
A methodology to create legal ontologies in a

logic programming information retrieval system

José Saias and Paulo Quaresma

Departamento de Informática,
Universidade de Évora,
7000 Évora, Portugal

jsaias|pq@di.uevora.pt

Abstract. Legal web information retrieval systems need the capability
to reason with the knowledge modeled by legal ontologies. Using this
knowledge it is possible to represent and to make inferences about the
semantic content of legal documents.
In this paper a methodology for applying NLP techniques to automati-
cally create a legal ontology is proposed. The ontology is defined in the
OWL semantic web language and it is used in a logic programming frame-
work, EVOLP+ISCO, to allow users to query the semantic content of
the documents. ISCO allows an easy and efficient integration of declara-
tive, object-oriented and constraint-based programming techniques with
the capability to create connections with external databases. EVOLP is
a dynamic logic programming framework allowing the definition of rules
for actions and events.
An application of the proposed methodology to the legal information
retrieval system of the Portuguese Attorney General’s Office is described.

1 Introduction

Modern legal information retrieval systems need the capability to represent and
to reason with the knowledge modeled by legal ontologies. In fact, the creation of
ontologies allow the definition of class hierarchies, object properties, and relation
rules, such as, transitivity or functionality. Using this knowledge it is possible
to represent semantic objects, to associate them with legal documents, and to
make inferences about them.

OWL (Ontology Web Language) is a language proposed by the W3C consor-
tium (http://www.w3.org) to be used in the ”semantic-web” environment for the
representation of ontologies. This language is based on the previous DAML+OIL
(Darpa Agent Markup Language - [1]) language and it is defined using RDF (Re-
source Description Framework - [2]).

In this paper a methodology to automatically create an OWL ontology from
a set of legal documents is proposed. The methodology is based on the following
steps:

– Definition of an initial top-level ontology;

– Identification of concepts referred in the legal documents and extraction of
its properties;

– Identification of relations between the identified concepts;
– Creation of an ontology using the identified concepts and relations;
– Merge of the created ontology with the initial ontology;

In the first step, an already existent top-level legal ontology was chosen. At
present we are using the legal ontology from the Portuguese Attorney General’s
Office, consisting of around 6,000 classes and having around 10,000 relations [3].
However, other top-level ontologies could be used, such as, the DOLCE proposal
[4] or the FOLaw and LRI-core proposal [5] used in the context of the IST
programs E-POWER and E-COURT [6]. In the future, we expect to use the
results of the e-Content project LOIS – Lexical Ontologies for legal Information
Sharing, which aims to create an european-wide top-level legal ontology.

In the second step, identification of concepts and its properties, several natu-
ral language processing techniques are used, namely, a syntactical parser, and a
semantic analyzer able to obtain a partial interpretation of the documents. As it
will be described in detail, the semantic representation allows the identification
of the set of concepts that are referred in the documents and the extraction of
some of their properties.

In the third step, identification of relations between concepts, an unsuper-
vised method for acquiring word classes and relations is used [7, 8]. This method,
which has some similarities with the work of [9], allows the identification of re-
lated and more specific concepts (subclasses). Starting from parsed documents,
a subcategorisation analysis is performed and, for each word, subcategorisation
patterns are extracted. Finally, a statistical analysis is performed identifying
clusters of words with similar subcategorisation patterns.

In the fourth step, the results of the previous two steps are integrated in an
ontology: concepts with their properties are new classes; class hierarchies and
relations are created accordingly with the statistical analysis of subcategorization
patterns (several examples will be shown in the following sections).

Finally, in the fifth step, the initial top-level ontology is merged with the new
one. The proposed strategy is to search for common concepts in the two ontolo-
gies and to merge the ontologies via these concepts. New classes are inserted into
the top-level ontology using the information from the semantic analyser (animal,
human, action, . . .).

At this stage it is important to point out that the proposed methodology
is based on a bottom-up approach for the definition of the legal low-level con-
cepts: it allows the identification of the concepts and some of the relations, but
additional work will be necessary to fully integrate these concepts with the up-
per legal ontology. We do not intend to propose any kind of standard for legal
ontologies; our aim is to define a methodology to automatically create a base
ontology from a specific set of legal documents.

