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Abstract. This paper has two main objectives. One is to show that
the dynamic knowledge representation paradigm introduced in [ALPT00]
and the associated language LUPS, defined in [APPP99], constitute nat-
ural, powerful and expressive tools for representing dynamically changing
knowledge. We do so by demonstrating the applicability of the dynamic
knowledge representation paradigm and the language LUPS to several
broad knowledge representation domains, for each of which we provide
an illustrative example.

Our second objective is to extend our approach to allow proper handling
of conflicting updates. So far, our research on knowledge updates was
restricted to a two-valued semantics, which, in the presence of conflict-
ing updates, leads to an ¢nconsistent update, even though the updated
knowledge base does not necessarily contain any truly contradictory in-
formation. By extending our approach to the three-valued semantics we
gain the added expressiveness allowing us to express undefined or non-
committal updates.

Keywords: Updates of Knowledge Bases, Dynamic Knowledge Repre-
sentation, Generalized Logic Programs, Theory of Actions.

1 Introduction

One of the fundamental issues in artificial intelligence is the problem of knowl-
edge representation. Intelligent machines must be provided with a precise defi-
nition of the knowledge that they possess, in a manner, which is independent of
procedural considerations, context-free, and easy to manipulate, exchange and
reason about.

* This work was partially supported by PRAXIS XXI project MENTAL, and a NATO
scholarship while L. M. Pereira was on leave at the Department of Computer Science,
University of California, Riverside. We thank Jodo Leite for helpful discussions.



Any comprehensive approach to knowledge representation has to take into
account the inherently dynamic nature of knowledge. As new information is ac-
quired, new pieces of knowledge need to be dynamically added to or removed
from the knowledge base. Such knowledge updates often not only significantly
modify but outright contradict the information stored in the original knowledge
base. We must therefore be able to dynamically update the contents of a knowl-
edge base KB and generate a new, updated knowledge base K B* that should
possess a precise meaning and be efficiently computable.

1.1 Dynamic Knowledge Representation

In [ALP*00] we proposed a comprehensive solution to the problem of knowledge
base updates. Given the original knowledge base K B, and a set of update rules
represented by the updating knowledge base K B', we defined a new updated
knowledge base KB* = KB®KB' that constitutes the update of the knowl-
edge base KB by the knowledge base KB'. In order to make the meaning of
the updated knowledge base KB @ K B’ declaratively clear and easily verifiable,
we provided a complete semantic characterization of the updated knowledge
base KB @& KB'. It is defined by means of a simple, linear-time transforma-
tion of knowledge bases KB and KB’ into a normal logic program written in
a meta-language. As a result, not only the update transformation can be ac-
complished very efficiently, but also query answering in K B®K B’ is reduced to
query answering about normal logic programs. The implementation is available
at: http://centria.di.fct.unl.pt/~jja/updates/.

Forthwith, we extended the notion of a single knowledge base update to
updates of sequences of knowledge bases, defining dynamic knowledge base up-
dates. The idea of dynamic updates is very simple and yet quite fundamental.
Suppose we are given a set of knowledge bases K B;. Each knowledge base K B,
constitutes a knowledge update that occurs at some state s. Different states s
may represent different time periods or different sets of priorities or perhaps
even different viewpoints. The individual knowledge bases K B; may therefore
contain mutually contradictory as well as overlapping information. The role of
the dynamic update K B* of all the knowledge bases {K B; : s € S}, denoted by
@ {KB; : s € S}, is to use the mutual relationships existing between different
knowledge bases (as specified by the ordering relation on s € S) to precisely
determine the declarative as well as the procedural semantics of the combined
knowledge base, composed of all the knowledge bases {KB; : s € S}.

Consequently, the notion of a dynamic program update allows us to represent
dynamically changing knowledge and thus introduces the important paradigm
of dynamic knowledge representation.

1.2 Language for Dynamic Representation of Knowledge

Knowledge evolves from one knowledge state to another as a result of knowledge
updates. Without loss of generality we can assume that the initial, default knowl-



edge state, K Sp, is empty!. Given the current knowledge state K S, its successor
knowledge state KS' = KS[K B] is generated as a result of the occurrence of
a non-empty set of simultaneous (parallel) updates, represented by the updating
knowledge base K B. Consecutive knowledge states K S,, can be therefore repre-
sented as K So[K B1][K Bs)...[K B,], where K Sy is the default state and K B;’s
represent consecutive updating knowledge bases. Using the previously introduced
notation, the n-th knowledge state KS,, is denoted by KB1 @ KBy @ ... ® K B,,.

