Preliminary exploration on actions as updates

José Julio Alferes!+2, Luis Moniz Pereira?, and Paulo Quaresma!2

! Dept. de Matematica, Univ. Evora,
Rua Roméo Ramalho, 59, P-7000 Evora, Portugal, {jja,pq}@dmat.uevora.pt
? Centro de Inteligéncia Artificial, Fac. Ciéncias e Tecnologia, Univ. Nova de Lisboa,
P-2825-114 Caparica, Portugal, 1mp@di.fct.unl.pt,
Voice:+351 1 294 8533, Fax: +351 1 294 8541

Abstract. This paper reports on the use of logic program updates to
models actions that bring about changes in knowledge states describ-
ing the world and its rules. The LUPS language is employed to specify
concurrent update rules to model actions that depend on, and change,
rule rich world states, not described simply by propositional fluents. This
language and corresponding semantics, whose original stable semantics
we generalize to the well-founded setting, is briefly recapitulated here.
The advantages of our approach to modelling actions as updates are
brought out by a number of telling examples, especially conceived for
the purpose. They have been test run in our implementation of LUPS,
though the latter is not described here for lack of space.

Keywords: Updates, actions, LP semantics.



1 Introduction

Traditionally, Logic Programming (LP) has allowed us to declaratively specify
and query the semantics of non-monotonic Knowledge Base (KB) states. Of
late, LP has been pressed into the service of also declaratively specifying KB
updates. The updating of one successive KB by another is expressable through
a given updating sequence of generalized LPs acting on an initial KB state [1].
Generalized LPs are normal programs that allow for default negation in the head
of rules too, so as to cater for negating a conclusion, and thus possibly updating
it.

Most recently, LUPS, a language for updating LPs (which itself translates
into LP), has been deployed for describing the rule content of such updating
programs. In LUPS, the specification of the actual update rules to be made part
of an update program may depend on the semantics of the KB state that is
being updated.

In this setting, is natural to explore how actions, linking preconditions in one
state to postconditions in the next, might be newly depicted as sets of update
rules of an update program. The advantages of doing so are that:

— Actions can act upon and produce KB states, and these are more generally
expressed by sets of rules, not just sets of propositional fluents. Consequently,
rules themselves can be updated, providing for improved expressivity and
naturalness;

— Several actions may be enacted simultaneously, via a single update program;

— The resulting KBs are just generalized LPs that have been implemented by
preprocessing into normal LPs;

— Other non-monotonic mechanisms can be combined with actions within the
larger LP setting;

— A precise semantics is provided by the LP theoretical technology.

In this paper, we start by recalling the LUPS language of updates, and the
semantics of the generalized LPs which it manipulates. The semantics of LUPS,
briefly reviewed here. can itself be defined by translating update programs into
sequences of generalized LPs. The meaning of the sequences of generalized LPs
(called dynamic LPs) is given in [1], under a two-valued stable semantics.

Next in this paper, our concern with defining and implementing LUPS in a
three-valued well-founded setting leads us to define a three-valued well-founded
semantics (WFS) for generalized LPs. This allows us, namely, to obtain object
language level models of sets of actions with undefined outcome, to rely on top-
down query procedures, and to plug onto existing efficient implementations of
the WFS. Though our preprocesor implementation into normal LPs run with the
XSB system is not describe here for paucity of space! , the concrete examples
presented have all been test run with success.

! The implementation is available at http://centria.di.fct.unl.pt/~jja/lups.p



The final part of the paper proffers seven illustrative examples of how the
modelling of actions via LP updates is achieved in LUPS in a natural and ex-
pressive way. Some of the examples are based on classical ones, and all are
designed to bring out the advantages of the approach. This paper is a prelim-
inary exploration of the subject, as much remains to be done, e.g. in the way
of characterizing the class of actions being captured, on comparing LUPS with
extant actions languages [7], and on combining actions as updates with abduc-
tion to achieve planning. Some forays into these topics are well under way by
ourselves and others. We thought it useful and find it exciting to report back on
the landmarks of our incursion so far.

2 The language LUPS

In this section we briefly review the “language for updating logic programs”,
LUPS, defined in [2]. As explained in the introduction, LUPS is a declarative
language to represent changes in knowledge bases represented by logic programs.

