Abductive Inference of Plans and Intentions
in Information-Seeking Dialogues

Paulo Quaresma and José Gabriel Lopes

Artificial Intelligence Center, UNINOVA
2825 Monte da Caparica, Portugal

{paq,gpl}@fct.unl.pt

Abstract

A robust man-machine interaction requires the capability for inferring the beliefs
and intentions of each active agent. In this article it will be proposed a framework
that supports the recognition of plans and intentions through abductive inferences
over discourse sentences. The possible actions, world knowledge, events and states are
represented by extended logic programs (LP with explicit negation) and the abductive
inference process is modeled by the framework proposed by Pereira ([10]) which is
based on the Well Founded Semantics augmented with explicit negation (WFSX) and
contradiction removal semantics (CRSX). It will be shown how this framework supports
abductive planning with Event Calculus ([4]) and some classical examples will be shown
([7, 11]) in the domain of information-seeking dialogues. Finally, some open problems
and future work will be pointed out.

1 Introduction

A robust man-machine interaction requires the capability for inferring the
beliefs, intentions and plans of each active agent.
In order to deal with these problems there has been done some work with

different approaches. One major approach follows the classical planning scheme
developed in the STRIPS ([5]) and NOAH ([13]) model. In this model each plan

is defined as a sequence of actions and each action is composed by an head,
pre-conditions, constraints, effects and sub-actions. The inference of plans (a
list of user actions) is done through the use of a library of plans and actions,
some heuristic rules and the user possible goals. This approach has been used by
Litman and Allen ([7, 6]) in order to infer plans behind speech acts in dialogues. A
different approach was followed by Pollack ([11, 1]) which models plan as mental
states and tries to abduct the mental attitudes behind each speach act.

In this paper we follow a general approach which will allow us to handle both
models. Since we needed non-monotonic reasoning, namely default and abduc-
tive reasoning, as the basic inference process we have used the event calculus to
represent events, time and actions and a logic programming framework with a
given and defined semantics, Well Founded Semantics of eXtended Logic Pro-
grams (WFSX) augmented with Contradiction Removal Semantics (CRSX) from
the work of Pereira ([10]). This framework extends logic programming and all-
lows the modeling of several kinds of non-monotonic reasoning, namely dafault,
abductive and hypothetical reasoning. Furthermore, it allows the removal of
contradictions allowing the desambiguation of dialogues.

In section 2 a description of the framework showing how non-monotonic rea-
soning is dealt with is given. In section 3 the process of abductive planning with
event calculus is described and in section 4 it is shown how this framework is able
to handle the same kind of problems that Litman and Pollack handle. Finally in
section 5 some open problems and future work will be pointed out.

2 Logic Programming Framework

In order to reason about plans and attitudes we need to model actions, events,
states and world knowledge. In this framework they are modeled by extended
logic programs which are a set of rules and integrity rules having the form:

e H+ By,...,B,,notCy,...,notCy,(m > 0,n > 0)

where H, By, ..., B,, C1, C,, are classical literals. A classical literal is either
an atom A or its explicit negation —A. not stands for the negation by failure
(NAF). In integrity rules H is the symbol L (contradiction).

Default reasoning can be modeled adding to the program rules of the form:

e Normally A(X) implies B(X)
which can be written as:
1. B(X) < A(X), not ab(X)

which states that if it’s not possible to prove the abnormality of X then B
should hold.
With a slight change it is possible to handle hypothetical reasoning:

e Quakers might (or not) be pacifists
which can be written as:

1. pacifist(X) < quaker(X), hypqp(X)
2. hypgp(X) < not = hypgp(X)

3. = hypgp(X) < not hypqp(X)

which states that quakers are pacifists if it’s not possible to prove (by NAF)
explicitly that they are not (and vice-versa).
Abductive reasoning is modeled with rules:

e F might be true or not
which can be written as:
1. F < not—F

2. °F < notF

which state that if it’s not possible to prove —F then F' should hold (and
vice-versa).

Using this approach it’s possible to create an abductive program from an
abductive theory (P, Ab) by adding to the program P for all literals L in the
abductible list Ab two rules of the form:

1. L < not—L

2. =L <+ notL

3 Abductive Planning with Event Calculus

In order to represent and reason about actions and events it was used the
event calculus with some changes proposed by Eshgi ([4]) and Missiaen ([9]).
The following logic program is proposed by Missiaen in order to describe what
properties hold at a given time:

holds_at(P,T) < happens(E),initiates(E, P), (1)
succeeds(E), E < T, persists(E, P,T).
persists(E,P,T) <« notclipped(E, P,T). (2)
clipped(E, P,T) < happens(C),terminates(C, P), (3)
succeeds(C), notout(C, E, T).
out(C,E,T) < (IT'=C;T<C;C<E). (4)

which states that the property P holds at time T if there was an event that
happened before T, if that event initiates P and if P persists until T. A property
P persists until 7" if it is not possible to prove (by NAF) the existence of an event
that terminates the property P before T'.