Dynamic knowledge updates, as described above, did not provide any lan-
guage for specifying (or programming) changes of knowledge states. Accordingly,
in [APPP99] we introduced a fully declarative, high-level language for knowledge
updates called LUPS (“Language of UPdateS”) that describes transitions be-
tween consecutive knowledge states K.S,,. It consists of update commands, which
specify what updates should be applied to any given knowledge state K.S, in
order to obtain the next knowledge state K S, 1. In this way, update com-
mands allow us to implicitly determine the updating knowledge base KB, ;1.
The language LUPS can therefore be viewed as a language for dynamic knowl-
edge representation. Below we provide a brief description of LUPS that does
not include all of the available update commands and omits some details. The
reader is referred to [APPP99] for a detailed description.

The simplest update command consists of adding a rule to the current knowl-
edge state and has the form: assert (L < L1, ..., Ly). For example, when a law
stating that abortion is illegal is adopted, the knowledge state might be updated
via the command: assert (illegal < abortion).

In general, the addition of a rule to a knowledge state may depend upon
some preconditions being true in the current state. To allow for that, the assert
command in LUPS has a more general form:

assert (L < Ly,...,Ly) when (Lgy1,...,Lpy) (1)
The meaning of this assert command is that if the preconditions Lyy1,..., Ly
are true in the current knowledge state, then the rule L < L4, ..., L should hold

true in the successor knowledge state. Normally, the so added rules are inertial,
i.e., they remain in force from then on by inertia, until possibly defeated by some
future update or until retracted.

However, in some cases the persistence of rules by inertia should not be
assumed. Take, for instance, the simple fact alarm_ring. This is likely to be
a one-time event that should not persist by inertia after the successor state.
Accordingly, the assert command allows for the keyword event, indicating that
the added rule is non-inertial. Assert commands thus have the form (1) or?:

assert event (L < Lq,...,Ly) when (Lgy1,...,Lny) (2)

Update commands themselves (rather than the rules they assert) may either be
one-time, non-persistent update commands or they may remain in force until

1 And thus in K Sy all predicates are false by default.
2 In both cases, if the precondition is empty we just skip the whole when subclause.



cancelled. In order to specify such persistent update commands (which we call
update laws) we introduce the syntax:

always [event] (L < Ly,...,Ly) when (Lgy1,..., L) (3)

To cancel persistent update commands, we use:

cancel (L < Ly,...,L) when (Lgy1,...,Lpy) 4)

To deal with rule deletion, we employ the retraction update command:

retract (L < Ly,...,Lg) when (Lgg1,- .-, L) (5)

meaning that, subject to precondition Lyy1,..., Ly, therule L <— Ly,..., Ly is
retracted. Note that cancellation of a persistent update command is very different
from retraction of a rule. Cancelling a persistent update means that the given
update command will no longer continue to be applied, but it does not remove
any inertial effects of the rules possibly asserted by its previous application(s).

2 Application Domains

In this section we discuss and illustrate by examples the applicability of the
dynamic knowledge representation paradigm and the language LUPS to several
broad knowledge representation domains.

2.1 Reasoning about Actions

An exceptionally successful effort has been made lately in the area of reasoning
about actions. Beginning with the seminal paper by Gelfond and Lifschitz [GL93],
introducing a declarative language for talking about effects of actions (action
language A ),through the more recent paper of Giunchiglia and Lifschitz [GL98b]
setting forth an enhanced version of the language (the so called language C), a
number of very interesting results have been obtained by several researchers
significantly moving forward our understanding of actions, causality and effects
of actions (see the survey paper [GL98a] for more details on action languages).

The theory of actions is very closely related to knowledge updates. An action
taking place at a specific moment of time may cause an effect in the form of
a change of the status of some fluent. The effect can therefore be viewed as a
simple (atomic) knowledge update triggered by a given action. Similarly, a set
of parallel actions can be viewed as triggering (causing) parallel atomic updates.
The following suitcase example illustrates how LUPS can be used to handle
parallel updates.

