
Using dynamic logic programming

to model legal reasoning

Nuno Graça and Paulo Quaresma
ngraca|pq@di.uevora.pt

Departamento de Informática
Universidade de Évora
7000 Évora, Portugal

Abstract. Dynamic logic programming allows the representation and
the inference of evolving knowledge.
Legal knowledge reasoning needs the capability to model laws that change
over time and to model laws produced by distinct entities with different
priorities at different time points.
In this paper we propose the use of dynamic logic programming to model
these legal dynamic situations. Some examples are discussed and the
implementation of a legal oracle server is described.

1 Introduction

It is well known that knowledge representation needs to take into account the
dynamic nature of knowledge. As new information is acquired, new pieces of
knowledge need to be dynamically added to or removed from the knowledge
bases. Moreover, information may be produced from different sources having
different degrees of reliability and, as a consequence, having different priorities.

In [2] dynamic logic programming was proposed as a possible solution to the
problem of knowledge base updates and in [3] a new language, LUPS – Language

of UPdateS, was described and applied to the representation of actions.
On the other hand, legal knowledge reasoning needs the capability to model

laws that change over time and to model laws produced by distinct entities with
different priorities at different time points. The representation problem of time
and law was studied by several researchers, [8, 7, 9], basically using Event Cal-
culus [5] as the base formalism. The proposed approaches had some limitations,
namely some lack of generality and the necessity to explicitly define time and
inertia rules.

In this paper we propose the use of dynamic logic programming to model
these legal dynamic situations. Specifically, we will deal with the representa-
tion of evolving rules, i.e., laws where there were changes in their pre-requisites
over time, and with the problem of having several sources of laws with possible
contradictions.

In order to fully explore these situations, a legal server was implemented
in Prolog and it is able to receive logic programming descriptions of laws and



events and to answer queries about what is valid in specific states. Some simple
examples are described and discussed.

In section 2 the logic programming framework used to model the legal server
is presented. Then, in section 3, the legal server implementation is briefly de-
scribed and in section 4, examples of hypothetical server interactions are pre-
sented. Finally, in section 5 some conclusions and future work are pointed out.

2 Dynamic Logic Programming

Before describing the legal server it is necessary to present the formalism used
to implement it. As referred in the previous section, the basic formalism is the
dynamic logic programming paradigm and the related language used to represent
actions: LUPS1.

2.1 Dynamic Knowledge Representation

One of the main requirements of the formalism used to represent legal knowledge
is to be able to handle evolving knowledge. In fact, legal knowledge may be
represented by specific knowledge states but, after each event, such as a law
change, knowledge evolves to another state. The formalism should be able to
handle these situations, allowing the inference of what properties are valid in
each knowledge state.

Dynamic logic programming (DLP) was proposed [2] as a possible solution
to this evolution requirement. In fact, DLP defines how a knowledge base can
be updated by another knowledge base, obtaining a new knowledge base.

Specifically, given an original knowledge base KB, and an updating knowl-
edge base KB′, it is possible to obtain a new updated knowledge base KB∗ =
KB⊕KB′ that constitutes the update of the knowledge base KB by the knowl-
edge base KB′. In order to make the meaning of the updated knowledge base
KB⊕KB′ declaratively clear and easily verifiable, in [2] there is a complete se-
mantic characterisation of the updated knowledge base KB⊕KB ′. It is defined
by means of a simple, linear-time transformation of knowledge bases KB and
KB′ into a normal logic program written in a meta-language. As a result, not
only the update transformation can be accomplished very efficiently, but also
query answering in KB⊕KB′ is reduced to query answering about normal logic
programs.

2.2 LUPS – Language of UPdateS

In DLP knowledge evolves from one knowledge state to another as a result of
knowledge updates. Given the current knowledge state KS, its successor knowl-
edge state KS′ = KS[KB] is obtained as a result of the occurrence of a non-
empty set of simultaneous updates, represented by the updating knowledge base
KB.

1 This section is based on a previous work describing DLP and LUPS [4]



However, dynamic knowledge updates, do not provide any language for spec-
ifying changes of knowledge states. Accordingly, in [3] it was described a fully
declarative, high-level language for knowledge updates called LUPS “Language
of UPdateS”) that describes transitions between consecutive knowledge states
KSn. It consists of update commands, which specify what updates should be
applied to any given knowledge state KSn in order to obtain the next knowledge
state KSn+1. In this way, update commands allow us to implicitly determine the
updating knowledge base KBn+1. The language LUPS can therefore be viewed
as a language for dynamic knowledge representation.