As referred, this work has some relations with the proposal of Lame aiming
to identify components of legal ontologies from the analysis of legal texts [9].
However, we believe our proposal has a more ambitious goal: the identified com-

ponents are used to create an ontology and the initial documents are enriched
with instances of this ontology. This process allows the definition of semantic
web agents able to query the semantic content of these documents.

As stated before, after the creation of legal ontologies expressed in OWL,
documents are enriched with instances of legal classes.

Then, a logic programming based framework is used to support inferences
over the ontology. The logic programming framework is based on ISCO [10] and
EVOLP [11].ISCO is a new declarative language implemented over GNU Prolog
with object-oriented predicates, constraints and allowing simple connections with
external databases. EVOLP is a dynamic logic programming language that is
able to describe actions and events, allowing the system to make inferences about
events, user intentions and beliefs and to be able to have cooperative interactions.

This logic programming framework seems to be quite adequated to repre-
sent and to make inferences over OWL ontologies. In fact, recent advances in
the semantic web technology support this claim: some partners in the RuleML
workgroup (http://www.ruleml.org) are adopting logic programming as its in-
ference engine and there already exists a translator from RDFS to Prolog [12].
Moreover, in the scope of this work, a translator of a subset of OWL to Prolog
was also built (correct accordingly with the OWL formal semantic description).

However, other inference engines could be chosen and used to answer queries
about the legal knowledge conveyed by the documents. One possible option might
be to use the results of the Mandarax project (http://mandarax.sourceforge.net),
which already supports RuleML.

Section 2 describes the proposed architecture. Section 3 describes the method-
ology for the creation of the ontology, namely, the natural language processing
techniques used to process the documents. Section 4 describes the NLP tech-
niques used to create the OWL instances associated with each document. Section
5 describes ISCO, the basic logic programming framework. Section 6 describes
EVOLP, the dynamic logic programming framework defined over ISCO and Pro-
log. Section 7 describes the interaction manager and section 8 provides a simple
example. Finally, in section 9 some conclusions and future work are pointed out.

2 Architecture

The system’s architecture is based on several independent and modular pro-
cesses. Figure 1 shows graphically these processes and their relations.

The architecture may be divided in three major modules:

– Inference of an adequate OWL ontology of classes;
– Inference of OWL instances and document enrichment;
– Inference engine.

The first module, inference of an adequate OWL ontology of classes, receives
as input a top-level ontology and a set of legal documents. After a syntactical
and semantical analysis, it obtains a partial semantic representation (a DRS –
Discourse Representation structure [13]) for each sentence. From the DRS of

Fig. 1. System’s architecture

each sentence, noun expressions and verbs are extracted, and they are used to
define legal classes. These classes will be clustered, classified, and merged with
the initial top-level ontology (section 3 describes this step in detail).

The second module, inference of OWL instances, receives as input the DRS
of each sentence and the inferred OWL ontology from the first module. With this
information, and using an abductive inference mechanism, OWL instances are
inferred. This step is usually called pragmatic interpretation of natural language
sentences (section 4 describes these processes in more detail).

Finally, OWL classes and OWL instances are used by an inference engine,
based in a logic programming framework, in order to answer queries about the
semantic content of documents (sections 5, 6 and 7 describe the logic program-
ming framework).

3 OWL ontology creation

In order to be able to deal with documents from different domains, a method-
ology to automatically create basic ontologies of concepts is proposed. This
methodology allows the definition of a base ontology with the relevant con-
cepts with some inferred relations. After having defined this ontology, it may be
necessary to develop manual work by human experts in order to fully organize
the set of extracted concepts.

