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2CENTRIA - Centro de Inteligencia Artificial, Universidade Nova de Lisboa, Lisboa,

Portugal
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Abstract. Resolving the semantic heterogeneity problem is crucial to
allow interoperability between ontology-based systems. Ontology match-
ing based on argumentation is an innovative research area that aims
at solving this issue, where agents encapsulate different matching tech-
niques and the distinct mapping results are shared, compared, chosen
and agreed. In this paper, we compare three argumentation frameworks,
which consider different notions of acceptability: based on values and
preferences between audiences promoting these values, based on the con-
fidence level of the arguments, and based on voting on the arguments. We
evaluate these frameworks using realistic ontologies from an established
ontology matching evaluation test set. The best matcher varies depend-
ing on specific characteristics of each set, while considering voting on
arguments the results are similar to the best matchers for all sets.

1 Introduction

Ontologies have proven to be an essential element in a range of applications in
which knowledge plays a key role. Resolving the semantic heterogeneity problem
by means of ontology matching is crucial to allow the interoperability between
ontology-based systems. Ontology matching is the process of linking correspond-
ing entities (classes or proprieties) from different ontologies.

Many different approaches to the matching problem are found in the litera-
ture. The distinction between them is accentuated by the manner in which they
exploit the features within an ontology. Whereas syntactic approaches consider
measures of string similarity; semantic ones consider semantic relations usually
on the basis of lexical oriented linguistic resources. Other approaches consider
term positions in the ontology hierarchy or instances of the ontologies. However,
each category of approaches offers a wide diversity of options. Such approaches
have been surveyed from different perspectives in [6].

The matching systems are usually aware that a combination of different tech-
niques are required for dealing with the problem. The different techniques are



then aggregated in a unified process, which involves parallel or sequential ex-
ecution of matchers, where the results can be combined varying from a single
weighted sum of individual results to automatically learning the best matcher
from preliminary results.

Some techniques will perform better than others for specific cases, depending
on how well the technique fits the material available. Also, approaches that
perform well for a specific case may not be successful in other ones.

An important issue in ontology matching is therefore to find effective ways
of choosing among many techniques and their variations, and then combining
their results. An innovative approach to solve this problem is to use frameworks
of argumentation, where different matchers may work on the basis of alterna-
tive approaches arriving to distinct matching results (arguments) that must be
shared, compared, chosen and agreed. The matchers exchange the arguments
and construct their frameworks of argumentation. The preferred extensions of
each matcher are then compared in order to identify set of globally acceptable
arguments.

In this paper, we compare three different frameworks of argumentation,
Value-based Argumentation Framework (VAF), Strength-based Argumentation
Framework (S-VAF), and Voting-based Argumentation Framework (V-VAF).
The VAF [2] is based on the classical framework of Dung, aggregating notions
of audiences and preferences. The idea of VAF is to relate the arguments in the
dispute to the social values represented by their acceptability for given audi-
ences. Both S-VAF and V-VAF frameworks are based on the VAF, in order to
effectively combine different audiences. The S-VAF [23] allows to associate to
each argument, a confidence value that represents the strength of the argument.
Using V-VAF it is possible to manage consensus, i.e., showing that the more
often an argument is agreed on, the more chances for it to be valid. This paper
extends the V-VAF presented in [9], in which we had compared V-VAF and
S-VAF by evaluating their application to a range of individual mappers, in the
context of a real-world library case.

The comparison and evaluation of the frameworks is carried out using real
ontologies, commonly used in the evaluation of state-of-the-art matching sys-
tems. Particularly, the results of each individual matcher is compared with the
results of the different frameworks.

The paper is structured as follows. Section 2 introduces the three argumenta-
tion frameworks. In Section 3, the argumentation process for ontology matching
is described. In Section 4, the experiments are detailed and the discussion on the
results is presented. Section 5 comments on related works. Finally, in Section 6,
concluding remarks and future work are presented.

2 Argumentation Frameworks

Both S-VAF and V-VAF are development of the VAF, which is based on the
classical system of Dung [4]. This section presents the basic notions upon these
frameworks rely.