The simplest update command consists of adding a rule to the current knowl-
edge state and has the form: assert (L← L1, . . . , Lk). For example, when a law
stating that abortion is illegal is adopted, the knowledge state might be updated
via the command: assert (illegal← abortion).

In general, the addition of a rule to a knowledge state may depend upon
some preconditions being true in the current state. To allow for that, the assert
command in LUPS has a more general form:

assert (L← L1, . . . , Lk) when (Lk+1, . . . , Lm) (1)

The meaning of this assert command is that if the preconditions Lk+1, . . . , Lm

are true in the current knowledge state, then the rule L← L1, . . . , Lk should hold
true in the successor knowledge state. Normally, the so added rules are inertial,

i.e., they remain in force from then on by inertia, until possibly defeated by some
future update or until retracted.

However, in some cases the persistence of rules by inertia should not be
assumed. Take, for instance, the simple action request help. This is likely to
be a one-time event that should not persist by inertia after the successor state.
Accordingly, the assert command allows for the keyword event, indicating that
the added rule is non-inertial.

assert event (L← L1, . . . , Lk) when (Lk+1, . . . , Lm) (2)

Update commands themselves (rather than the rules they assert) may either be
one-time, non-persistent update commands or they may remain in force until
cancelled. In order to specify such persistent update commands (which are called
update laws) there is the syntax:

always [event] (L← L1, . . . , Lk) when (Lk+1, . . . , Lm) (3)

To cancel persistent update commands, we use:

cancel (L← L1, . . . , Lk) when (Lk+1, . . . , Lm) (4)

To deal with rule deletion, there is the retraction update command:

retract (L← L1, . . . , Lk) when (Lk+1, . . . , Lm) (5)

meaning that, subject to precondition Lk+1, . . . , Lm, the rule L← L1, . . . , Lk is
retracted.



Knowledge can be queried at any knowledge state KSq with:

holds B1, . . . , Bk, not C1, . . . , not Cm at state q? (6)

and is true if and only if the conjunction of its literals holds at the state KSq.
The language LUPS has a declarative and procedural semantics [2] so that

the update commands not only have a definite declarative meaning but also
can be readily implemented. The procedural semantics for LUPS is obtained
by the translation of the LUPS program into a normal logic program, written
in a meta-language. The translation of LUPS into XSB-Prolog is available at

http://centria.di.fct.unl.pt/~jja/updates/lups.p.

3 Legal Server

The legal server is a XSB-Prolog process able to deal with connections via a user
defined TCP/IP port.

�

�

�

�
Client 1 �

�

�

�
. . .

�

�

�

�
Client n

�
�

�
�

H
H

H
H

Legal Server

Fig. 1. Architecture

There are two possible commands that clients may send to the legal server:

– Update
– Query

The clients send sequences of update rules and/or queries about properties and
they receive the answers to their queries.

These commands will be described in detail in the next two sub-sections:

3.1 Update command

The update rules have the following syntax:

update(KB, Agent, LUPSList) (7)

where KB means knowledge base and allowing the definition and the update of
distinct knowledge bases; Agent defines the name of the agent performing the
action; and LUPSList is a Prolog list of LUPS commands.

As an example, we may have:

update(law, crimeLaw, [(always (illegal← abortion))]) (8)



It is also possible to use predicate update with only two arguments, KB and
LUPSList, meaning we want to update or to query the KB as a top priority
independent agent: ”God’s view of the KB”. This special top agent has also the
possibility to define priorities among the different agents:

higherPriority(Agent1, Agent2). (9)

The priority relations will have important consequences in the processing of the
agents updates.

After receiving an update predicate, the legal server will create correspondent
LUPS updates, evolving the KB received as a parameter to a new state. The
translation between the client requests (rule 7) and the LUPS updates follows
these rules:

1. For every request received from agent Agent1
(a) For every LUPS command in LUPSList having a rule with head H create

a correspondent command, substituting H by HAgent1

(b) For each distinct predicate H (head of some LUPS command) introduced
by the request, create the new rule:

always (H ← HAgent1, not−HA1, . . . , not−HAn) (10)

where A1, . . ., An are more priority agents than Agent1 and not and −
stand for the default and explicit negation, respectively.