The methodology is based on the following steps:

– Definition of an initial top-level ontology;

– Identification of concepts referred in the legal documents and extraction of
its properties;

– Identification of relations between the identified concepts;

– Creation of an ontology using the identified concepts and relations;

– Merge of the created ontology with the initial ontology;

3.1 Top-level ontology

As referred in section 1, an already existent top-level legal ontology was chosen:
the legal ontology from the Portuguese Attorney General’s Office, consisting of
around 6,000 classes and having around 10,000 relations [3]. As and example of
some concepts in this ontology we have:

– Tribunal Court ; properties: name, address, . . .
– Tribunal Militar Military Court – subclass of Tribunal
– Supremo Tribunal Supreme Court – subclass of Tribunal

This legal ontology was merged with a general top-level ontology of concepts
defined by Eckhard Bick in the VISL project 1 [14], which has around 150 top
concepts: animal, human, place, vehicle, concrete object, abstract object, food,
. . . .

3.2 Identification of concepts and properties

The methodology to automatically identify the concepts and the properties re-
ferred in the documents is based on the output of natural language processing
tools:

– Text syntactical parsing. The documents are analyzed by the syntactical
parser PALAVRAS developed by E. Bick. This parser is available for 21
different languages,including Portuguese.

– Partial semantic analysis.
– Entities extraction. From the semantic analysis output, entities and proper-

ties are extracted and represented by ontology classes.

Syntactical analysis The parser developed by E. Bick is based on the Con-
straint Grammars [15] formalism and covers a major portion of the Portuguese
sentences. However, its output is in a non-standard format and it was necessary
to transform it into a structured form, like XML and Prolog terms. A translation
tool from the VISL output into XML and Prolog terms was developed and it is
available to the VISL users (a detailed description of this tool was presented in
[16]).

As an example, suppose the following sentence:

O bombeiro Manuel salvou a criança. The fireman Manuel saved the child.

This sentence has the VISL output:

STA:fcl

SUBJ:np

=>N:art(’o’ M S) O

=H:n(’bombeiro’ M S) bombeiro

==N<:prop(’Manuel’ M S) Manuel

1 http://visl.hum.sdu.dk/visl

P:v-fin(’salvar’ PS 3S IND) salvou

ACC:np

=>N:art(’a’ F S) a

=H:n(’criança’ F S) criança

As it can be seen, the subject, predicate and direct object were correctly
parsed.

Semantic analysis Each syntactical structure is translated into a First-Order
Logic expression. The technique used for this analysis is based on DRS’s (Dis-
course Representation Structures [13]). The partial semantic representation of a
sentence is a DRS built with two lists, one with the rewritten sentence and the
other with the sentence discourse referents.

At present, we are only dealing with a restricted semantic analysis and we are
not able to handle every aspect of the semantics: our focus is on the representa-
tion on concepts (nouns and verbs) and the correct extraction of its properties
(modifiers, agents, objects).

From the XML structure, using XSL transformations, it is possible to obtain
the semantic representation of each sentence.

The semantic representation of the example presented in the previous sub-
section is:

sentence(doc1, [fireman(A), name(A,’Manuel’), child(B), save(A,B)], [ref(A), ref(B)]).

This structure represents an instance of a fireman A, named ’Manuel’, and an
instance of a child B which are related by the action to save.

A general tool able to obtain similar semantic partial representations for every
sentence was developed and it was applied to the full set of legal documents of
the Portuguese Attorney General’s Office (7000 documents).

Entities extraction From the sentence semantic representation, entities are
extracted and they are the basis for the creation of an ontology of concepts.
In fact, for each new concept, a new class, subclass of a top-class ’Entity’, is
created.

On the other hand, from the output of the semantic analyser it is possible
to identify some potential class properties:

– Modifiers, such as adjectives, are candidates to be properties of nouns;
– Direct objects of transitive verbs are candidates to be properties of the as-

sociated verbs;

For instance, for the expression the black cat it is possible to identify color as
a property of cat, because it is known that black is an instance of a color (from
the correspondent semantic tag in the dictionary).

In the referred example it would be possible to extract the following entities:

– bombeiro fireman, with a property: ’name’

– salvar to save

– criança child

3.3 Identification of relations between classes

As it was shown in the previous sub-section, the identification of concepts does
not allow the creation of relations, hierarchical or others, between them.

