procedural exe-
cution. We believe therefore that our approach is likely to have a major impact on
the ongoing research in this area by helping to precisely define both the declarative
and the procedural meaning of the notion of active database.

2.2 Reasoning about Actions

An exceptionally successful effort has been made lately in the area of reasoning about
actions. Beginning with the seminal paper by Gelfond and Lifschitz [GL93], intro-
ducing a declarative language for talking about effects of actions (action language
A),through the more recent paper of Giunchiglia and Lifschitz [GL98b] setting forth



An Exercise with Dynamic Knowledge Representation 9

an enhanced version of the language (the so called language C), a number of very
interesting results have been obtained by several researchers significantly moving
forward our understanding of actions, causality and effects of actions (see the sur-
vey paper [GL98a] for more details on action languages). These recent papers also
significantly influenced our own work on dynamic knowledge updates.

The theory of actions is very closely related to knowledge updates. An action
taking place at a specific moment of time may cause an effect in the form of a change
of the status of some fluent. For example, an action of stepping on a sharp nail may
result in severe pain. The occurrence of pain can therefore be viewed as a simple
(atomic) knowledge update triggered by a given action. Similarly, a set of parallel
actions can be viewed as triggering (causing) parallel atomic updates.

Example 2 (Yale Shooting) This well know example from the theory of actions
can be represented in LUPS by adding the following persistent rules:

always loaded when load
always dead when shoot, loaded
always not loaded when shoot
always not alive← dead

The initial situation, where the turkey is alive, is represented by adding assert alive
to KS1.

After some time, there is an action of loading the gun. This is easily represented
by adding to the corresponding KSi (where i > 1) the command assert event load.
After waiting a while, there is an action of shooting, which is represented by adding
to the corresponding KSj (where j > i + 1) the command assert event shoot.

It is easy to check that from KSj onwards dead and not alive hold in all stable
models.

The following Mary’s soup example, adapted from [GLR91], illustrates how LUPS
can be used to handle parallel updates.

Example 3 (Mary’s soup) There is a dish of soup. To lift it in a stable manner,
and avoid spilling, it is required to hold it with both hands. Actions of grabbing and
releasing are available for, respectively, initiating and terminating the holding, with
left or the right hands. This situation is represented by the commands:

always stable← holding(left), holding(right)
always spilling ← not stable
always holding(H) when grab(H)
always not holding(H) when release(H)

In the initial situation the dish of soup is being held by the left hand alone:

KS1 = {assert not holding(right),assert holding(left)}

Suppose there are now two simultaneous actions, of grabbing with the right hand and
releasing the left:

KS2 = {assert event grab(right),assert event release(left)}



10 APPIA-GULP-PRODE 2000

and afterwards an action of grabbing with the left hand:

KS3 = {assert event grab(left)}

In the knowledge state 2 we will have holding(right), not holding(left), the dish is
not stable and spilling. Only after KS3 will the dish be stable and not spilling.

However, there are also major differences between dynamic updates of knowledge
and theories of actions. While in our approach we want to be able to update one
knowledge base by an arbitrary set of rules that constitutes the updating knowledge
base, action languages deal only with updates of propositional knowledge states. In
other words, action languages are limited to purely atomic assertions and retractions,
and thus are dealing exclusively with purely extensional (or relational) knowledge
bases. Our approach also allows us to model self-updating or active knowledge
bases that are capable of undergoing change without any outside triggers at all. As
a result, from a purely syntactic point of view, our language for knowledge updates,
LUPS, is strictly more expressive than action languages A or C.

At the semantic level, however, the situation is not so simple. The main motiva-
tion behind the introduction of the language C was to be able to express the notion
of causality. This is a very different motivation from the motivation that we used
when defining the semantics of updated knowledge bases. Here the main principle
was to inherit as much information as possible from the previous knowledge state
while changing only those rules that truly have to be affected by the given update(s).
As a result, one can easily see that, even in simple cases, the semantics of knowledge
updates and that of action languages often differ.

In spite of these differences, the strong similarities between the two approaches
clearly justify a serious effort to investigate the exact nature of the close relationship
between the two research areas and between the respective families of languages,
their syntax and semantics. Hopefully, we will be able to bridge the gap between
these two intriguing and closely related research areas.