In order to infer the user plans it’s necessary to abduct events (related with
actions) and their temporal ontology. The set of abductible predicates in our
framework is composed by:

Ab = {happens/1, act/2, </2}

This set if abductibles allow the framework to abduct the events that explain
the observed effects.

The representation of actions in this framework can be done by a translation
mechanism that for each action described by the statement:

e Acauses Fif P, ..., P,

meaning that action A causes the effect F' if the pre-conditions Py, ..., P,
hold, produces the following rules:

1. succeeds(E) < act(E, A), holds-at(P;, E), ..., holds-at(P,, E).
2. initiates(E, F) < act(E, A).

This scheme states that an event E associated with an action A at a time
T succeeds if the pre-conditions hold at that time and as a consequence of this
event the property F will hold in the future.

4 Example

In the following two sections it will be presented two examples solved with
the unified extended logic framework proposed. In the first example there is
missing information that was not conveyed by the user. In the second example
it will be pointed out how to solve dialogue situations where incorrect knowledge
is assumed by the speaker and how the other agent can handle the situation.

4.1 Train Dialogue
Suppose the following example (from [7]):

e Passenger: The eighty-fifty to Montreal?

e (Clerk: Eighty-fifty to Montreal? Gate Seven.

e Passenger: Where is it?
e (Clerk: Down this way to the left. Second one on the left.

e Passenger: Ok.

In order to deal with this example we have to define the library of actions
(domain actions, speech acts) needed to make inferences. We have used the
actions defined in [7] and the translation mechanism described in the previous
section.

Namely the following actions were defined:

e First rule:
goto(agent, location, time) causes at(agent, location, time).

This rule means that if an agent goes to a specific place at a given time then
he will be at that place.

e Second rule:
meet (agent, arriveTrain) if goto(agent, gate(arriveTrain), time(arriveTrain)).

This rule means that if an agent goes to a specific gate of an arrival train at
the arrival time then we will meet that train.

e Third rule:

board(agent, departTrain) if

goto(agent, gate(departTrain), time(departTrain)), geton(agent, departTrain).

This rule means that if an agent goes to a gate of a departure train and gets
on the train then we will board the train.

e Forth rule:
take-train-trip(agent, departTrain, destination) if
buy-ticket(agent, clerk, ticket), board(agent, departTrain).

This rule means that an agent takes a train trip if he buys a ticket to that
trip and boards the departing train.
It was also needed to define rules for some speech acts:

e First rule:

inform (speaker, hearer, proposition) causes
know (hearer, proposition),

know (hearer, know(speaker, proposition))
if

know (speaker, proposition),

surface-inform (speaker, hearer, proposition).

If a speaker knows a specific proposition and informs the hearer about that
proposition then the hearer will learn the proposition and he will know that the
speaker knows it.

e Second rule:

informref(speaker, hearer, term, proposition) causes
knowref(hearer, term, proposition),

if

knowref(speaker, term, proposition),

know (hearer, proposition),

parameter(term, proposition).

If a speaker knows about a property of a proposition then, if he informs the
hearer about that property, the hearer will learn that fact.

e Third rule:

request (speaker, hearer, action) causes
want(hearer, action),

know (hearer, want(speaker, action)),

if

want(speaker, action),
(surface-request(speaker, hearer, action) or

surface-request(speaker, hearer, informif(hearer, speaker, cando(hearer, action))
or

surface-inform (speaker, hearer, = cando(speaker, action)) or

surface-inform (speaker, hearer, want(speaker, action))).

If a speaker wants an action to be done he can perform one of the following
four speech acts:

e Request the hearer to do the action;
e Request the hearer to inform him if the hearer is able to do the action;
e Inform the hearer that he is not able to do the action;

e Inform the hearer that he wishes the action to be done.

causing the hearer to want to do the action (it is a cooperative dialogue) and
to know that the hearer wants the action to be done.

There were also defined meta-actions, allowing the inference of meta-plans and
allowing the system to reason about the structure of the dialogue: continue-plan,
identify-parameter, correct-plan and modify-plan ([7, 6]).