Our approach is to use an an unsupervised method for acquiring word classes
and relations [7, 8]. The goal is to learn, for each word, what kind of modifiers and
what kind of heads it subcategorises. For instance, the word republic may appear
as an head of a noun phrase, such as republic of Ireland, republic of Portugal,
or as a modifier, like president of the republic, government of the republic. The
obtained subcategorisation patterns are clustered into classes and relations are
extracted.

Using this approach it is possible to identify hierarchical relations, such as
the existent between republic and republic of Portugal and also to identify other
semantic relations, such as the ones between lei – law and norma – norm. The
strategy is to use statistical analysis to identify clusters of words with similar
subcategorisation patterns (words which have similar modifiers and heads).

As methodology, we start from the parsed documents and, for each word,
subcategorisation patterns are extracted and clusters and relations are identified.
A detailed description of the methodology is described in [8].

Note that this approach has some limitations and it is not able to identify
correctly what kind of relations exist between two concepts. For instance, two
related concepts may be synonyms or the opposite. A more deep knowledge-
aware approach is needed to handle these kind of problems.

The inferred relations are used to create an hierarchy of classes in the ontology
and to link them via a related relation.

3.4 Creation of the ontology

In the fourth step of the methodology, the results of the previous two sub-sections
are integrated into a new ontology:

– Concepts with their properties are new classes;
– Class hierarchies and relations are created accordingly with the results of

the previous sub-section;

For instance, using this approach to the previous example, republic of Por-

tugal will be a sub-class of republic.

3.5 Merge of the ontologies

Finally, in the fifth step, the initial top-level ontology is merged with the new
one.

In this process new classes are inserted into the top-level ontology using their
names and information from the semantic analyser:

– If a class exists with an equal name in the top-level ontology, then the two
classes are merged;

– Otherwise, a search is made in the top-level ontology for a class with seman-
tically compatible information and the new class is created as a sub-class of
the existent one.

For instance, if a new class named fireman is classified to be a human concept by
the NLP analysers, then the new class will be a sub-class of the human top-level
concept.

The overall strategy is to search for common concepts in the two ontologies
and to merge the ontologies via these concepts.

4 OWL instances creation

After having defined an ontology of classes, it is necessary to extract and to
represent instances of those classes and to associate them with documents.

The proposed methodology tries to infer instances of those ontologies using
the following three steps:

– Translation of the OWL ontologies into a logic programming form;

– Definition of logic programming rules allowing the inference of instances;

– Generation of OWL instances.

OWL translation The first step, translation of OWL ontologies into Prolog,
was implemented in Java and it creates a Prolog term for each OWL class, sub-
class, or property. The translation of this subset on OWL is correct accordingly
with the OWL formal semantic description [17].

For instance, suppose there exists a definition in OWL for a class citizen and
for a sub-class military. After the translation, we’ll have:

class(citizen, ’external.owl#citizen’).

class(military, ’external.owl#military’).

subclass(’external.owl#military’, ’external.owl#citizen’).

Moreover, suppose class military has a property of having a rank, which can
have one of several possible values: general, colonel, . . .

In this situation, we’ll have the following Prolog terms:

property(rank, ’external.owl#rank’,

’external.owl#military’).

hasPossibleValue(’external.owl#rank’, general).

hasPossibleValue(’external.owl#rank’, colonel).

Prolog rules In the second step of this methodology, logic programming rules
are defined allowing the inference of instances from the DRS representation of
each sentence and the Prolog representation of the ontology.

One of these rules allows the inference of class and properties from values:

infer(Value, Class, Property) :-

hasPossibleValue(PropertyURI, Value),

property(Property, PropertyURI, ClassURI),

class(Class, ClassURI).

In this LP rule, Value is the name of an entity (input) and Class and Property

are identifiers of classes and properties that may have this value (output).
For instance, the sentence

The colonel saved the child.

has the following DRS form:

sentence(d1, [colonel(X), child(Y), save(X,Y)],

[ref(X),ref(Y)]).