2.1 Classical Argumentation Framework

Dung, observing that the core notion of argumentation lies in the opposition
between arguments and counter-arguments, defines an argumentation framework
(AF) as follows:

Definition 2.1.1 [4] An Argumentation Framework is a pair AF = (AR, attacks),
AR is a set of arguments and attacks is a binary relation on AR.

attacks(a, b) means that the argument a attacks the argument b. A set of
arguments S attacks an argument b if b is attacked by an argument in S. The
key question about the framework is whether a given argument a ∈ AR should
be accepted or not. Dung proposes that an argument should be accepted only if
every attack on it is rebutted by an accepted argument. This notion then leads
to the definition of acceptability (for an argument), admissibility (for a set of
arguments) and preferred extension:

Definition 2.2.2 [4] An argument a ∈ AR is acceptable with respect to set
arguments S, noted acceptable(a, S), if ∀x ∈ AR (attacks(x, a) −→ ∃y ∈
S, attacks(y, x))

Definition 2.1.3 [4] A set S of arguments is conflict-free if ¬∃x, y ∈ S, attacks(x, y).
A conflict-free set of arguments S is admissible if ∀x ∈ S, acceptable(x, S).
A set of arguments S is a preferred extension if it is a maximal (with respect
to set inclusion) admissible set of AR.

A preferred extension represents a consistent position within AF , which de-
fends itself against all attacks and cannot be extended without raising conflicts.

2.2 Value-based Argumentation Framework (VAF)

In Dung’s framework, all arguments have equal strength, and an attacks always
succeed, except if the attacking argument is otherwise defeated. However, as
noted in [14], in many domains, including ontology alignment, arguments may
provide reasons which may be more or less persuasive. Moreover, their persua-
siveness may vary according to their audience. Bench-Capon has extended the
notion of AF so as to associate arguments with the social values they advance:

Definition 2.2.1 [2] A Value-based Argumentation Framework (VAF) is a 5-
tuple VAF = (AR, attacks, V, val, P ) where (AR, attacks) is an argumenta-
tion framework, V is a nonempty set of values, val is a function which maps
elements of AR to elements of V and P is a set of possible audiences.

Practically, in [13], the role of value is played by the types of ontology match
that ground the arguments, covering general categories of matching approaches:
semantic, structural, terminological and extensional. We argue further — and
will use later — that any kind of matching ground identified during a mapping



process or any specific matching tools may give rise to a value. The only lim-
itations are (i) a value can be identified and shared by a source of mapping
arguments and the audience considering this information (ii) audiences can give
preferences to the values. An extension to this framework, required for deploying
argumentation processes, indeed allows to represent how audiences with different
interests can grant preferences to specific values:

Definition 2.2.2 [2] An Audience-specific Value-based Argumentation Frame-
work (AVAF) is a 5-tuple VAF p = (AR, attacks, V, val, valprefaud) where
AR, attacks, V and val are as for a VAF, aud is an audience and valprefaud

is a preference relation (transitive, irreflexive and asymmetric), valprefaud ⊆
V × V .

valprefaud(v1, v2) means that audience aud prefers v1 over v2. Attacks are
then deemed successful based on the preference ordering on the arguments’ val-
ues. This leads to re-defining the notions seen previously:

Definition 2.2.3 [2] An argument a ∈ AR defeats an argument b ∈ AR for
audience aud, noted defeatsaud(a, b), if and only if both attacks(a, b) and
not valprefaud(val(b), val(a)). An argument a ∈ AR is acceptable to audi-
ence aud with respect to a set of arguments S, noted acceptableaud(a, S), if
∀x ∈ AR, defeatsaud(x, a) −→ ∃y ∈ S, defeatsaud(y, x).

Definition 2.2.4 [2] A set S of arguments is conflict-free for audience aud if
∀x, y ∈ S, ¬attacks(x, y) ∨ valprefaud(val(y), val(x)). A conflict-free set of
arguments S for audience aud is admissible for aud if ∀x ∈ S, acceptableaud(x, S).
A set of arguments S in the VAF is a preferred extension for audience aud
if it is a maximal admissible set (with respect to set inclusion) for aud.

In order to determine preferred extensions with respect to a value ordering
promoted by distinct audiences, objective and subjective acceptance are defined:

Definition 2.2.5 [2, 13] An argument a ∈ AR is subjectively acceptable if and
only if a appears in some preferred extension for some specific audiences.
An argument a ∈ AR is objectively acceptable if and only if a appears in all
preferred extension for every specific audience.

