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Abstract. The most common approach to the text classification prob-
lem is to use a bag-of-words representation of documents to find the
classification target function. Linguistic structures such as morphology,
syntax and semantic are completely neglected in the learning process.
This paper uses another document representation that, while including
its context independent sentence meaning, is able to be used by a struc-
tured kernel function, namely the direct product kernel. The semantic
information is obtained using the Discourse Representation Theory and
similarity function between documents represented by graphs is defined.

1 Introduction

The problem of automatic classification of text documents have great practical
importance, given the huge volume of texts available in the World Wide Web,
catalogues, news, email, corporate databases, medical records of patients, digi-
tal libraries and others. The learning algorithms can be trained to classify docu-
ments, given a sufficient set of training examples previously classified. Some algo-
rithms have been used to automatically classify new articles [21], web pages [10],
automatically learn the reading interests of users [27], and automatically sort
email [28][29].

A common approach to text classification is to use a bag-of-words represen-
tation, where each document is represented by the words it contains and syntax,
punctuation and semantic are ignored.

This paper presents another approach to this problem: using the Discourse
Representation Theory [24], one obtains a semantic representation of each doc-
ument that is then transformed into a graph [16]. This allows the use of kernel
functions [14][25] for structured data. Using Support Vector Machines (SVM) [30]
[31] with these kernels appears to be a good approach since this algorithm is
known to produce good results on text classification tasks.

The paper is organised as follows: Section 2 introduces the used concepts and
tools for Discourse Representation Theory and Kernel Methods; Section 3 pro-
poses a representation of documents that includes their semantic and is fitted for
graph kernel functions and presents a measure of similarity between documents;
Section 4 describes the experiments and presents the results. Conclusions and
future work are pointed out on Section 5.



2 Concepts and Tools

This section introduces basic graph theory concepts, the Discourse Represen-
tation Theory and Kernel Methods for structured data and presents the used
tools.

2.1 Basic graph concepts

A graph G is described usually by a finite set of vertex V , a finite set of edges
E and a function Ψ , G = (V,E, ψ). In labelled graphs there is also a label set
L and a labelling function Λ, that attaches a label to each edge and vertex. In
directed graphs, the function Ψ maps each edge to the pair formed by its initial
and final vertex, Ψ : E → (u, v) ∈ V × V and the edges for which Ψ(e) = (v, v)
are called ties.

A path p is a sequence of vertices vi ∈ V and edges ei ∈ E with Ψ(ei) =
(vi, vi+1) and p = v1, e1, v2, e2, ..., en, vn+1. The path length is equal to the num-
ber of edges in the sequence (n in the previous case).

The adjacency matrix A of a graph is the matrix whose elements [A]ij cor-
respond to the number of edges from vi to vj . If we consider the nth power of
the adjacency matrix (n ∈ N, n ≥ 0), the interpretation is similar: each array
element [A]ij is the number of paths of length n from vertex vi to vertex vj .

2.2 Discourse Representation Theory

Discourse Representation Theory, or DRT, is a specific name for the work of
Hans Kamp as a theoretical framework for dealing with issues in the semantics
and pragmatics of anaphora and tense [23]. It is one of a number of theories
of dynamic semantics, which have come upon the scene in the course of the
past twenty years. The central concern of these theories is to account for the
context dependence of meaning. The distinctive features of DRT, are that it is a
mentalist and representationalist theory of interpretation, and that it is a theory
of the interpretation not only of individual sentences but of discourse, as well.

The main component of DRT is the Discourse Representation Structure
(DRS) [24]. A DRS consists of two parts: the set of discourse referents and
the set of conditions. The discourse referents are variables representing all of
the entities in the DRS. The conditions are the logical statements about these
entities. Here is an example of a DRS representation of the sentence ”He throws
the ball.”.

[ x1, x2, x3:
male(x1), ball(x2), throw(x3),
event(x3), agent(x3, x1), patient(x3, x2)

]



Figure 1 presents the usual graphical representation for the same sentence.
It is possible to observe the referents X1, X2 e X3 and the conditions male(X1),
ball(X2), throw(X3), event(X3), agent(X3,X1) and patient(X3,X2). These
restrictions indicate that X1 is male, X2 is a ball and X3 is an event whose agent
is X1 and patient is X2.

pacient (X3, X2)

throw (X3)

agent (X3, X1)

male (X1)

ball (X2)

X1, X2, X3

event(X3)

Fig. 1. Graphical DRS representation for sentence ”He throws the ball.”

2.3 Kernel Methods

Kernel Methods are a class of algorithms to analyse patterns, whose most known
example is the Support Vector Machine (SVM). Kernel Methods constitute a
popular field of research in the area of machine learning.

Kernel-based machine learning algorithms abandon the explicit representa-
tion of data items in the vector space in which the patterns are to be detected.
Instead, they implicitly mimic the geometry of the feature space by means of the
kernel function – a similarity function that maintains a geometric interpretation
as the inner product of two vectors.

Formally, a kernel is a function k : X × X → R, such that for all x, z ∈ X
k(x, z) = 〈Φ(x), Φ(z)〉 where Φ is a mapping from X to an inner product feature
space.