From this DRS form and, using the Prolog rules, it is possible to infer the
following new form (because colonel is a possible value for the rank property of
the military class):

sentence(d1, [military(X), rank(X,colonel), child(Y),

save(X,Y)], [ref(X),ref(Y)]).

This process is usually called, in the natural language processing field, prag-
matic interpretation of sentences and it can be seen as an abductive process
where properties (antecedents) are inferred from values (consequents) [18].

Similar approaches can be applied to capture different natural language sen-
tences characteristics.

OWL generation In the third step, the results of the pragmatic interpreta-
tion of each sentence are transformed into correspondent OWL instances. For
instance, for the last example of the previous sub-section, the following OWL
instances would be created:

<pgr:Military rdf:ID="m11">

<pgr:rank rdf:resource="external.owl#Colonel"/>

<pgr:belong rdf:resource="external.owl#Army"/>

</pgr:Military>

<pgr:Child rdf:ID="c2">

</pgr:Child>

<pgr:ToSave rdf:ID="s5">

<pgr:subject rdf:resource="#m11"/>

<pgr:object rdf:resource="#c2"/>

</pgr:ToSave>

These instances define and relate a military (colonel and from the army), a child,
through the instance of the action to save.

As a final result of this step, every document is enriched with the OWL
instances obtained from the pragmatic interpretation of its sentences.

5 ISCO

In this section, the logic programming framework that is going to be used as the
inference engine for answering queries about the semantic content of documents
(OWL instances) is briefly described.

ISCO [10] is a logic based development language implemented in GNU Prolog
that gives the developer several distinct possibilities:

– It supports Object-Oriented features: classes, hierarchies, inheritance.
– It supports Constraint Logic Programming. Specifically, it supports finite

domain constraints in ISCO queries.
– it gives a simple access to external relational databases through ODBC. It

has a back-end for PostgreSQL and Oracle.
– It allows the access to external relational databases as a part of a declar-

ative/deductive object-oriented (with inheritance) database. Among other
things, the system maps relational tables to classes – which may be used as
Prolog predicates.

– It gives a simple database structure description language that can help in
database schema analysis. Tools are available to create an ISCO database
description from an existing relational database schema and also the opposite
action.

Taking these ISCO features into account, a translator from OWL into ISCO
class definitions was developed. This translator was applied to every OWL class
described in the previous section and, as a consequence, correspondent SQL
tables and ISCO classes definitions were obtained. Moreover, each OWL class
instance was transformed into an SQL table row and an ISCO logic program-
ming fact. As an example, the toSave presented previously is translated into the
following fact:

toSave(ID=s5, subject=’#m11’, object=’#c2’).

For each defined class a set of Prolog predicates implementing the four basic
operations are created: query, insert, update and delete.

Variables occurring in queries are mapped to SQL and may carry CLP(FD)
constraints, which will be expressed in SQL, whenever possible. For example,
suppose variable X is an FD variable whose domain is (1..1000), the query

document(number = X, title = Y) (1)

will return all pairs (X, Y) where X is a document number and Y is the docu-
ment’s title. X is subject to the constraints that were valid upon execution of the
query, ie. in the range 1 to 1000.

ISCO class declarations feature inheritance, simple domain integrity con-
straints and global integrity constraints.

6 EVOLP

As it was described in the previous section, ISCO allows a declarative repre-
sentation of ontologies and object instances. However, there is also a need to
represent actions and to model the evolution of the knowledge.

In [19] it was introduced a declarative, high-level language for knowledge up-
dates called LUPS (Language of UPdateS) that describes transitions between
consecutive knowledge states. Recently, a new language, EVOLP [11], was pro-
posed having a simpler and more general formulation of logic program updates.
In this section a brief description of the EVOLP language will be given. A de-
tailed description of the language and of its formalization is presented at the
cited article.

EVOLP allows the specification of a program’s evolution, through the exis-
tence of rules which indicate assertions to the program. EVOLP programs are
sets of generalized logic program rules defined over an extended propositional
language Lassert, defined over any propositional language L in the following way
[11]:

– All propositional atoms in L are propositional atoms in Lassert

– If each of L0, . . . , Ln is a literal in Lassert, then L0 ← L1, . . . , Ln is a gener-
alized logic program rule over Lassert.