2.3 Strength-based Argumentation Framework (S-VAF)

Value-based argumentation acknowledges the importance of preferences when
considering arguments. However, in the specific context of ontology alignment, an
objection can still be raised about the lack of complete mechanisms for handling
persuasiveness. Indeed, many mapping tools actually output mappings with a
strength that reflects the confidence they have in the similarity between the two
entities. These confidence levels are usually derived from similarity assessments
made during the alignment process, e.g. from edit distance measure between



labels, or overlap measure between instance sets, as in [10]. They are therefore
often based on objective grounds.

It is one of our goals to investigate whether considering confidence levels gives
better results or not.1 To this end, we adapt a formulation introduced in [24, 25]
to consider the strength granted to mappings for determining attacks’ success:

Definition 2.3.1 A Strength and value-based Argumentation Framework (S-
VAF) is a 6-tuple (AR, attacks, V, val, P, str) where (AR, attacks, V, val, P )
is a value-based argumentation framework, and str is a function which
maps elements of AR to real values from the interval [0, 1], representing the
strength of the argument. An audience-specific S-VAF is an S-VAF where the
generic set of audiences is replaced by the definition of a specific valprefaud

preference relation over V.

Definition 2.3.2 In an audience-specific S-VAF, an argument a ∈ AR defeats
an argument b ∈ AR for audience aud if and only if attacks(a, b)∧ (str(a) >
str(b) ∨ (str(a) = str(b) ∧ valprefaud(val(a), val(b))) )

In other words, for a given audience, an attack succeeds if the strength of the
attacking argument is greater than the strength of the attacked one; or, if both
arguments have equal strength, the attacked argument is not preferred over the
attacking argument by the concerned audience. Similarly to what is done for
VAFs, an argument is acceptable for a given audience w.r.t a set of arguments
if every argument defeating it is defeated by other members of the set. A set of
arguments is conflict-free if no two members can defeat each other. Such a set
is admissible for an audience if all its members are acceptable for this audience
w.r.t itself. A set of arguments is a preferred extension for an audience if it is a
maximal admissible set for this audience.

2.4 Argumentation Frameworks with Voting (V-VAF)

The previously described frameworks capture the possible conflicts between map-
pers, and find a way to solve them. However, they still fail at rendering the fact
that sources of mappings often agree on their results, and that this agreement
can be meaningful. Some large-scale experiments involving several alignment
tools — as the OAEI 2006 Food track campaign [5] — have indeed shown that
the more often a mapping is agreed on, the more chances for it to be valid.

We have adapted the S-VAF presented above to consider the level of consen-
sus between the sources of the mappings, by introducing the notions of support
and voting into the definition of successful attacks. Support enables arguments
to be counted as defenders or co-attackers during an attack2:
1 Note that as opposed to what is done [24, 25] this paper aims at experimenting

with matchers that were developed prior to the experiment, and hence more likely
to present strength mismatches.

2 Note that support, as well as attack, is an abstract notion, that depends of the frame-
work instantiation. Also, support and attack relations may be defined independently
of each other



Definition 2.4.1 A Voting Argumentation Framework (V-VAF) is a 7-tuple
(AR, attacks, supports,V,val,P,str) where (AR, attacks, V, val, P, str) is a S-
VAF, and supports is a (reflexive) binary relation over AR. supports and
attacks are disjoint relations.

Voting is then used to determine whether an attack is successful or not. For
this paper, we have chosen to test further the most simple voting scheme – the
plurality voting system – where the number of supporters decides for success of
attacks.

Definition 2.4.2 In a Voting Argumentation Framework (V-VAF) an argument
a ∈ AR defeatsaud an argument b ∈ AR for audience aud if and only if
attacks(a, b) ∧ ( |{x|supports(x, a)}| > |{y|supports(y, b)}| ∨
(|{x|supports(x, a)}| = |{y|supports(y, b)}| ∧ valprefaud(val(a), val(b))) ).

This voting mechanism is based on simple counting. In fact, as we have
seen previously, matchers sometimes return mappings together with a confidence
value. There are voting mechanisms which address this confidence information.
The first and most elementary one would be to sum up the confidence values
of supporting arguments. However, as for the S-VAF, this would rely on the
assumption that the strengths assigned by different mappers are similarly scaled,
which as we have seen is debatable in practice3.