2.3 Legal Reasoning

Robert Kowalski and his collaborators did a truly outstanding research work on using
logic programming as a language for legal reasoning (see e.g. [Kow92]). However
logic programming itself lacks any mechanism for expressing dynamic changes in
the law due to revisions of the law or due to new legislation. Dynamic knowledge
representation allows us to handle such changes in a very natural way by augmenting
the knowledge base only with the newly added or revised data, and automatically
obtaining the updated information as a result. We illustrate this capability of LUPS
on the following simple example.

Example 4 (Abortion Law) Consider the following scenario:

• once Republicans take over both Congress and the Presidency they establish a
law stating that abortions are punishable by jail;



An Exercise with Dynamic Knowledge Representation 11

• once Democrats take over both Congress and the Presidency they abolish such
a law;

• in the meantime, there are no changes in the law because always either the
President or the Congress vetoes such changes;

• performing an abortion is an event, i.e. a non-inertial update.

Consider the following update history: (1) a Democratic Congress and a Republican
President (Reagan); (2) Mary performs abortion; (3) Republican Congress is elected
(Republican President remains in office: Bush); (4) Kate performs abortion; (5)
Clinton is elected President; (6) Ann performs abortion; (7) Gore is elected President
and Democratic Congress is in place (year 2000?); (8) Susan performs abortion.

The specification in LUPS would be:

% Persistent update commands
always jail(X)← abortion(X) when repC ∧ repP
always not jail(X)← abortion(X) when not repC ∧ not repP

Alternatively, instead of the second clause, in this example, we can use a retract
statement

retract jail(X)← abortion(X) when not repC ∧ not repP

Note that, in this example, since there is no other rule implying jail, retracting the
rule is safely equivalent to retracting its conclusion.

The above rules state that we are always supposed to update the current state
with the rule jail(X) ← abortion(X) provided repC and repP hold true and that
we are supposed to assert the opposite (or just retract this rule) provided not repC
and not repP hold true. Such persistent update commands should be added to U1.

% Sequence of non-persistent update commands
U1 : assert repP

assert not repC
U2 : assert event abortion(mary)
U3 : assert repC
U4 : assert event abortion(kate)

U5 : assert not repP
U6 : assert event abortion(ann)
U7 : assert not repC
U8 : assert event abortion(susan)

Of course, in the meantime we could have a lot of trivial update events represent-
ing ticks of the clock, or any other irrelevant updates.

In addition to providing automatic updating, dynamic knowledge representation
allows us to keep the entire history of past changes and to query the knowledge
base at any given time in the past. The ability to keep track of all the past changes
in the law is a feature of crucial importance in the domain of law. We expect,
therefore, that by using LUPS as a language for representation and reasoning about
legal knowledge we may be able to significantly improve upon the work based on
standard logic programming.



12 APPIA-GULP-PRODE 2000

2.4 Intelligent Agents

Similar comments apply to the area of intelligent agent and multi-agent reasoning.
The ability of dynamic knowledge representation to naturally express continuously
changing state of knowledge seems to be particularly valuable for modelling be-
haviour of intelligent agents whose perception of the world continuously changes
and who operate in a perpetually changing environment. It is also invaluable for
representing multi-agent communication and reasoning which is also characterized
by continuous changes of beliefs about beliefs of other agents as well as about agents’
own beliefs. The following simple example illustrates the use of the language LUPS
to model such simple exchange of information between intelligent and cooperative
agents.