– If R is a rule over Lassert then assert(R) is a propositional atom of Lassert.

– Nothing else is a propositional atom in Lassert.

The formal definition of the semantics of EVOLP is presented at the referred
article, but the general idea is the following: whenever the atom assert(R) be-
longs to an interpretation, i.e. belongs to a model according to the stable model
semantics of the current program, then R must belong to the program in the
next state. For instance, the following rule form:

assert(b← a)← c (2)

means that if c is true in a state, then the next state must have rule b← a.

EVOLP has also the notion of external events, i.e. assertions that do not per-
sist by inertia. This notion is fundamental to model interaction between agents
and to represent actions. For instance, it is important to be able to represent
actions and its effects and pre-conditions:

assert(Effect)← Action, PreConditions (3)

If, in a specific state, there is the event Action and if PreConditions hold, then
the next state will have Effect.

7 Interaction Management

The interaction manager is built on the ISCO+EVOLP logic programming
framework.

As final goal, we aim to handle the following kind of questions:

– Situations where action A is performed
– Situations where action A is performed having subject S
– Situations where S is the subject of an action

Note that the inference engine needs to be able to deal with the ontology rela-
tions. For instance, the question ”situations where action A is performed having
subject S” means ”situations where action A (or any of its sub-classes) is per-
formed having subject S (or any of its sub-classes)”.

The interaction manager is composed by the following main tasks:

– Query management
– Interaction management

7.1 Query management

The analysis of a natural language query is split in three subprocesses: Syntax,
Semantics, and Pragmatics.

Syntax As syntactic analyser we are using the analyzer developed by E. Bick
and referred previously [14]. The VISL output is translated into Prolog facts by
the same translator referred in section 3. This translation can be handled by the
same translator because there is a direct relation between the XML structure
and the Prolog term structure.

As an example, the following query:

Quem salvou crianças?

‘‘Who saved children?’’

Has the following syntactical structure:

sentence(syn(que(fcl,

subj(pron_indp(’quem’,’M/F’,’S’,’<interr>’),’Quem’),

p(v_fin(’salvar’,’PS’,’3S’,’IND’),’salvou’),

acc(n(’criança’,’F’,’P’,’<H>’),’crianças’, ’?’)))).

Semantics As referred in section 3, each syntactical structure is translated into
a First-Order Logic expression (DRS). The semantic representation of a sentence
is a DRS built with two lists, one with the rewritten sentence and the other with
the sentence discourse referents. For instance, the semantic representation of the
sentence above is the following expression:

child(B), toSave(A,B),

and the following discourse referents list:

A : [ref(A),ref(B)]

These structures represent instances of children B related with instances of
the toSave action.

Note that, at present, we are not able to deal with general unrestricted queries
and to translate them from a syntactical into a semantic structure. In fact this
a quite complex NLP problem and we have decided to deal only with specific
subsets of the Portuguese language, namely, with interrogatives about specific
domains.

Pragmatic Interpretation The pragmatic module receives the semantic query
representation and tries to interpret it in the context of the database information,
which was constructed from the translation of the OWL instances into ISCO
facts (as described previously in section 5).

In order to achieve this behavior the system tries to find the best explanations
for the sentence logic form to be true in the knowledge base. As already referred,
this strategy for interpretation is known as “interpretation as abduction” [18].

From the description of the OWL (and ISCO) classes it is possible to obtain
the correspondent ISCO query:

child(id=B),

toSave(id=C, subject=A, object=B),

The interpretation of the ISCO predicates is done by accessing the knowledge
base in order to collect (and constraint) all entities identifiers:

- $A=_\#(104..109:156..157)$ -- A constrained to all

entities with the desired properties

The above expression contains the possible interpretations of the query in
the context of the knowledge base.

7.2 Interaction Management

The interaction manager has to represent the actions associated with the queries
(informs or request), and to model the user attitudes (intentions and beliefs).