3 Argumentation Process

The argumentation process has two main steps: argument generation and pre-
ferred extension generation. First, the matchers work in an independent manner,
applying the specific matching approach and generating the alignment set. A
mapping m is described as a 5-tuple m = (e,e’,h,R,s), where e corresponds to
an entity in the ontology 1, e’ corresponds to an entity in the ontology 2, h is
one of {-,+} depending on whether the mapping does or does not hold, R is the
matching relation resulting from the matching between these two terms, and s is
the strength 4 associated to the mapping. Each mapping m is encapsulated into
an argument. An argument ∈ AR is a 2-tuple x = (m,a), where m is a mapping;
a ∈ V is the value of the argument, depending of the matcher generating that
argument (i.e, matcher 1, 2 or 3).

After generating their set of arguments, the matchers exchange with each
other their arguments – the dialogue between them consists of the exchange of
individual arguments. When all matchers have received the set of arguments of
the each other, they generate their attacks set. An attack (or counter-argument)

3 As a matter of fact, in [9] we have carried out experiments with a voting framework
that considered these strengths – and was performing some normalization of these.
But this did not bring conclusive results.

4 The strength of an argument is defined by the matcher when applying the specific
matching approach



will arise when we have arguments for mapping the same entities but with
conflicting values of h. For instance, an argument x = (m1,M1), where m1 =
(e,e’,+,equivalence,1.0), has as a counter-argument an argument y = (m2,M2),
where m2 = (e,e’,-,equivalence,1.0). m1 and m2 refer to the same entities e and
e’ in the ontologies. The argument y also represents an attack to the argument
x.

When the set of arguments and attacks have been produced, the matchers
need to define which of them must be accepted, with respect to each audience.
To do this, the matchers compute their preferred extension, according to the
audiences and strength of the arguments.

Note that for S-VAF and V-VAF, we choose to have the values v ∈ V repre-
sent different matching approaches used by the agents (i.e., different matching
systems). For instance, when three matchers are used, matcher 1 (M1), matcher
2 (M2), and matcher 3 (M3), then V = {M1,M2,M3}.

Each audience has an ordering preference between the values. For instance,
the matcher 1 represents an audience where the value M1 is preferred to the
values M2 and M3. The idea is not to have an individual audience with preference
between the agents (i.e., matcher 1 is preferred to all other matchers), but to try
accommodate different audiences and their preferences. The idea is to obtain a
consensus when using different matching techniques, which are represented by
different preference between values.

4 Experiments

The evaluation of the argumentation frameworks is carried out focusing on real
ontologies portion of the Ontology Alignment Evaluation Initiative (OAEI)5

evaluation data set. Next, the data set is described, the configuration of the
matchers is presented, and the results are discussed. The argumentation models
are compared with the best matchers for each test case and with the baseline,
based on the union of the all individual matcher results.

4.1 Dataset Description

The Ontology Alignment Evaluation Initiative is a coordinated international
initiative to establish a consensus for evaluation of ontology matching methods.
It organizes evaluation campaigns on the basis of controlled experiments for
comparing competitive techniques performances.

A systematic benchmark6 is provided by the OAEI community. The goal
of this benchmark is to identify the areas in which each algorithm is strong
and weak. A first series of testes is based on one particular (reference) ontology
dedicated to the domain of bibliography 7.
5 http://oaei.ontologymatching.org/
6 http://oaei.ontologymatching.org/2007/benchmarks/
7 This ontology contains 33 named classes, 24 object properties, 40 data properties,

56 named individuals and 20 anonymous individuals



We however chose to focus our evaluation on a second series of tests, which is
formed by a group of real ontologies (tests 301, 302, 303, and 304). We consider
that this would represent a more realistic evaluation scenario, regarding the pre-
sentation of several competing approaches. In these tests the reference ontology
is compared with four real ontologies: BibTex MIT8 (test 301), BibTex UMBC9

(test 302), BibTex Karlsruhe10 (test 303), and INRIA11 ontology (test 304).

4.2 Matchers Configuration

The experiments are carried out using the group of OAEI matchers, which
had participated of the OAEI Benchmark Track 200712: ASMOV ([11]), DSSim
([17]), Falcon ([8]), Lily ([27]), Ola ([7]), OntoDNA ([12]), PriorPlus ([16]), Ri-
MOM ([22]), Sambo ([21]), SEMA ([19]), TaxoMap ([28]), and XSOM ([3]).