As an example of the translation process into extended logic programs, it is
shown the result of this process for the request speech act:

suceeds(E) < act(E,request(s,h,a)), (5)
holds_at(want(s,a), F),
(holds_at(sur face_request(s, h,a), E)or
holds_at(sur face_request(s, h,informif(h, s, cando(h,a)), E)or
holds_at(sur face_in form(s, h, ~cando(s, a)), E)or
holds_at(sur face_in form(s, h,want(s,a)), E)).

initiates(E, want(h,a)) < act(E,request(s,h,a)). (6)
initiates(E, know(h, want(s,a)) < act(F,request(s,h,a)). (7)
After this process the first user utterance creates the following facts:

1. happens(el)
2. act(el, request(passenger, clerk, informref(clerk, passenger, T, train(montreal))))

3. holds-at(knowref(passenger, time(8:50), train(montreal)), el)

describing that the passenger requested to be informed by the clerk about a
given reference of the 8:50 Montreal train.

It is possible to make inferences about the present, past and future situations.
For instance it can be inferred what properties hold as a consequence of the
speech act event:

1. holds-at(X, el)
2. X = want(clerk, informref(clerk, passenger, T, tr(montreal))) and

3. X = know(clerk, want(passenger, informref(clerk, passenger, T, tr(montreal))))

Accordingly with the domain acts library and the speech acts defined by
Litman it is possible to infer that the clerk wants to inform the passenger and
that he knows that the passenger wants to be informed.

On the other hand it is possible to abduct what will hold as a consequence of
this event (accordingly with the plan library):

1. happens(e2), el < €2,
2. holds-at(X, e2), act(e2, A)
3. A = informref(clerk, passenger, gate(7), tr(montreal))

4. X = know(passenger, gate(7), tr(montreal))

It is abducted that the clerk will inform the passenger about the missing
property (it is a cooperative information-seeking dialogue).
Furthermore it’s possible to go deeper and to infer what might happen next:

1. happens(e2), el < €2,

2. happens(e3), €2 < e3,

3. holds-at(X, e3), act(e3, A)

4. A = goto(passenger, gate(7))

5. X = at(passenger, gate(7))

In this situation it’s possible that the passenger will go to the Montreal gate.

If this process is taken deeper, it’s possible to abduct that the passenger will
go to the gate in order to take a train trip (the desambiguation between meeting
and boarding can be done through the access of a train knowledge base with
information about trains, departure and arrival hours and destinations) and that
the action is a first step of the meta-plan introduce-plan.

4.2 Computer mail messages

In these examples (adapted from [11]) problems with dialogues with error
situations are pointed out. In the first example the user plan is incorrect in order
to achieve the user goal while in the second example it’s the user goal that is
impossible to be achieved.

Example 1:

e (Q: I want to talk to Kathy? Do you know the phone number at the hospital?
e A: She’s already been discharged. Her home number is 555-8321.

Example 2:

e (Q: How can I protect my mail messages? I don’t want the system manager
to be able to read them.

e A: Even if you set the protections, the system manager can override them.

In these examples, the plan ascription is made through the inference of the
agents beliefs and intentions. As epistemic operators (describing the agents men-
tal states) we’ve defined the following ([1, 3]):

INT(a, a): agent @ intends to do «
BEL(a, p): agent a beliefs that p is true

ACH(a, p):agent a beliefs p will be true as a consequence of its actions
EXP(a, p) « BEL(a, p) or ACH(a, p)

More complex actions can be constructed from the operators TO e BY:
TO(a, p): the plan of performing « in order to make p true
BY(«, 3, p): the plan of making 8 by doing «, while p is true

It’s also needed to define some rules that connect these epistemic operators:
INT(a, TO(a, p)) < BEL(a, TO(e, p)), INT(a,), ACH(a, p)

These rule means that if an agent beliefs that doing o makes p true, if he
intends to do a and if he wants p to become true, then he intends to do « in
order to make p true.

There is also the corresponding rule for the relation BY:

INT(a, BY(a, 8, p)) < BEL(a, BY(a, $, p)), INT(a, o), INT(a, 8), EXP(a, p)

This rule means that if an agent beliefs that by doing « [is done and if he
intends to do « and 3 and if he expects p to be true, then he intends to do « in
order to do (8 while p is true.

It’s also needed an integrity constraint, showing the inconsistency between
BEL e ACH:

1 «+ BEL(a, p), ACH(a, p)

In fact, it’s impossible to believe simultaneously that p is true and to wish p
to become true.