Support Vector Machines. Support Vector Machines (SVM) [6][30][31] can
be seen as the first practical application of the principle of structural risk min-
imisation. In SVM [22]:

– a predictor variable is called an attribute;
– a transformed attribute used to define the hyperplane is called a feature;
– the task of choosing the most suitable representation is known as feature

selection;
– a set of features that describes one case is called a vector.

The goal of SVM modelling is to find the optimal hyperplane that separates
clusters of vectors in such a way that cases of one value of target variable are



on one side of the hyperplane and cases of the other value are on the other side.
The nearest vectors to the hyperplane are called support vectors.

More formally [7], a support vector machine constructs a hyperplane or a
set of hyperplanes in a high or infinite dimensional space, which can be used for
classification, regression or other tasks. Intuitively, a good separation is achieved
by the hyperplane that has the largest distance to the nearest training data
points of any class (so-called functional margin), since in general the larger the
margin the lower the generalisation error of the classifier.

Whereas the original problem may be stated in a finite dimensional space, it
often happens that in that space the cases are not linearly separable. For this
reason the original finite dimensional space is mapped into a much higher di-
mensional space, presumably making the separation easier in that space. SVM
schemes use a mapping into a larger space so that inner products may be com-
puted easily in terms of the variables in the original space, making the compu-
tational load reasonable. The inner products in the larger space are defined in
terms of a kernel function selected to suit the problem.

Graph Kernels. The application of kernel functions to graph structured data
was introduced independently by Gartner [14] and Kashima [25]. Conceptually
they are based on measures over graphs’ walks with common labels: the first
counts walks with initial and final common labels and the last calculates prob-
abilities of equal label sequences on random walks.

Gartner et al. [15] prove that the computation of a kernel function able
to completely recognise graph structure is NP-hard and introduce a walk based
kernel function that computes in polynomial time including both previous kernels
as special cases. This kernel, known as product graph kernel is based on the
concept of the direct product graph, counting walks on that graph. Product
graphs are a discrete mathematics tool [20] and the direct product graph is
between the four most important ones.

Formally, the product graph kernel between two graphs G1 e G2 is defined
as:

k(G1, G2) =
|Vx|∑

i,j=0

[ ∞∑
n=0

λnA
n
x

]
ij

(1)

where Ax is product adjacency matrix , Ex = E(G1×G2); Vx is the set of vertices
of the direct product, Vx = V (G1×G2); λi is sequence of weights λ0, λ1, . . . such
that λi ∈ R and λi ≥ 0 for all i ∈ N. The adjacency matrix En

x is a square
matrix where the element (i, j) counts the paths of size n between node i and
node j of the direct product graph.

This kernel [8][26] has a major importance because it enables to determine
the degree of similarity between two graphs by returning a new graph that is the
direct product between the original ones. The adjacency matrix of the product
graph counts the number of walks between any two vertex.



Direct Product Graph. Given two labelled graphs G1 = (V1, E1, ψ1) and
G2 = (V2, E2, ψ2), the direct product graph is denoted by G1 ×G2. The vertex
set of the direct product is defined as:

V (G1 ×G2) = (v1, v2) ∈ V1 × V2 : equal(Λ(v1), Λ(v2))

and edge set is defined as:

E(G1 ×G2) = { (e1, e2) ∈ E1 × E2 : ∃(u1, u2), (v1, v2) ∈ V (G1 ×G2)
∧ Ψ1(e1) = (u1, v1) ∧ Ψ2(e2) = (u2, v2)
∧ equal(Λ(e1), Λ(e2)) }

The vertex and edges labels in the product graph G1 × G2 correspond to
the factors labels. More formally, given an edge (e1, e2) ∈ E(G1 × G2) with
Ψ1(e1) = (u1, v1) and Ψ2(e2) = (u2, v2), the value of ΨG1×G2 is:

ΨG1×G2(e1, e2) = ((u1, u2), (v1, v2))

2.4 Tools

Here, we briefly present the graph modelling language, the linguistic information
and machine learning tools used in this work.

Graph Modelling Language. Graph Modelling Language (GML) [19] was
used to represent graphs. GML’s key features include a simple syntax and porta-
bility, extensibility and flexibility. A GML file consists of a hierarchical key-value
lists. Also, in GML graphs can be annotated with arbitrary data structures.

Natural Language Toolkit. This software was originally created in 2001 as
part of a computational linguistics course in the Department of Computer and
Information Science at the University of Pennsylvania. Since then it has been
developed and expanded with the help of dozens of contributors. It has now
been adopted in courses in dozens of universities, and serves as the basis of
many research projects.

The Natural Language Toolkit (NLTK) [1][2][13] is a suite of program mod-
ules, data sets, tutorials and exercises, covering symbolic and statistical natural
language processing. It is written in Python and distributed under the GPL
open source license. NLTK implements among other, prototypes for morpho-
syntactic tagging, text classification, information extraction, parsing, semantics
and anaphora resolution.

The absence of an English grammar for generating DRS from texts, implied
the need for other tools. Nevertheless, its use allows to apply anaphora resolution
to the DRS obtained.