DSSim, OntoDNA, PriorPlus, TaxoMap, and XSOM are based on the use of
ontology-level information, such as labels of classes and properties, and ontology
hierarchy, while ASMOV, Falcon, Lily, Ola, RiMOM, Sambo, and SEMA use
both ontology-level and data-level (instances) information.

When considering the techniques used in the matching process, DSSim, Pri-
orPlus and XSOM are based on edit-distance similarity, where DSSim and X-
SOM combine the string-based approaches with the synonymous relations pro-
vided by WordNet13. Regarding the structural approaches, several heuristics are
used, such as number of common descendants and the number of similar nodes
in the path between the root and the element (PriorPlus). A variety of strate-
gies to combine individual matching techniques is used by the systems. The
techniques can be executed in parallel (DSSim, Falcon, Lily, Ola, PriorPlus,
RiMOM, Sambo, XSOM ), or sequentially (TaxoMap). To combine the results of
these executions, several ways are proposed: weighted formula (PriorPlus and
Sambo), Dempster’s rule of combination (DSSim), combination using a feed-
forward neural network (XSOM ), systems of equations (OLA), linear interpola-
tion (RiMOM ), and experimental weighted (Lily). Falcon executes sequentially
a TFIDF linguistic matcher that combines concepts and instances, together a
graph-based matcher. ASMOV iteratively combines several matchers using a
single weighted sum to combine the individual results. Instance-based matchers
are commonly based on Naive-Bayes classifiers (RiMOM ), statistics (Falcon and
SEMA), or probabilistic methods (Sambo).

4.3 Evaluation Measures

To evaluate mapping quality, we measure precision, recall and f–measure with
respect to (manually built) reference alignments provided in the OAEI bench-
8 http://visus.mit.edu/bibtex/0.1/
9 http://ebiquity.umbc.edu

10 http://www.aifb.uni-karlsruhe.de/ontology
11 fr.inrialpes.exmo.rdf.bib.owl
12 http://oaei.ontologymatching.org/2007/results/benchmarks/
13 http://wordnet.princeton.edu/



marks. Such measures are derived from a contingency table (Table 1).

Table 1. Contingency table for binary classification.

manual h = + manual h = -

output h = + m++ m+−
output h = - m−+ m−−

Precision (P) is defined by the number of correct automated mappings (m++)
divided by the number of mappings that the system had returned (m++ + m+−).
It measures the system’s correctness or accuracy. Recall (R) indicates the number
of correct mappings returned by the system divided by the number of manual
mappings (m++ + m−+). It measures how complete or comprehensive the system
is in its extraction of relevant mappings. F–measure (F) is a weighted harmonic
mean of precision and recall.

P =
m++

(m++ + m+−)
, R =

m++

(m++ + m−+)
, F =

(2 ∗ P ∗R)
(P + R)

For all comparative results, a significance test is applied, considering a con-
fidence degree of 95%. The best values are indicated in bold face in the tables
below. When there is reference for results slightly better, we mean that some
true positive mappings are retrieved while some false positive mappings are dis-
carded, however without having so significantly differences in the results.

4.4 Individual Matchers Results

Table 2 shows the results for each OAEI matcher14, considering values of Preci-
sion (P), Recall (R), and F–measure (F).

Looking for each individual test in terms of F–measure, different groups of
best matchers can be ranked:

– Test 301: ASMOV, PriorPlus, Falcon, Lily, and Sambo;
– Test 302: PriorPlus, Lily, XSOM, Falcon, DSSim, and RiMOM ;
– Test 303: OntoDNA, DSSim, Sambo, XSOM, ASMOV, PriorPlus and Fal-

con;
– Test 304: ASMOV, Falcon, DSSim, Lily, PriorPlus, RiMOM, Ola and Sambo,

XSOM, and OntoDNA.

Only PriorPlus and Falcon are in all rankings, but in different positions.
In average, PriorPlus, Falcon, ASMOV, Lily, OntoDNA, and XSOM are in the
group of the best matchers.

14 http://oaei.ontologymatching.org/2007/results/benchmarks/ HTML/results.html



Table 2. Individual matcher results.