Ezample 1 (Suitcase). There is a suitcase with two latches which opens whenever
both latches are up, and there is an action of toggling applicable to each latch
[Lin95]. This situation is represented by the three persistent rules:



always (open < up(l1),up(12))
always (up(L)) when (not up(L),toggle(L))
always (not up(L)) when (up(L),toggle(L))

In the initial situation /1 is down, [2 is up, and the suitcase is closed:

K S, = {assert (not up(l1)), assert (up(l2)), assert (not open)}

Suppose there are now two simultaneous toggling actions:
K S, = {assert event (toggle(11)), assert event (toggle(12))}

and afterwards another /2 toggling action: K.S3 = {assert event (toggle(I2))}.
In the knowledge state 2 we’ll have up(l1),not up(l2) and the suitcase is not
open. Only after K.S3 will latch /2 be up and the suitcase open.

However, there are also major differences between dynamic updates of knowl-
edge and theories of actions. While in our approach we want to be able to update
one knowledge base by an arbitrary set of rules that constitutes the updating
knowledge base, action languages deal only with updates of propositional knowl-
edge states. At the semantic level, however, the situation is not so simple. The
main motivation behind the introduction of the language C was to be able to
express the notion of causality. This is a very different motivation from the mo-
tivation that we used when defining the semantics of updated knowledge bases.

In spite of these differences, the strong similarities between the two ap-
proaches clearly justify a serious effort to investigate the exact nature of the
close relationship between the two research areas and between the respective
families of languages, their syntax and semantics.

2.2 Legal Reasoning

Robert Kowalski and his collaborators did a truly outstanding research work on
using logic programming as a language for legal reasoning (see e.g. [Kow92]).
However logic programming itself lacks any mechanism for expressing dynamic
changes in the law due to revisions of the law or due to new legislation. Dynamic
knowledge representation allows us to handle such changes in a very natural way
by augmenting the knowledge base only with the newly added or revised data,
and automatically obtaining the updated information as a result. We illustrate
this capability of LUPS on the following simple example. Another, slightly more
ellaborate example, was given in [APPP99).

Ezample 2 (Conscientious objector). Consider the situation where someone is
conscripted if he is draftable and healthy. Moreover a person is draftable when
he attains a specific age. However, after some time, the law changes and a person
is no longer conscripted if he is indeed a conscientious objector.

K S : always (draftable(X)) when (of -age(X))

assert (conscripted(X) < draftable(X), healthy(X))

K S, : assert (healthy(a)). assert (healthy(b)). assert (of _age(b)).

assert (consc_objector(a)). assert (consc_objector(b))

K S5 : assert (not conscrzpted( ) + consc_objector(X))
KS, : assert (of age(a



In state 3, b is subject to conscription but after the assertion his situation
changes. On the other hand, a is never conscripted.

In addition to providing automatic updating, dynamic knowledge represen-
tation allows us to keep the entire history of past changes and to query the
knowledge base at any given time in the past. The ability to keep track of all the
past changes in the law is a feature of crucial importance in the domain of law.
We expect, therefore, that by using LUPS as a language for representation and
reasoning about legal knowledge we may be able to significantly improve upon
the work based on standard logic programming.

2.3 Software Specifications

One of the most important problems in software engineering is the problem of
choosing a suitable software specification language. It has been argued in several
papers (see e.g. [LO97,EDD93,FD93]) that the language of logic programming is
a good potential candidate for the language of software specifications. However
logic programming lacks simple and natural ways of expressing conditions that
change dynamically and the ability to handle inconsistencies stemming from
specification revisions. Another problem is called elaboration tolerance and re-
quires that small modifications of informal specifications result in localized and
simple modifications of their formal counterparts. Dynamic knowledge represen-
tation based on generalized logic programs extends logic programming exactly
with these two missing dynamic update features. Moreover, small informal spec-
ification revisions require equally small modifications of the formal specification,
while all the remaining information is preserved by inertia. The following banking
erxample illustrates the above claims.

Ezample 8 (Banking transactions). Consider a software specification for per-
forming banking transactions. Account balances are modelled by the predicate
balance(Account No, Balance). Predicates deposit(AccountNo, Amount) and
withdrawal (AccountN o, Amount) represent the actions of depositing and with-
drawing money into and out of an account, respectively. A withdrawal can only
be accomplished if the account has a sufficient balance. This simplified descrip-
tion can easily be modelled in LUPS by K S;:

always (balance(Ac, OB + Up)) when (updateBal(Ac,Up), balance(Ac, OB))
always (not balance(Ac, OB)) when (updateBal(Ac, NB), balance(Ac, OB))
assert (updateBal(Ac, —X) <+ withdrawal(Ac, X), balance(Ac,OB),0OB > X)
assert (updateBal(Ac, X) + deposit(Ac, X))

The first two rules state how to update the balance of an account, given
any event of updateBal. Deposits and withdrawals are then effected, causing
update Bal.