Example 5 (Cooperative agents) Here we model a simple dialogue where agent
A informs another agent B about the truth of a property P that contradicts B’s
previous beliefs. We assume that agents are cooperative. We begin by describing
how the information is communicated between the agents [PQ98]. First, we specify
the effect of the inform action:

always bel(Listener, bel(Speaker, P )) when inform(Speaker, Listener, P )

i.e., after the speaker informs the listener that P is true, the listener believes the
speaker believes in P . Next, we describe how new beliefs are formed:

always bel(A, P ) when bel(A, bel(B, P ))
always not bel(A, Q)← incompatible(P, Q) when bel(A, Q), bel(A, bel(B, P ))

These rules mean that a cooperative agent always accepts known beliefs of the other
agent and eliminates his previous beliefs if they are incompatible with the new ones.
For instance, it may be incompatible for an agent to be at two different places si-
multaneously:

always incompatible(at(P1, A), at(P2, A))← P1 6= P2

Suppose that in state 1 agent a believes agent b is at the hospital:

KS1 : assert bel(a, at(hospital, b))

But agent c informs a that b is at home:

KS2 : assert event inform(c, a, at(home, b))

In state 2, bel(a, at(home, b)) will hold as a consequence of the first update command
and the belief forming commands rule. bel(a, at(hospital, b)), on the other hand, will
no longer hold.

Depending on the definition of incompatible contradiction may arise of course.
Contradiction avoidance, or its detection and removal, are different mechanisms
which could be added, but we do not deal with them in this paper.



An Exercise with Dynamic Knowledge Representation 13

2.5 Software Specifications

One of the most important problems in software engineering is the problem of choos-
ing a suitable software specification language. The following are among the key
desired properties of such a language:

1. Possibility of a concise representation of statements of natural language, com-
monly used in informal descriptions of various domains

2. Availability of query answering systems which allow rapid prototyping

3. Existence of a well developed and mathematically precise semantics of the
language.

4. Ability to express conditions that change dynamically

5. Ability to handle inconsistencies stemming from specification revisions.

It has been argued in several papers (see e.g. [LO97, EDD93, FD93]) that the
language of logic programming is a good potential candidate for the language of
software specifications. While logic programming clearly possesses the first three
properties, it lacks simple and natural ways of expressing conditions that change
dynamically and the ability to handle inconsistencies stemming from specification
revisions. The last problem is called elaboration tolerance and requires that small
modifications of informal specifications result in localized and simple modifications of
their formal counterparts. Dynamic knowledge representation based on generalized
logic programs extends logic programming exactly with these two missing dynamic
update features. Moreover, small informal specification revisions require equally
small modifications of the formal specification, while all the remaining information
is preserved by inertia. The following banking example illustrates the above claims.

Example 6 (Banking transactions) Consider a software specification for per-
forming banking transactions. Predicate balance(AccountNo, Balance) is used to
model account balances. To represent the actions of depositing and withdrawing
money into and out of an account we use, respectively, deposit(AccountNo, Amount)
and withdrawal(AccountNo, Amount). A withdrawal can only be accomplished if
the account has a sufficient balance. This simplified description can easily be mod-
elled in LUPS by KS1:

always balance(Ac, OB + Up) when updateBal(Ac, Up), balance(Ac, OB)
always not balance(Ac, OB) when updateBal(Ac, NB), balance(Ac, OB)
assert updateBal(Ac,−X)← withdrawal(Ac, X), balance(Ac, OB), OB > X
assert updateBal(Ac, X)← deposit(Ac, X)

The first two rules state how to update the balance of an account (i.e. remove its
old value, and replace it by the new one) , given any event of updateBal. Deposits
and withdrawals are then effected, causing updateBal.

An initial situation can be imposed via assert commands. Deposits and with-
drawals can be stipulated by asserting events of deposit/2 and withdrawal/2. E.g.,
the following causes the balance of both accounts 1 and 2 to be 40, after state 3.:



14 APPIA-GULP-PRODE 2000

KS2 : {assert balance(1, 0),assert balance(2, 50)}
KS3 : {assert event deposit(1, 40),assert event withdrawal(2, 10)}

Now consider the following sequence of informal specification revisions. Deposits
under 50 are no longer allowed; VIP accounts may have a negative balance up to the
limit specified for the account; account #1 is a VIP account with the overdraft limit
of 200; deposits under 50 are allowed for accounts with negative balances. These can
in turn be modelled by the sequence:

KS4 : assert not updateBal(Ac, X)← deposit(Ac, X), X < 50
KS5 : assert updateBal(Ac,−X)← vip(Ac, L), withdrawal(Ac, X),

balance(Ac, B), B + L ≥ X
KS6 : assert vip(1, 200)
KS7 : assert updateBal(Ac, X)← deposit(Ac, X), balance(Ac, B), B < 0

This shows dynamic knowledge representation constitutes a powerful tool for
software specifications that will prove helpful in the difficult task of building reliable
and provably correct software.