ASMOV DSSim Falcon Lily Ola OntoDNA

Test P R F P R F P R F P R F P R F P R F

301 0.93 0.82 0.87 0.82 0.30 0.44 0.91 0.82 0.86 0.89 0.80 0.84 0.70 0.66 0.68 0.88 0.69 0.77
302 0.68 0.58 0.63 0.85 0.60 0.70 0.90 0.58 0.71 0.82 0.65 0.73 0.51 0.50 0.50 0.90 0.40 0.55
303 0.75 0.86 0.80 0.85 0.80 0.82 0.77 0.76 0.76 0.58 0.69 0.63 0.41 0.82 0.54 0.90 0.78 0.84
304 0.95 0.96 0.95 0.96 0.92 0.94 0.96 0.93 0.95 0.91 0.97 0.94 0.89 0.97 0.93 0.92 0.88 0.90

Average 0.83 0.80 0.81 0.87 0.65 0.73 0.89 0.77 0.82 0.80 0.78 0.79 0.63 0.74 0.66 0.90 0.69 0.77

PriorPlus RiMOM Sambo SEMA TaxoMap XSOM

Test P R F P R F P R F P R F P R F P R F

301 0.93 0.82 0.87 0.75 0.67 0.71 0.95 0.69 0.80 0.70 0.75 0.72 1.0 0.21 0.35 0.91 0.49 0.64
302 0.82 0.67 0.74 0.72 0.65 0.68 0.90 0.19 0.32 0.62 0.60 0.61 1.0 0.21 0.35 1.0 0.58 0.73
303 0.81 0.80 0.80 0.45 0.86 0.59 0.90 0.76 0.82 0.55 0.80 0.65 0.80 0.24 0.38 0.90 0.73 0.81
304 0.90 0.97 0.94 0.90 0.97 0.94 0.96 0.89 0.93 0.77 0.93 0.85 0.93 0.34 0.50 0.96 0.87 0.91

Average 0.87 0.81 0.84 0.71 0.79 0.73 0.93 0.63 0.72 0.66 0.77 0.71 0.93 0.25 0.39 0.94 0.67 0.77

4.5 Baseline and Argumentation Results

The use of argumentation models aims to obtain a consensus between the match-
ers, improving or balancing the individual results. This section presents the re-
sults using VAF, S-VAF, and V-VAF, considering as input the results from the
previously described matchers. We compare the results of these frameworks with
the baseline – which is composed by the union of all individual mappings – and
with the results of the best matchers.

The argumentation results contain only the arguments objectively accept-
able. It means that only the mappings strictly acceptable for all matchers are
evaluated. The audiences represent the following complete preference order (pat-
tern), which has been defined according to the individual performance of the
matchers (i.e., the best matcher has higher preference, and so on): ASMOV au-
dience – ASMOV > Lily > RiMOM > Falcon > Ola > PriorPlus > SEMA >
DSSim > XSOM > Sambo > OntoDNA; Lily audience – Lily > ASMOV >
RiMOM > Falcon > Ola > PriorPlus > SEMA > DSSim > XSOM > Sambo
> OntoDNA; and so on.

Specially for S-VAF, two arbitrary values are used to represent the strength
of the counter-argument of a positive mapping, 0.5 and 1.0. The generation of
counter-arguments is a step that we implement on top of the positive mappings
generated by the matchers. Different values of strength for such arguments can
be specified by the user.

Basically, the OAEI matchers produce arguments for positive mappings with
strength between 0.80 and 1.0. Using 0.5 as strength for a negative argument will
not lead to (many) successful attacks for the positive mappings. Therefore, this
results in better values of recall (the majority of the true positive mappings are
selected). However, some positive arguments corresponding to wrong mappings
are selected as acceptable because generated negative arguments do not lead to
successful attacks, resulting in lower precision.

When using a value of 1.0, the positive arguments corresponding to false
mappings from the matchers with lower strength are attacked and not selected
as objectively acceptable (the false positive mapping is not acceptable for the



audience of the true negative mapping). In this way, the precision is better. On
the other hand, the resulting recall represents the lowest recall of the matchers.
Moreover, a notable problem when using the value 1.0 when one matcher out-
puts no mapping is that if all others have true positive mappings with strength
below 1.0, such true positive mappings are successfully attacked by the negative
mappings. So, in this set of experiments, the value of 0.5 is considered to the
strengths of (negative) counter-arguments in the S-VAF.