An initial situation can be imposed via assert commands. Deposits and with-
drawals can be stipulated by asserting events of deposit/2 and withdrawal/2.
E.g.:

K S, : {assert (balance(1,0)), assert (balance(2,50))}
K Ss : {assert event (deposit(1,40)),assert event (withdrawal(2,10))}



causes the balance of both accounts 1 and 2 to be 40, after state 3.

Now consider the following sequence of informal specification revisions. De-
posits under 50 are no longer allowed; VIP accounts may have a negative balance
up to the limit specified for the account; account #1 is a VIP account with the
overdraft limit of 200; deposits under 50 are allowed for accounts with negative
balances. These can in turn be modelled by the sequence:

K S84 : assert (not update Bal(Ac, X) < deposit(Ac, X), X < 50)

K S5 : assert (updateBal(Ac,—X) < vip(Ac, L), withdrawal(Ac, X),
balance(Ac,B),B+ L > X)

K Sg : assert (vip(1,200))

K Sy : assert (updateBal(Ac, X) « deposit(Ac, X), balance(Ac, B), B < 0)

This shows dynamic knowledge representation constitutes a powerful tool
for software specifications that will prove helpful in the difficult task of building
reliable and provably correct software.

3 Representation of Conflicting Knowledge

Let us consider the following contradictory advice example, which models a sit-
uation where an agent receives conflicting advice from two reliable authorities.
Since the agent’s expected behaviour is not to do anything that he was advised
not to do by a reliable authority, the agent should neither perform the given
action nor refuse to do it. Instead, the agent should remain non-committal and
the outcome of his decision process should therefore be undefined.

Ezample 4 (Conflicting Advice). An agent receives advice from two reliable
sources: his father and his mother. The agent’s expected behaviour is to per-
form an action recommended by a reliable authority unless it is in conflict with
the advice received from another authority.

always (do(A) « father_advises(A),not dont(A))
always (dont(A) < mother_advises(noA),not do(A))
always (L « do(A), mother_advises(noA))

always (L « dont(A), father_advises(A))

Suppose the father advises buying stocks but the mother advises not to do so:

KSi = {assert event (father_advises(buy)),assert event (mother_advises(nobuy))}

In this situation, the agent is unable to choose either do(buy) or dont(buy) and,
as a result, does not perform any action whatsoever.

The above illustrates the need for a $-valued semantics for knowledge up-
dates. So far, in our research on knowledge updates, we were exclusively using
a 2-valued semantics, namely, the stable semantics [GL88],suitably extended to
the class of generalized logic programs ®. Under the 2-valued semantics, the

3 The class of generalized logic programs can be viewed as a special case of a yet
broader class of programs introduced earlier in [LW92].



above situation results in an inconsistent update, because of integrity constraint
violation. In this section we extend our approach to the (3-valued) well-founded
semantics of generalized logic programs. This will enable us to model knowledge
updates with non-committal or undefined outcome, as required.

Recall that both the dynamic updates and the LUPS semantics can be defined
by means of linear-time transformations into generalized logic programs. The
transformation encodes both the declarative meaning of the update and the
inertia rules. To generalize both semantics to a 3-valued setting, one needs to
extend the semantics of normal logic programs with default negation in the
heads to a 3-valued setting. The resulting update program semantics is based on
the well-founded semantics instead of the stable models. Accordingly, below we
generalize the well-founded semantics of normal logic programs to generalized
logic programs.

We start by presenting the definition of the stable model semantics of gen-
eralized logic programs®.

Definition 1 (Generalized Logic Program). A generalized logic program P
in the language L is a set of rules of the form L < Ly,... ,L,, where L and L;
are literals. A literal is either an atom A or its default negation not A. Literals
of the form not A are called default literals. If none of the literals appearing in
heads of rules of P are default literals, then the logic program P is normal.

In order to define the semantics of generalized programs, we start by elimi-
nating all default literals in the heads of rules.