In the LUPS framework, knowledge evolves from one state to another as a
result of sets of (simultaneous) update commands. In order to represent negative
information in logic programs and in their updates, the framework resorts to
more general logic programs, those allowing default negation not A not just in
the premises of their rules but in their heads as well. In [1], such programs are
dubbed generalized logic programs, and their semantics is defined as an extension
of the stable model semantics of normal logic programs [5] to this broader class
of programs?. To facilitate the generalization of this semantics to a 3-valued
setting (presented in section 3 below), the usual definition of the stable model
semantics of generalized logic programs, presented below, is different from the

original one in [1], but their equivalence can easily be shown, given the results
in [3].

Definition 1 (Generalized Logic Program). A generalized logic program P
in the language L is a (possibly infinite) set of propositional rules of the form:

L+ Ly,...,L, (1)

where L and L; are literals. A literal is either an atom A or its default negation
not A. Literals of the form not A are called default literals.

If none of the literals appearing in heads of rules of P are default literals,
then the logic program P is normal.

In order to define the semantics of generalized programs, we start by elimi-
nating all default literals in heads.

Definition 2. Let £ be the language obtained from the language L of a general-
ized logic program P by adding for each propositional symbol A the new symbol
A. P is the normal program obtained from the generalized program P through
replacing every negative head not A by A.

2 The class of generalized logic programs can be viewed as a special case of a yet
broader class of programs introduced earlier in [6].



The definition of the stable models of generalized programs can now be ob-
tained from the stable models of the program P. The idea is quite simple: since
P is a normal program, its stable models can be obtained by the usual Gelfond-
Lifschitz definition [5]; afterwards, all it remains to do is to interpret the A atoms
in the stable models of P as the default negation of A. Since atoms of the form
A never appear in the body of rules of P, this task is quite simple: if 4 is true
in a stable model then not A must also be true in it (i.e. A cannot belong to the
stable model); if A is false in a stable model, then no rule in P imposes not A,
and so the valuation of A in the stable model is independent of the existence of
rules forA.

Definition 3 (Stable models of generalized logic programs). Let P be a
generalized logic program, and let I be a stable model of P (i.e. I be such that
I = I's1) such that for no atom A both A and A belong to I. Let M be obtained
from I by deleting from it all atoms of the form A. Then M is a stable model of
P.

As proven in [1], the class of stable models of generalized logic programs
extends the class of stable models of normal programs [5] in the sense that, for
the special case of normal programs both semantics coincide.

In LUPS, knowledge states, each represented by a generalized logic program,
evolve due to sets of update commands. By definition, and without loss of gen-
erality [2], the initial knowledge state K Sy is empty and, in it, all predicates
are assumed false by default. Given a current knowledge state K.S;, its successor
state is produced as a result of the occurence of a non-empty set U of simulta-
neous update commands. Thus, any knowledge state is solely determined by the
sequence of sets of updates commands performed from the initial state onwards.
Accordingly, each state can be denoted by:

where each Uj; is a set of update commands.

Update commands specify assertions or retractions to the current knowledge
state (i.e. the one resulting from the last update performed). In LUPS a simple
assertion is represented as the command:

assert (L < Ly,...,L) when (Lgy1,...,Lpy) (2)
Intuitively, its meaning is that if the precondition Lg41,..., Ly, is true in the
current state, then the rule L < Lq,..., L is added to its successor state, and

persists by inertia, until possibly retracted or overridden by some future update
command.

In order to represent rules and facts that do not persist by inertia, i.e. that
are one-state events, LUPS includes the modified form of assertion:

assert event (L < Lq,...,L;) when (Lgt1,...,Lm) (3)



The retraction of rules is performed with the update command:
retract [event] (L < Ly, ..., L) when (Lgy1,..-,Lm) 4)

Its meaning is that, subject to precondition Lgy1, - . ., Ly, (verified at the current
state) rule L < Ly, ..., Ly is either retracted from its successor state onwards,
or just temporarily retracted in the successor state (if governed by event).

Normally assertions represent newly incoming information. Although its ef-
fects remain by inertia (until countervened or retracted), the assert command
itself does not persist. However, some update commands may desirably persist
in the successive consecutive updates. This is especially the case of laws which,
subject to some preconditions, are always valid, or of rules describing the effects
of an action. In the former case, the update command must be added to all sets
of updates, to guarantee that the rule remains indeed valid. In the latter case,
the specification of the effects must be added to all sets of updates, to guarantee
that, when the action takes place, its effects are enforced.