However, the strength of arguments is an important issue that must be ex-
plored in more detail, as well as the preference order, which can have great
impact in the results.

Table 3 shows the results of baseline and argumentation, considering the
three frameworks.

Table 3. Baseline and argumentation results.

Argumentation

Baseline VAF S-VAF V-VAF

Test P R F P R F P R F P R F

301 0.46 0.85 0.60 1.0 0.13 0.24 0.56 0.83 0.67 0.94 0.78 0.85
302 0.32 0.72 0.44 - 0.0 - 0.43 0.70 0.53 0.97 0.60 0.74
303 0.22 0.86 0.35 1.0 0.2 0.34 0.42 0.86 0.56 0.93 0.80 0.86
304 0.63 0.97 0.76 1.0 0.3 0.46 0.72 0.97 0.83 0.97 0.95 0.96

Average 0.41 0.85 0.54 0.75 0.16 0.26 0.53 0.84 0.65 0.95 0.78 0.85

Tables 4 and 5 show a comparison among the best argumentation model and
the best matchers, taking into account the values of F–measure for each case.
Best matchers vary for different ontologies – e.g., OntoDNA is the first better
matcher for test 303, while it is the last one for test 304.

Table 4. Best argumentation vs. best matcher results.

Argumentation Best matcher
Test F F
301 0.85 (V-VAF) 0.87 (ASMOV, PriorPlus)
302 0.74 (V-VAF) 0.74 (PriorPlus)
303 0.86 (V-VAF) 0.84 (OntoDNA)
304 0.96 (V-VAF) 0.95 (ASMOV, Falcon)



Table 5. Best argumentation vs. best matcher results (average for each best
matcher).

Argumentation ASMOV PriorPlus OntoDNA Falcon
Test F F F F F

Average 0.85 0.81 0.84 0.77 0.82

4.6 Discussion

As expected, baseline produces good values of recall – all true (positive) map-
pings are retrieved – while precision is lower – all false (positive) mappings are
retrieved. By argumentation, false positive mappings can be are filtered out, im-
proving the precision, while true positive mappings are also discarded, reducing
the recall.

In average, the V-VAF performs better than VAF and S-VAF. In terms of
averaged F-measure, V-VAF slightly outperforms the best matcher (Table 5),
while having comparable level of quality in respect to the best matcher, for each
test (Table 4). The VAF, since the preferences in the audiences are specified by
the individual performance of the matchers, produces high values of precision.

The irregular performance of S-VAF confirms that one cannot fully rely on
strengths output by matchers. As we had explained in [9] for motivating the in-
troduction of consensus-based argumentation frameworks, these confidence lev-
els are usually derived from similarity assessments made during the alignment
process, and are therefore often based on objective grounds. However, there is
no theory or even guidelines for determining such confidence levels. Using them
to compare results from different mappers is therefore questionable, especially
because of potential scale mismatches. For example, a same strength of 0.8 may
not correspond to the same level of confidence for two different matcher. The
approach we have taken in V-VAF, which does not rely on strengths, has been
confirmed to perform better in our tests.

Analyzing the results of the individual matchers, the consensus achieved by
the cooperative models is a balancing between the individual results. Consensus
does not improve over every individual result, but instead delivers an interme-
diary performance, which is close to the one of the best matcher but represents
a considerable improvement over the worst matchers.

When comparing our results with the closer state-of-the-art argumentation
proposal, namely from [13] (with a report of the results for the four cases used
in our paper), better results are are obtained by the V-Voting framework.

Using notions of acceptability of arguments based on voting is a more promis-
ing option than using quantitative aspects as strengths, especially when a “good”
number of matchers is available. Our experiments indeed confirm previous ob-
servations in the ontology matching field, according to which mappings that are
found by several matchers on a same case are generally more precise.15 In fact
15 It is worth noting that we obtain in our experiments results that are way more



in this paper we have put such observation in practice, by devising a matcher
combination framework that can be deployed on top of existing matchers. It
is important to notice that even though the implementation we have tested is
dependent on a priori knowledge of matcher performance, we claim this depen-
dence to be minimal. First, the “performance knowledge” required just consists
of a simple order relation. Second, this preference order is used just when votes
do not lead to a choice between contradictory arguments, which limits its appli-
cation.