3 Concluding Remarks

While LUPS constitutes an important step forward towards defining a powerful and
yet intuitive and fully declarative language for dynamic knowledge representation,
it is by far not a finished product. There are a number of update features that
are not yet covered by its current syntax as well as a number of additional options
that should be made available for the existing commands. Further improvement,
extension and application of the LUPS language remains therefore one of our near-
term objectives.

References

[ALP+00] José J. Alferes, João A. Leite, Lúıs M. Pereira, Halina Przymusinska, and
Teodor C. Przymusinski. Dynamic updates of non-monotonic knowledge bases.
Journal of Logic Programming, 45(1-3), pages 43-70, 2000. Extended abstract
appeared in KR’98, pages 98-111. Morgan Kaufmann, 1998.

[APPP99] José J. Alferes, Lúıs M. Pereira, Halina Przymusinska, and Teodor C. Przy-
musinski. LUPS - a language for updating logic programs. In LPNMR’99,
Lecture Notes in AI 1730, pages 162–176. Springer, 1999.

[APP+99] José J. Alferes, Lúıs M. Pereira, Halina Przymusinska, Teodor C. Przymusinski,
and Paulo Quaresma. Preliminary exploration on actions as updtaes. In M. C.
Meo, editor, AGP’99, 1999.

[DP96] C. V. Damásio and Lúıs M. Pereira. Default negated conclusions: why not ?
In R. Dyckhoff, H. Herre, and P. Schroeder-Heister, editors, Int. Workshop
on Extensions of Logic Programming (ELP’96), number 1050 in LNAI, pages
103–117, 1996.



An Exercise with Dynamic Knowledge Representation 15

[EDD93] Abdel Ali Ed-Dbali and Pierre Deransart. Software formal specification by logic
programming: The example of standard PROLOG. Research report, INRIA,
Paris, France, 1993.

[FD93] Gerard Ferrand and Pierre Deransart. Proof method of partial correctness and
weak completeness for normal logic programs. Research report, INRIA, Paris,
France, 1993.

[GL90] M. Gelfond and V. Lifschitz. Logic Programs with classical negation. In Warren
and Szeredi, editors, ICLP’90. MIT Press, 1990.

[GL93] Michael Gelfond and Vladimir Lifschitz. Representing Actions and Change by
Logic Programs. Journal of Logic Programming, 17:301–322, 1993.

[GL98a] M. Gelfond and V. Lifschitz. Action languages. Linkoping Electronic Articles
in Computer and Information Science, 3(16), 1998.

[GL98b] E. Giunchiglia and V. Lifschitz. An action language based on causal explana-
tion: Preliminary report. In Proceedings AAAI-98, pages 623–630, 1998.

[GLR91] M. Gelfond, V. Lifschitz and A. Rabinov What are the limitation of the situa-
tion calculus. In R. Moore, editor, Automated Reasoning: essays in honour of
Woody Bledsoe, pages 167–179. 1991.

[Kow92] R. Kowalski. Legislation as logic programs. In Logic Programming in Action,
pages 203–230. Springer–Verlag, 1992.

[LO97] K. K. Lau and M. Ornaghi. The relationship between logic programs and
specifications. Journal of Logic Programming, 30(3):239–257, 1997.

[PQ98] L. M. Pereira and P. Quaresma. Modelling agent interaction in logic program-
ming. In Osamu Yoshie, editor, INAP’98 - The 11th International Conference
on Applications of Prolog, pages 150–156, Tokyo, Japan, September 1998. Sci-
ence University of Tokyo.


	Introduction
	Dynamic Knowledge Representation
	Language for Dynamic Representation of Knowledge
	Main Objective of the Paper

	Application Domains
	Active Knowledge Bases
	Reasoning about Actions
	Legal Reasoning
	Intelligent Agents
	Software Specifications

	Concluding Remarks