The general idea of the first part of the translation is to index every conclusion
(head of the rules) to the correspondent agent. The second part of the translation
relates the agents beliefs with its more priority agents: an agent belief is only
accepted if it is not contradictory with a belief of another more priority agent.

As a simple example, rule 8 would produce the following LUPS rules:

always (illegal crimeLaw ← abortion) (11)

always (illegal← illegal crimeLaw) (12)

If, for instance, Constitutional Law is an agent of a higher priority, then we
would have the following rule (instead of rule 12):

always (illegal← illegal crimeLaw, not− illegal constitutional law) (13)

3.2 Query command

The query commands have the following syntax:

query(KB, Agent,holds B1, . . . , Bk, not C1, . . . , not Cm at state q?) (14)

where KB means knowledge base and allowing the query of distinct knowledge
bases; Agent defines the name of the agent performing the action.

As in the previous section, it is possible to omit the second parameter and
to query the KB from the special top agent. As an example, we may have:

query(law,holds illegal at state now?) (15)



4 Examples

In the next two sub-sections two kind of examples will be presented:

– Evolution of laws
– Laws produced by distinct agents/entities

4.1 Evolution of laws

Suppose there is a law stating that in order to have a specific degree it is necessary
to be enrolled in that degree and to verify certain conditions:

update(law1, [assert (degree(X)← enrolled(X), cond1(X))]). (16)

Now, suppose John enrolls himself in that degree:

update(law1, [assert (enrolled(john))]). (17)

But, after that, there is an update in the law and the needed conditions change:

update(law1, [retract (degree(X)← enrolled(X), cond1(X)), (18)

assert (degree(X)← enrolled(X), cond2(X))]).

After this change John verifies cond1 and Mary enrolls herself in the degree:

update(law1, [assert (cond1(john)), assert (enrolled(mary))]). (19)

Finally, Mary satisfies cond2:

update(law1, [assert (cond2(mary))]). (20)

If we query the KB about who has a degree and in which states:

query(law1,holds degree(X) at state S?]). (21)

We will obtain the expected behavior:

X = mary, S = 5.

Only Mary has a degree and only at state 5 (we are assuming initial state to be
equal to 0).

Note that, if we change update 17 to:

update(law1, [assert (enrolled(john)), assert (cond1(john))]). (22)

We would get:

X = john, S = 2;

X = mary, S = 5.



This answer captures the fact that rule defining how to obtain a degree has
changed. However, law updates are usually not retroactive: if John had a degree
at state 2, then he shouldn’t have lost his degree afterwards!

This requisite leads to a new schema for the representation of law changes2:

update(law2, [assert (degree(X)← en(X), cond1(X))]). (23)

update(law2, [assert (en(john))]). (24)

update(law2, [retract (degree(X)← en(X), cond1(X)) when (not en(X)),

assert (degree(X)← en(X), cond2(X)) when (not en(X))]). (25)

update(law2, [assert (cond1(john)), assert (en(mary))]). (26)

update(law2, [assert (cond2(mary))]). (27)

Rule 25 captures the notion that the law changes only to those that are not yet
enrolled in the degree.

As intended, we’ll have:

X = john, S = 4;

X = john, S = 5;

X = mary, S = 5.

4.2 Laws from distinct entities

In this example suppose there are three sources of knowledge defining what is
needed to obtain a master’s degree (conditions necessary and sufficient):

– S1: To write a thesis;
– S2: To obtain a certain amount of course credits;
– S3: To write a thesis and to obtain a certain amount of course credits (100

in this example).

We’ll have the following correspondent commands:

update(law3, s1, [assert (master(X)← thesis(X)), (28)

assert (−master(X)← −thesis(X))]).

update(law3, s2, [assert (master(X)← credits(X, N), N > 100), (29)

assert (−master(X)← credits(X, N), N <= 100)]).

update(law3, s3, [assert (master(X)← credits(X, N), N > 100, (30)

thesis(X)),

assert (−master(X)← (credits(X, N), N <= 100;

−thesis(X))]).