Regarding the field of argumentation, in general, in another cases where
argumentation is applied, such as law reasoning, using confidence is a reasonable
issue to be considered, as well the mechanism of voting, already quoted in the
law field, but not at the level of argumentation.

5 Related Work

In the field of ontology argumentation few approaches are being proposed. Basi-
cally, the closer proposal is from [14][13], where an argument framework is used to
deal with arguments that support or oppose candidate correspondences between
ontologies. The candidate mappings are obtained from an Ontology Mapping
Repository (OMR) – the focus is not how the mappings are computed – and
argumentation is used to accommodate different agent’s preferences. Differently
from Laera and colleagues, that use the VAF, our approach considers different
quantitative issues on ontology matching, such as confidence level and voting on
the arguments.

We find similar proposals in the field of ontology negotiation. [20] presents an
ontology to serve as the basis for agent negotiation, the ontology itself is not the
object being negotiated. A similar approach is proposed by [26], where agents
agree on a common ontology in a decentralized way. Rather than being the goal
of each agent, the ontology mapping is a common goal for every agent in the
system. [1] presents an ontology negotiation model which aims to arrive at a
common ontology which the agents can use in their particular interaction. We,
on the other hand, are concerned with delivering mapping pairs found by a group
of agents using argumentation. [18] describes an approach for ontology mapping
negotiation, where the mapping is composed by a set of semantic bridges and
their inter-relations, as proposed in [15]. The agents are able to achieve a con-
sensus about the mapping through the evaluation of a confidence value that is
obtained by utility functions. According to the confidence value the mapping
rule is accepted, rejected or negotiated. Differently from [18], we do not use util-
ity functions. Our model is based on cooperation and argumentation, where the
agents change their arguments and by argumentation they select the preferred
mapping.

conclusive than those we previously obtained with much less matchers [9].



6 Concluding Remarks and Future Work

This paper has presented the evaluation of three argumentation frameworks
for ontology matching. Using argumentation, it is possible to use the values to
represent preferences between the matchers. Each approach represents a value
and each agent represents an audience, with preferences between the values.
The values are used to determine the preference between the different matchers.
Based on these notions, extended frameworks using confidence levels and num-
ber of supports were also considered. These extended frameworks, respectively,
take into account the importance of using arguments with strength, reflecting
the confidence the matcher has in the similarity between the two entities (the
matching tools actually output mappings with a confidence measure), and the
notion of that more often a mapping is agreed on, the more chances for it to be
valid.

It is hard to improve the best matcher, especially when there is a large
intersection between the individual results. In the experiments carried out, the
best individual matcher varies depending on the specific characteristics of each
set, while considering voting on arguments the results are similar to the best
matchers for all sets.

The results obtained in this paper are more conclusive than the results of
our previous paper[9]. First, much more mappers are involved, and their quality
is better. We indeed had hinted for these previous experiments the results were
inconclusive because there were not enough matchers performing well enough.
When one takes more mappers, and the case becomes easier (the library one, as
a Dutch one was hard), the proportion of mappers that really fail is lower. This
results in less consensus for accepting wrong mappings. In this case voting has
really helped, and performs better than baseline and allow for performance close
to the best matcher.

An important issue is that we have results similar to the best matcher, but
we are aware of the best matcher when obtaining them: in fact this knowledge
has been used for the preference order. One possible experiment in the future is
thus to check (i) whether a random order achieves good result, or (ii) if an order
that is obtained for one test case can achieve good results in another case; and
(iii) explore the strength of arguments is a more detail.

References

1. S. C. Bailin and W. Truszkowski. Ontology negotiation between intelligent infor-
mation agents. Knowledge Engineering Review, 17(1):7–19, 2002.

2. T. Bench-Capon. Persuasion in practical argument using value-based argumenta-
tion frameworks. Journal of Logic and Computation, 13(3):429–448, 2003.

3. C. Curino, G. Orsi, and L. Tanca. X-som results for oaei 2007. In Proceedings of
the 2nd Ontology Matching Workshop, pages 276–285, Busan, Korea, 2007.

4. P. Dung. On the acceptability of arguments and its fundamental role in nonmono-
tonic reasoning, logic programming and n–person games. Artificial Intelligence,
77(2):321–357, 1995.



5. J. Euzenat, M. Mochol, P. Shvaiko, H. Stuckenschmidt, O. Sváb, V. Svátek, W. R.
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