Using these rules and the Event Calculus it’s possible to reason about the
examples previously presented. In the first example the user question might
create the following facts:

1. happens(el)
2. act(el, request(user, system, infref(system, user, number(N), hospital)))

3. initiates(el, int(user, talk(kathy)))

With these facts and using an abductive inference over the actions and events
it’s possible to infer that:

holds-at(el, int(user, BY (phone(hospital), talk(kathy), at-hospital(kathy))))

The user intention by phoning to the hospital is to talk to Kathy (assuming
she is at the hospital). In order to make this inference there were abducted the
following facts:

1. exp(user, at-hospital(kathy))

2. bel(user, by(phone(hospital), talk(kathy), at-hospital(kathy)))

connected with an event el.
If the system knows that Kathy is at home then the inference is incorrect
from the system’s point of view), and it’s possible the system to infer:
y Y

1. exp(system, at-home(kathy))

2. holds-at(el, bel(system, by(home(hospital), talk(kathy), at-home(kathy))))

With this process it’s possible to generate by the system an answer similar to
the one in the first example.
In the second example, the user question can generate the following facts:

e happens(el)

10

e act(el, request(user, system, infref(system, user, protect(N), mail)))
e initiates(el, int(user, = read(sm, mail)))

In this situation it’s impossible to achieve the desired goal using the rules and
facts known. There is no causal relation between the speech act and the user
goal. The system might inform the user about the impossibility of reaching the
goal (with an adequate explanation).

5 Conclusions and Future Work

We have sketchly presented in this paper a framework that supports the ab-
ductive inference of actions and events through the use of extended logic programs
and the event calculus. This framework allows the implementation of a contra-
diction removal mechanism that is able to remove possible contradictions from
the logic program. Using this mechanism it’s also possible to handle ambiguous
situations in dialogues and to choose the best interpretation for the utterances.

The results obtained show that this framework is able to handle some of the
problems that arise in dialogues (non-specified goals, clarification sub-dialogues,
error situations) and it can support the inference of plans and attitudes in a more
general natural language processing system such as the one described by Lopes
and Quaresma ([8, 12]) where a multi-headed architecture coordinates several
independent modules with the shared objective of supporting a robust natural
language interaction. It will be necessary to evaluate comparatively the results
obtained by Cohen in Levesque ([2]).

References

[1] Douglas E. Appelt and Martha E. Pollack. Weighted abduction for plan
ascription. User Modeling and User-Adapted Interaction, 2(1), 1992.

[2] P. Cohen and H. Levesque. Intention is choice with commitment. Artificial
Intelligence, 42(3), 1990.

[3] P. Cohen, J. Morgan, and M. Pollack. Intentions in Communication. MIT
Press, Cambridge, MA, 1990.

[4] Kave Eshghi. Abductive planning with event calculus. In Proceedings of the
International Conference on Logic Programming, 1988.

[5] R. E. Fikes and Nils J. Nilsson. Strips: A new approach to the application
of theorem proving to problem solving. Artificial Intellligence, (2):189-208,
1971.

11

[6]

[7]

8]

[9]

[10]

[11]

[12]

[13]

D. Litman and J. Allen. A plan recognition model for subdialogues in con-
versations. Cognitive Science, (11):163-200, 1987.

Diane J. Litman. Plan Recognition and Discourse Analysis: An Integrated
Approach for Understanding Dialogues. PhD thesis, Dep. of Computer Sci-
ence, University of Rochester, 1985.

J. G. Lopes. Architecture for intentional participation of natural language
interfaces in conversations. In C. Brown and G. Koch, editors, Natural
Language Understanding and Logic Programming III. North Holland, 1991.

Lode Missiaen. Localized Abductive Planning with the Event Calculus. PhD
thesis, Univ. Leuven, 1991.

Luis Moniz Pereira, José Jilio Alferes, and Joaquim Nunes Aparicio. Contra-
diction removal semantics with explicit negation. In M. Masuch and L. Pélos,
editors, Knowledge Representation and Reasoning Under Uncertainty, Vol-
ume 808 of LNAI, pages 91-106. Springer-Verlag, 1994.

Martha E. Pollack. Inferring Domain Plans in Question-Answering. PhD
thesis, Dep. of Computer and Information Science, University of Pennsylva-
nia, 1986.

P. Quaresma and J. G. Lopes. A two-headed architecture for intelligent
multimedia man-machine interaction. In B. de Boulay and V. Squrev (eds).
Artificial Intelligence V - methodology, systems, applications. North Holland,
1992.

Earl D. Sacerdoti. A Structure for Plans and Behavior. American Elsevier,
New York, 1977.

12