This task is also achieved through the use of the EVOLP language (see [20]
for a more detailed description of these rules). For instance, the rules which
describe the effect of an inform, and a request speech act are:

assert(bel(A, bel(B,P)))← inform(B, A,P). (4)

assert(bel(A, int(B, Action)))← request(B,A, Action). (5)

These rules mean that if an agent A is informed of a property P , then it will
start to believe that the other agent believes in P ; additionally, if B requests A

to perform an action Action, then A starts to believe that B intends Action to
be performed.

In order to represent collaborative behavior it is also necessary to model the
transference of information between the agents:

assert(bel(A,P))← bel(A, bel(B, P)). (6)

assert(int(A,Action))← bel(A, int(B, Action)). (7)

These two rules means that if an agent A believes another agent believes
in P , then it will start to believe in P (it is a cooperative, credulous agent);
moreover, it will also adopt the intentions of the other agents.

There is also the need for a rule linking the system intentions and the accesses
to the databases:

assert(inf(A,B, P))← int(A, inf(A, B, P)), isco(P). (8)

assert(not int(A, B, inf(A, B, P)))← inf(A, B, P). (9)

The first rule defines that, if the system intends to inform the user about some
property, then it will access the ISCO database and it will perform an inform
action. The second rule means that the inform action will end the intention to
perform the inform action!

8 Example

Considering the already presented query:

Quem salvou crianças? ‘‘Who saved children?’’

The interaction manager receives the query pragmatic interpretation:

Q = [child(id=B), toSave(id=C, subject=A, object=B)].

After having the sentence rewritten into its semantic representation form,
the speech act is recognized:

request(user, system, inform(user, system, Q))

Using the request and the transference of intentions rules the following prop-
erty is supported:

int(system,inform(system, user, Q))

Now, using the rules presented in the previous section, the system accesses
the ISCO databases and it is able to obtain the final constraints to the discourse
referent variables:

- $A=_\#(104..109:156..157)$

Using the inferred constraints it is possible to obtain the set of solutions to the
user query and to answer:

m11: Military - rank: colonel; belong: army.

9 Conclusions and Future Work

A methodology to automatically create legal ontologies was proposed.
The methodology uses syntactical, semantical and pragmatical analysers to

obtain sentence representations and to identify entities and entity relations. The
obtained ontologies are merged with other externally defined top-level ontologies.

The obtained new ontology is used, with the semantic representation of sen-
tences, to infer class instances and to enrich documents with this semantic in-
formation. The inference of the instances associated with each sentence is done
via an abductive process – interpretation as abduction.

Ontologies and the inferred instances are represented in the OWL language.
On the other hand, translators from OWL into ISCO/Prolog were developed

and a logic programming based interaction manager was developed. The interac-
tion manager uses many important features from its base LP framework: objects,
constraints, inheritance.

As future work we need to improve several areas:

– Ontology creation. The ontology was created automatically but it was not
possible to identify many relations between the classes. In order to be able to
define these relations we intend to extend the statistical analysis of word sub-
categorisation to take into account semantic information from the dictionary
and existent Wordnets.

– OWL translation into ISCO/Prolog. A full translation of the OWL language
needs to be implemented and its correction has to be proved.

– Evaluation. The system needs to be fully evaluated and to be tested by users.
Moreover it should be applied to other legal documents, such as, legislation.

References

1. W3C: DAML+OIL – DARPA Agent Markup Language. www.daml.org. (2000)
2. Lassila, O., Swick, R.: Resource Description Framework (RDF) - Model and Syntax

Specification. W3C. (1999)
3. Quaresma, P., Rodrigues, I.P.: PGR: Portuguese attorney general’s office de-

cisions on the web. In Bartenstein, Geske, Hannebauer, Yoshie, eds.: Web-
Knowledge Management and Decision Support. Lecture Notes in Artificial Intelli-
gence LNCS/LNAI, Springer-Verlag (2002)

4. Guangemi, A., Guarino, N., Masolo, C., Oltramari, A., Schneider, L.: Sweetening
ontologies with dolce. In Gomez-Perez, A., Benjamins, V.R., eds.: Proceedings of
the EKAW’2002, Springer-Verlag (2002) 166–181

5. Breuker, J., Winkels, R.: Use and reuse of legal ontologies in knowledge engineering
and information management. Journal of Artificial Intelligence and Law (2003) In
this issue.