Definition 2. Let £ be the language obtained from the language L of a general-
ized logic program P by adding, for each propositional symbol A, the new symbol

A. P is the normal program obtained from the generalized program P through
replacing every negative head not A by A.

The definition of the stable models of generalized programs can now be gotten
from the stable models of the program P. The idea is quite simple: since P is
a normal program, its stable models can be identified via the usual definition
by means of the Gelfond-Lifschitz operator I' [GL88]; afterwards, all it remains
to be done is to interpret the A atoms in the stable models of P as the default
negation of A. Since atoms of the form A never appear in the body of rules of
P, this task is trivial: if A is true in a stable model then not A must also be true
in it (i.e. A cannot belong to the stable model); if A is false in a stable model,
then no rule in P concludes not A, and so the valuation of A in the stable model
is independent of the existence of rules for A.

Definition 3 (Stable models of generalized programs). Let P be a gener-
alized logic program, and let I be a stable model of P (i.e. I be such that I = I'sI)
such that for no atom A both A and A belong to I. The model M, obtained from
I by deleting from it all atoms of the form A, is a stable model of P.

* The definition below is different from the original one in [ALPT00], but their equiv-
alence can easily be shown given the results in [DP96]



Now, a naive extension of the well-founded semantics to generalized programs
would simply consider the fixpoints of the compound operator I'? for the trans-
formed programs P, and then remove all fixpoints where, for some atom, both A
and A held. In fact, for normal programs, the least fixed-point of I'? character-
izes the well-founded semantics. However, this naive definition does not engender
intuitive results:

Ezample 5. Consider the generalized program P = {nota; a <+ notb; b «+
nota}. According to the naive semantics, the well-founded model would be
{nota}. In this case, since not a is true, one would expect b to be true as well.

In the definition of stable models for generalized programs, whenever an atom
A is true in some interpretation I (in the extended language £), and hence by
definition A ¢ I, it is guaranteed that after applying the I'-operator once all
occurrences of not A are removed from rule bodies. In other words, whenever
A is true, A is assumed false by default in rule bodies. In the well-founded
semantics, one must ensure that, whenever A belongs to a fixed-point of I'2, all
literals not A in the bodies must be true. In other words, whenever A belongs to
a fixed-point I of I'?; A must not belong to I'(I). This is achieved by resorting
to the semi-normal version of the program:

Definition 4 (Semi-normal program). The semi-normal version Ps of a
normal program P is obtained by adding to the body of each rule in P with head
A (resp. A) the literal not A (resp. not A).

Definition 5 (Partial stable models of generalized programs). Let I be
a set of atoms in the language L such that:

(1) I = Ip(Ip5(I))  and  (2) I C (D)

The 3-valued model M =T U not F is a partial stable model of the program
P, where not {A1,..., A} stands for {not Ay,...,not A,}, and T is obtained
from I by deleting all atoms of the form A and F is the set of all atoms A that
do not belong to I'p(I).

With this definition there is no need to explicitly discard interpretations
comprising both A and A for some atom A. These are already filtered by condi-
tion (2). Indeed, if both A and A belong to I then, because in Ps all rules with
head A (respectively, A) have not A (respectively, not A) in the body, neither A
nor A belong to I'5-(I), and thus condition (2) will fail to hold.

Definition 6 (Well-founded model of generalized programs). The well
founded model of a generalized program P is the set-inclusion least partial sta-
ble model of P, and is obtainable by iterating the (compound) operator I'zI'p;
starting from {}, and constructing M from the so obtained least fixpoint.

Ezample 6. The well-founded model of the program in example 5 is {b, nota}.
In fact, I'5,({}) = {a,b,a}, I'5({a, b,a}) = {a}, I'5,({a}) = {b,a}, Ix({b,a}) =
{b,a@}. Accordingly, its well-founded model is {b, not a}. Note, in the 3rd applica-
tion of the operator, how the semi-normality of P is instrumental in guaranteeing
truth of b.



4 Concluding Remarks

While LUPS constitutes an important step forward towards defining a powerful
and yet intuitive and fully declarative language for dynamic knowledge represen-
tation, it is by far not a finished product. There are a number of update features
that are not yet covered by its current syntax as well as a number of additional
options that should be made available for the existing commands. Further im-
provement, extension and application of the LUPS language remains therefore
one of our near-term objectives.
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