To specify such persistent update commands, LUPS introduces the com-
mands:

always [event] (L < L1,..., L) when (Lgt1,...,Ly) (5)

cancel (L < L1,...,L) when (Lgy1,...,Lm) (6)

The first states that, from the current state onwards, in addition to any newly
arriving set of commands, whenever the preconditions are verified, the persistent
rule is added too. The second command cancels this persistent update.

Definition 4 (LUPS language[2]). An update program in LUPS is a finite
sequence of updates:
UL®...0U0,

each update U; being a non-empty set of (simultaneous) commands of the forms

(2)-(5).

Any knowledge state KB, (¢ < n) resulting from an update program U; ®
...® U, can be queried via:

holds(Ly,...,Ly,) at q?

The query is true iff the conjuntction of its literals holds at K B,.

The semantics of LUPS [2] is defined by translating update programs into
sequences of generalized logic programs. The meaning of such sequences of pro-
grams (called dynamic logic programs) is determined by the semantics defined in
[1]. Alternatively, [2] also defines the semantics of update programs as the stable
models of a generalized logic program (written in a meta-language) obtained
from the update program. Here we simply recap the first alternative.

A dynamic program [1] is a sequence Py @ ... P, (also denoted € P, where
P is a set of generalized logic programs indexed by 1,...,n and Py = {}).
The notion of “Dynamic program update at a given state s”, represented by
€, P, precisely characterizes a generalized logic program whose stable models



correspond to the meaning of the dynamic program when queried at state s. If
some literal or conjunction of literals ¢ holds in all stable models of @, P, we
write @, P FEsm ¢.

The translation into a dynamic program is made by induction, starting from
the empty program Py, and for each update U;, given the already built dymanic
program Py @ ...® FP;_1, determining the resulting program Py &... & P;_1 & F;.
To cope with persistent update commands we will further consider, associated
with every dynamic program in the inductive construction, a set containing all
currently active persistent commands, i.e. all those that were not cancelled until
that point in the construction, from the time they were introduced. To be able
to retract rules, we need to uniquely identify each such rule. This is achieved by
augmenting the language of the resulting dynamic program with a new proposi-
tional variable “rule(L < L1, ..., Ly,)” for every rule L < Ly, ..., L, appearing
in the original LUPS program?.

Definition 5 (Translation into dynamic programs). LetUd =U; ®...QU,
be an update program. The corresponding dynamic program V'(U) = P = Py @
...® P, is obtained by the following inductive construction, using at each step i
an auziliary set of persistent commands PC;:

Base step: Py = {} with PCy = {}.

Inductive step: Let P; = Py @ ... ® P; with set of persistent commands PC; be
the translation of U; = U1 ® ... Q@ U;. The translation of Uit1 = U1 ® ... Q Ujp1
18 Piy1 = Po @ ... ® P;y1 with set of persistent commands PCjy1, where PCiy1
18:

PC; U {assert [event] (R) when (C) : always [event] (R) when (C) € U1}
—{assert [event] (R) when (C) : cancel (R) when (D) € Uiy1 AP, Pi =sm D}
—{assert [event] (R) when (C) : retract (R) when (D) € Uiy1 AND,; Pi Fsm D}

NU;y1 =Uiy1 U PCiyq, and Piyq is:

{R, rule(R) : assert [event] (R) when (C) € NUiy1 AP; Pi Fsm C}
U {not rule(R) : retract [event] (R) when (C) € NUjp1 A B, Pi FEsm C}
U {notrule(R) : assert event (R) when (C) € NU; A@,; | Pi—1 Fsm C}
U {rule(R) : retract event (R) when (C) € NU; A@,_; Pi—1 =sm C,rule(R)}
where R denotes a generalized logic program rule, and C and D a conjunction

of literals. In the inductive step, if i = 0 the last two lines are ommitted. In that
case NU; does not exist.

Definition 6 (LUPS semantics). Let U be an update program. A query
holds(Ly,...,Ly) at q
is true in U iff @q Y(U) Esm L1y, L.

3 Note that, by definition, all such rules are ground and thus the new variable uniquely
identifies the rule, where rule/1 is a reserved predicate.



From the results on dynamic programs in [1], it is clear that LUPS generalizes
the language of updates of “revision programs” defined in [9].

3 Generalization to the 3-valued case

In order to implement LUPS and run our examples, as explained in the in-
troduction, we first generalize the semantics of update programs to a 3-valued
setting. Since the semantics may be defined in terms of a translation into a single
generalized logic program, whose semantics is the (2-valued) stable models one,
all that needs doing is to generalize the semantics of logic programs with de-
fault negation in the heads to a 3-valued setting. The resulting update program
semantics is established on the well-founded semantics [4] instead of on stable
models.