Suppose agents are related by the following relation s1 < s2 < s3:

higherPriority(s3, s2). (31)

higherPriority(s2, s1). (32)

2 Due to formatting problems we will use en instead of the predicate enrolled



With these constraints, the following update facts:

update(law3, [assert (thesis(john))]). (33)

update(law3, [assert (credits(mary, 120))]). (34)

update(law3, [assert (credits(john, 110))]). (35)

And the following queries:

query(law3,holds masters1(X) at state S?]). (36)

query(law3,holds masters2(X) at state S?]). (37)

query(law3,holds masters3(X) at state S?]). (38)

query(law3,holds master(X) at state S?]). (39)

We’ll have:

masters1(john), S = 4;

masters1(john), S = 5;

masters1(john), S = 6;

masters2(mary), S = 5;

masters2(mary), S = 6;

masters3(john), S = 6;

master(john), S = 6;

These results, as intended, state that accordingly with S1 John has a master’s
degree after terminating his thesis (state 4); accordingly with S2 this is accom-
plished only at state 6 for John (and 5 for Mary); and accordingly with S3 only
John has a master’s degree and only at state 6. As S3 is the most priority agent,
its ”opinion” is the accepted by the legal server.

5 Conclusions and Future Work

The use of dynamic logic programming and its associated language, LUPS, to
model some characteristics of legal reasoning was proposed. Specifically, the
problem of laws that change over time and the problem of laws produced by
different sources with different reliabilities/priorities was dealt with.

Dynamic logic programming revealed to be a powerful methodology to handle
these kind of requisites and the obtained solutions were quite satisfactory and
easy to model.

However, the proposed solution to integrate time and priority constraints is
not easily generalized to additional constraints/dimensions. As future work, we
intend to use an extension of DLP, MDLP – Multidimensional Dynamic Logic
Programming, from J. Leite et al. [6] to allow a more generic approach and the
integration of several dimensions, such as time and priorities. Another possible



direction is to use the new language, EVOLP, proposed by Alferes et. al [1], to
simplify LUPS.

A legal server able to receive law updates and requests was also implemented.
These server is able to handle requests from different agents and about different
knowledge bases. As future work, we intend to change the communication pro-
tocol to a standard agent communication protocol, such as FIPA ACL [10], able
to deal with actions like requests and informs. We also plan to develop a web
interface able to handle user actions and to interact with the legal server via the
FIPA ACL protocols.

References

1. J. Alferes, A. Brogi, J. Leite, and L. Pereira. Evolving logic programs. In S. Flesca,
S. Greco, N. Leone, and G. Ianni, editors, JELIA’02 – Proceedings of the 8th
European Conference on Logics and Artificial Intelligence, pages 50–61. Springer-
Verlag LNCS 2424, 2002.

2. J. J. Alferes, J. Leite, L. M. Pereira, H. Przymusinska, and T. Przymuzinski. Dy-
namic logic programming. In Proc. of KR’98, 1998.

3. J. J. Alferes, L. M. Pereira, H. Przymusinska, T. C. Przymusinski, and
P. Quaresma. Preliminary exploration on actions as updates. In M. C. Meo and
M. Vilares-Ferro, editors, Procs. of the 1999 Joint Conference on Declarative Pro-
gramming (AGP’99), pages 259–271, L’Aquila, Italy, September 1999.

4. J. J. Alferes, L. M. Pereira, H. Przymusinska, T. C. Przymusinski, and
P. Quaresma. An exercise with dynamic logic programming. In L. Garcia and
M. C. Meo, editors, Procs. of the 2000 APPIA-GULP-PRODE Joint Conference
on Declarative Programming (AGP’2000), La Habana, Cuba, December 2000.

5. R. Kowalski and M. Sergot. A logic-based calculus of events. New Generation
Computing, 24:67–95, 1986.

6. J. Leite, J. Alferes, L. Pereira, H. Przymusinska, and T. Przymusinski. A language
for multi-dimensional updates. In J. Dix, J. Leite, and K. Satoh, editors, Compu-
tational logic in multiagent systems: Proceedings of the 3rd international workshop
CLIMA’02, number 93, pages 19–34. Roskilde University, Denmark, 2002.

7. E. Mackaay, D. Poulin, J. Fremont, C. Deniger, and P. Bratley. The logic of time
in law and legal expert systems. RatioJuris, 3:254–271, 1990.

8. Rafael Marin and Giovanni Sartor. Time and norms: a formalisation in the event
calculus. In ICAIL’99 – Internatinal Conference on Artificial Intelligence and Law.
ACM, 1999.

9. A. Provetti. The law of contracts in the event calculus. In GULP’92 – 9th Italian
Conference on Logic Programming, 1992.

10. fipa.org www. FIPA ACL - Agent Communication Language. FIPA - Foundation
for Intelligent Physical Agents, 2001.