6. Boer, A., Hoekstra, R., Winkels, R., van Engers, T., Willaert, F.: Proposal for a
dutch legal xml standard. In: EGOV2002 – Proceedings of the First International
Conference on Electronic Government. (2002)

7. Gamallo, P., Agustini, A., Quaresma, P., Lopes, G.: Using semantic word classes
in text information retrieval systems. In Pinto, S., ed.: SBIE’2002 – XII Simpósio
Brasileiro de Informática na Educação, Workshop de Ontologias, Porto Alegre,
Brasil, Unisinos (2002) 593–597 ISBN 85-7431-133-2.

8. Gamallo, P., Agustini, A., Lopes, G.: Using co-composition for acquiring syntactic
and semantic subcategorisation. In: ACL-SIGLEX’02, Philadelphy, USA (2002)

9. Lame, G.: Using text analysis techniques to identify legal ontologies’ components.
In: Workshop on Legal Ontologies of the International Conference on Artificial
Intelligence and Law. (2003)

10. Abreu, S.: Isco: A practical language for heterogeneous information system con-
struction. In: Proceedings of INAP’01, Tokyo, Japan, INAP (2001)

11. Alferes, J., Brogi, A., Leite, J., Pereira, L.: Evolving logic programs. In Flesca, S.,
Greco, S., Leone, N., Ianni, G., eds.: JELIA’02 – Proceedings of the 8th European
Conference on Logics and Artificial Intelligence, Springer-Verlag LNCS 2424 (2002)
50–61

12. Damásio, C.: W4 – well-founded semantics for the world wide web. In Boley, H.,
Grosof, G., Tabet, S., Wagner, G., eds.: Rule Markup Techniques for the Semantic
Web, Dagstuhl, Germany (2003)

13. Kamp, H., Reyle, U.: From Discourse to Logic. Kluwer, Dordrecht (1993)
14. Bick, E.: The Parsing System ”Palavras”. Automatic Grammatical Analysis of

Portuguese in a Constraint Grammar Framework. Aarhus University Press (2000)
15. Karlsson, F.: Constraint grammar as a framework for parsing running text. In

Karlgren, H., ed.: 13th International Conference on Computational Linguistics.
Volume 3., Helsinki, Finland (1990) 168–173

16. Gasperin, C., Vieira, R., Goulart, R., Quaresma, P.: Extracting xml syntactic
chunks from portuguese corpora. In: TALN’2003 - Workshop on Natural Lan-
guage Processing of Minority Languages and Small Languages of the Conference on
”Traitement Automatique des Langues Naturelles”, Batz-sur-Mer, France (2003)

17. Saias, J.: Uma metodologia para a construção automática de ontologias e a sua
aplicação em sistemas de recuperação de informação – a methodology for the au-
tomatic creation of ontologies and its application in information retrieval systems.
Master’s thesis, University of Évora, Portugal (2003) In Portuguese.

18. Hobbs, J., Stickel, M., Appelt, D., Martin, P.: Interpretation as abduction. Techni-
cal Report SRI Technical Note 499, 333 Ravenswood Ave., Menlo Park, CA 94025
(1990)

19. Alferes, J.J., Pereira, L.M., Przymusinska, H., Przymusinski, T.C., Quaresma, P.:
Preliminary exploration on actions as updates. In Meo, M.C., Vilares-Ferro, M.,
eds.: Procs. of the 1999 Joint Conference on Declarative Programming (AGP’99),
L’Aquila, Italy (1999) 259–271

20. Quaresma, P., Lopes, J.G.: Unified logic programming approach to the abduc-
tion of plans and intentions in information-seeking dialogues. Journal of Logic
Programming 54 (1995)