In fact, like in the alternative semantics definition for update programs, the
whole point is to provide a meaning to sequences of update commands by means
of successive program transformations (that reflect the changes due to com-
mands). The meaning is then obtained by applying the stable models semantics
to the successive resulting generalized logic programs. In order to assign a differ-
ent meaning, based on another object level semantics, all is required is to apply
another semantics to the obtained programs. However, it is essential that this
other semantics be a semantics for generalized programs (not the case of the well-
founded semantics as defined by [4], which applies to normal programs only). So,
below we generalize the well-founded semantics to the class of generalized logic
programs, via an alternating fixpoint operator, based on the Gelfond-Lifschitz
I'-operator.

A naive generalization of the well-founded semantics would simply be to
consider the fixpoints of the compound operator I'? for the transformed pro-
grams P, and then removing all fixpoints where, for some atom, both A and
A held. In fact, for normal programs, the least fixpoint of I"> (where I is the
Gelfond-Lifschitz operator) provides the well-founded semantics. However this
naive definition does not engender intuitive results:

Ezample 1. Consider the generalized program P:
a < notb b+ nota nota <

According to the naive semantics, the well-founded model would be {nota}. In
this case, since not a is true, one would expect b to be true as well.

In the definition of stable models for generalized programs, whenever an
atom A is true in some interpretation I (in the extended language £), and since
by definition A ¢ I, it is guaranteed that when applying the I'-operator all
occurences of not A are removed from rule bodies. In other words, whenever A is
true, A is assumed false by default in rule bodies. In the well-founded semantics,
one has to make sure that, whenever A belongs to a fixpoint of I'2, all literals
not A in the bodies must be ensured true. In other words, whenever A belongs



to a fixpoint I of I'>, A must not belong to I'(I). This is easily guaranteed by
using a semi-normal version of the program:

Definition 7 (Semi-normal program). The semi-normal version Ps of a
normal program P is obtained by adding to the body of each rule in P with head
A (resp A) the literal not A (resp. not A).

Definition 8 (Partial stable models of generalized programs). Let I a
set of atoms in the language L such that:

1. I = Ip(Ip(1)
2. 1C (1)

Then the 3-valued model M = T U not F is a partial stable model of the gener-
alized program P, where not {A1,...,Ap} stands for {not A1, ...,not A}, and:

— T is obtained from I by deleting all atoms of the form A;
— F is the set of all atoms A that do not belong to I'5-(I);

With this definition there is no need to explicitly discard interpretations com-

prising both A and A for some atom A. These are already filtered by condition
2. Indeed, if both A and A belong to I then, because in Ps all rules with head
A (resp. A) have not A (resp. not A) in the body, neither A nor A belong to
I'5-(I), and thus condition 2 fails to hold.
Definition 9 (Well-founded model of generalized programs). The well-
founded model of a generalized program P is the set inclusion least partial stable
model of P. The well-founded model can be obtained by iterating the (compound)
operator I'sI'5; starting from empty, and constructing M from the so obtained
least fixpoint.

Ezample 2. The well-founded model of the program in example 1 is {b, nota}.
In fact: I, ({}) = {a,b,a}, Fp({a,b,a}) = {a}, I'p,({@}) = {b,a}, Tp({b,a}) =
{b,a@}. Accordingly, by definition, its well-founded model is {b,not a}. Note in the
3rd application of the operator above, how the semi-normality of the program is
instrumental to guarantee the truth of b.

4 Examples

In this section we muster a variety of examples of application of LUPS to the
representation of actions. In fact actions can be described by persistent updates
(laws) which relate the state where the actions happened with the successor state
where the consequences hold. In the examples we are assuming all persistent
commands not explicitily linked to a knowledge state to belong to U;. Moreover
whenever is referred a knowledge state U; which was not defined previously it is
assumed to be equal to assert (true).



4.1 Twice fined

A car-driver looses his licence after a second fine. He can regain the licence if he
goes for a refresh course at the drivers school.

In order to represent this problem it is necessary to introduce a new predicate,
"probation”, which holds after the first fine takes place. The fine action is
represented by two persistent update commands:

always (probation) when (fined)
always (not licence) when (fined, probation).

The first rule means probation becomes true after a fine and the second rule
means the driver looses his licence after a fine if he is on probation.

The attend_school action is represented by the two persistent update com-
mands:

always (licence) when (attend_school).

always (not probation) when (attend_school).

These rules mean that after attending school the driver has a licence and he is
not in a probation state.
Imagine the sequence of non-persistent update commands:

Ui : assert event (attend_school)

(

U : assert event (fine)

Us : assert event (fine)
(

U, : assert event (attend_school)

As intended, licence holds in state 2, 3,5 and not licence holds in state 4 (after
two fines).

4.2 Timers

In this example we represent timers using LUPS. Timers are started by the
action on_for(N) which means the timer will be on for the next N states. This
notion can be captured by the three persistent rules:

always event (on_for(M)) when (on_for(N), N > 0,minus(N, 1, M))

This rule states the timer is on for M states if it was on for N = M + 1 states
in the previous state. minus(4, B, C) is a auxiliary predicate meaning that C' is
equal to A minus B.

Timers are on if they are on_for(N), where N > 0:

always (on + on_for(N), N > 0)



and switched off when N =0
always (not on <+ on_for(0))
Consider the sequence of updates:
Ui : assert event (on_for(2))

As intended, on holds in state 1,2 and not on holds in state 3.

4.3 Suitcase

There is a suitcase, with two latches, which opens whenever both latches are up,
and there is an action of toggling applicable to each latch [8]. This situation is
represented by the three persistent commands:

always (open + up(l1),up(12))
always (up(L)) when (not up(L),toggle(L))
always (not up(L)) when (up(L),toggle(L))

In the initial situation /1 is down, [2 is up, and the suitcase is closed:
U, = {assert (not up(l1)),assert (up(12)), assert (not open)}
Suppose there are now two simultaneous toggling actions:
U, = {assert event (toggle(l1)),assert event (toggle(12))}
and afterwards there is still another /2 toggling action:
U; = {assert event (toggle(12))}

In the knowledge state 3 we’ll have up(l1), not up(l2) and the suitcase is not
open. Only after 3 will latch /2 be up and the suitcase open.

4.4 Lift

A simple lift allowing simultaneous requests will be modeled.
The basic action is the push button one which starts a request:

always (request(X)) when (push(X))
The request holds until it is satisfied by a non-inertial go action:

always event (go(F)) when (request(F),preferred(F))
always (not request(F) <+ go(F))



The first rule means that a non-inertial go action to a specific floor is performed
when there is a request for that floor and the floor is the preferred one to go
next. Moreover, the go action cancels the request.

The preferred predicate singles out the preferred floor from requested ones:

always (preferred(F) « request(F),not better request(F)).
always (better _request(F) < request(F'1),better(F1, F)).

These rules mean that a floor is the preferred one if there aren’t better requested
floors. We are assuming the existence of a partial order between the floors.
The go(X) action causes the lift to be at the intended floor at the next state:

always (at(F)) when (go(F))
aalways (not at(X)) when (go(F),dif f(X, F))

We conjure the following situation (assuming floor 1 is better than floor 2
which is better than floor 3):

Ui : assert (at(1)).
assert event (push(2))
assert event (push(3))
Us : assert event (push(1))

At knowledge state 2 there are two pending requests: request(2) and request(3).
Request 2 is the preferred one and is served at the state 3: go(2). At state 3 there
are also two requests: request(3) and request(1). As request(1) is the preferred
one, it is first served: go(1). Finally, request(3) is acted on: go(3).

4.5 Dialogue

LUPS can be used to model dialogue interchange between agents. First, it is
necessary to describe the different speech acts and some behaviour rules, namely
how the information is transferred between the agents [10].

In this example we exhibit a simple dialogue where an agent informs an-
other about a property P contradictory with his previous beliefs. We assume
cooperative agents.

This rule represents the in form speech act:

always (bel(H,bel(S, P))) when (inform(S, H, P))

It means that, after an inform speech act, the hearer starts to believe the speaker
believes in the so informed proposition.
Next we describe how information is transferred between agents:

always (bel(A, P)) when (bel(A, bel(B, P)))

always (not bel(A, Q) + incompatible(P,Q)) when (bel(A,Q),bel(A,bel(B, P)))



These rules mean that a cooperative agent always accepts the transmitted in-
formation and cancels his previous beliefs if they are incompatible with the new
ones. For instance, it is incompatible for an agent to be at two different places
simultaneously:

always (incompatible(at(P1, A),at(P2, A)) < P1 # P2)
Suppose in state 1 agent a believes agent b is at the hospital:
Ui : assert (bel(a, at(hospital,b)))
But agent ¢ informs a that b is at home:
U, : assert event (inform(c, a, at(home,b)))

In state 3 bel(a, at(home, b)) will hold as a consequence of the inform speech
act and the information transference rule. bel(a, at(hospital,b)) will not hold,
assuming incompatibility between at(home, X) and at(hospital, X).

As shown, with this approach it is possible to model the acquisition of infor-
mation from other agents in a dialogue situation.

4.6 Contradictory advice — 3-valued updating

This example models a situation where an agent receives advice from two sources:
father and mother. The agent’s expected behaviour is to perform an action unless
it is contradicted by other advice.

The following persistent update commands can be used to model the desired
behavior (we are assuming fathers usually give positive advice and mothers neg-
ative advice):

always (do(A) < father_advises(A),not dont(A))
always (dont(A) < mother_advises(noA),not do(A))

Suppose the father advises buying stocks and the mother advises not to do
s0:

Ui = {assert event (father_advises(buy)), assert event (mother_advises(no buy))}

In this situation do(buy) and do(no buy) become undefined and the agent
does not perform any action.

4.7 Conscientious objector — a rule update example

Consider the situation where someone is conscripted if he is draftable and healthy.
Moreover a person is draftable when he has a specific age. However, after some
time, the law changes and a person is not conscripted if he is a conscientious
objector.



U : always (draftable(X)) when (of -age(X))
assert (conscripted(X) < draftable(X), healthy(X))
Us : assert (healthy(a)).assert (conscientious_objector(a)).

assert (healthy(b)).assert (conscientious_objector(b)).

Uy : assert (not conscripted(X) < draftable(X), healthy(X))

(
(
(
assert (of _age(b)).
(
Us : assert (of _age(a)).

In state 3, b is conscripted but after the U, assertion his situation changes
and not conscripted takes hold. On the other hand, a is never conscripted.

Acknowledgements

This work was partially supported by PRAXIS XXI project MENTAL, by JNICT
project ACROPOLE, and a NATOQ scholarship while the L. M. Pereira was on
sabbatical leave at the Department of Computer Science, University of Califor-
nia, Riverside.

We thank Halina Przymusinska and Teodor Przymusinski for their ongoing
collaboration with us on this subject, and their comments on many of the ex-
amples presented here.

References

1. J. J. Alferes, J. A. Leite, L. M. Pereira, H. Przymusinska, and T. Przymusinski.
Dynamic logic programming. In A. Cohn and L. Schubert, editors, KR’98, pages
98-109. Morgan Kaufmann, 1998.

2. J. J. Alferes, L. M. Pereira, H. Przymusinska, and T. Przymusinski. LUPS -
a language for updating logic programs. Technical report, 1999. Submitted to
LPNMR’99.

3. C. V. Damidsio and L. M. Pereira. Default negated conclusions: why not ? In
R. Dyckhoff, H. Herre, and P. Schroeder-Heister, editors, Proc. of the 5th Interna-
tional Workshop on Extensions of Logic Programming (ELP’96), number 1050 in
LNAI, pages 103-117, 1996.

4. A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for
general logic programs. Journal of the ACM, 38(3):620-650, 1991.

5. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In R. Kowalski and K. A. Bowen, editors, ICLP’88, pages 1070-1080. MIT Press,
1988.

6. M. Gelfond and V. Lifschitz. Answer sets in general non-monotonic reasoning
(preliminary report). In B. Nebel, C. Rich, and W. Swartout, editors, KR’92,
pages 603-614. Morgan-Kaufmann, 1992.



7.

8.

10.

M. Gelfond and V. Lifschitz. Action languages. Linkoping Electronic Articles in
Computer and Information Science, 3(16), 1998.

F. Lin. Embracing causality in specifying the indirect effects of actions. In IJ-
CAI’95, pages 1985-1991. Morgan Kaufmann, 1995.

V. Marek and M. Truszczynski. Revision specifications by means of programs. In
C. MacNish, D. Pearce, and L. M. Pereira, editors, JELIA ’94. Springer, 1994.
Luis Moniz Pereira and Paulo Quaresma. Modelling agent interaction in logic pro-
gramming. In Osamu Yoshie, editor, INAP’98 - The 11th International Conference
on Applications of Prolog, pages 150-156, Tokyo, Japan, September 1998. Science
University of Tokyo.