C&C Tools (Candc and Boxer). The C&C tools system is built around a
wide-coverage Combinatory Categorial Grammar (CCG) parser. The parser not
only recovers the local dependencies output by tree-bank parsers, but also the
long-range dependencies inherent in constructions such as extraction and coor-
dination. CCG is a lexicalised grammar formalism, so each word in a sentence is
assigned an elementary syntactic structure. Statistical tagging techniques makes
possible to assign lexical categories with high accuracy and low ambiguity.

C&C also contains a number of Maximum Entropy taggers, including the
CCG supertagger, a POS tagger [12], a chunker, and a named entity recog-
niser [11]. Finally, the various components, including the morphological analyser
are combined into a single application. The output from this application – a
CCG derivation, POS tags, lemmas, and named entity tags – is used by the
Boxer module [3] to produce a semantic interpretation in the form of Discourse
Representation Structures.

Some well known work with this tool have been made, like automatically find-
ing answers for a collection of questions [4] or recognising textual entailment [5].

LibSMV. This tool was used to obtain the text classifier and is an implemen-
tation of Support Vector Machines for classification, regression and estimation
of distribution [9]. Is was chosen among others implementations since it allows
the use of pre-calculated kernel matrixes from personalised kernel functions.

3 Similarity between documents

Most common approaches use a bag-of-words representation, ignoring text syn-
tax and semantics. So the use of semantic information presents a novel approach
to text classification [17].

Discourse Representation Structures allow to represent semantic information
and their transformation into graphs allows the application of the Support Vector
Machine algorithm with the direct product kernel to text classification.

This section introduces the process for obtaining document’s semantic infor-
mation as a graph and the definition of the similarity measure between these
graphs.

3.1 From a text to a DRS

Given a text document, the corresponding DRS is obtained by using NLTK
and C&C tools. The document is presented to NLTK that, in turn, presents
each sentence to Boxer and requests the corresponding DRS. Then, Boxer calls
CANDC obtaining the CCG derivations that allows Boxer to generate the se-
mantic representation as a DRS. This structure is returned to NLTK, allowing
it to subsequent apply anaphora resolution. A scheme of operation can be seen
in Figure 2.

The DRS generated by this system when presented with the sentence ”He
throws the ball.” can be graphically viewed in Figure 1.



NLTK CANDCBOXER

C&C Tools

pacient (X3, X2)

throw (X3)

agent (X3, X1)

male (X1)

ball (X2)

X1, X2, X3

event(X3)

DRS

Text

"He throws the ball."

Fig. 2. Functional diagram for obtaining a DRS from a text.

3.2 From a DRS to a graph

As presented in Section 2.1, a graph is made of vertices and edges. If one considers
that a vertex is an element, an edge can be seen as a relationship between the
connected elements [18].

On the other way and as presented in Section 2.2, a DRS is composed of a
set of discourse referents and a set of conditions: referents identify entities and
conditions represent the constraints associated with those entities.

With these considerations in mind, one can consider that there is some simi-
larity in them: both are made of elements and relations between them. This leads
us to our proposal of representing a DRS as a graph: referents are vertices and
conditions are edges. Figure 3 displays the graph representation for the sentence
”He throws the ball.”. It corresponds to the DRS presented in Figure 1.

X1

male

X2
X3

throw

event

ball

agent

pacient

Fig. 3. Graph representation for the sentence ”He throws the ball.”

3.3 Similarity between graphs

The construction of the direct product graph (see Section 2.3) depends on an
equality function between vertices and edges of graph factors. This function



measures the similarity between the two factors by deciding which vertices and
edges will compose the product. When applied to text documents, this function
will indirectly measure the semantic similarity between two documents.

The analysis of the graphs generated using the approach described in Sec-
tion 3.2 and given that DRSs are obtained independently for each text document,
vertices’ equality can not use vertices labels, since different referents may have
same label in different texts. This implies that vertices’ equality must consider
edges connections.

To obtain the product graph (that considers similarity between graph factors)
there is a need to map the origin and destination vertices that have equal edges.
Since most times, this mapping is not unique, we want to obtain the ’best’
mapping. Our proposal for this mapping is done using a greedy search that
observes the following rules:

1. identify the origin vertex with highest priority being processed:
(a) the highest priority vertex is the one that has a larger number of edges

with identical labels;
(b) in case of a tie priority goes to the farthest path of identical labels edges;

2. ignore destination vertices where there is no equal edges on both graphs,
from the vertex of origin;

3. continue the process sequentially until there is no more vertices to process.

Figure 4 presents two graphs A and B. Figure 5 presents an step-by-step
example of applying the direct product to graphs A and B from figure 4: since
there is edge ’a’ between vertices A and B (graph A) and also between vertices
Z and W (graph B) we match vertex A with vertex Z and vertex B with vertex W,
obtaining the graph displayed in Step 1; Step 2 is obtained by matching vertices
F and M through edge ’b’; graphs displayed in Step 3 and Step 4 are obtained in
the same way.

A

B

C
G

F

E

H

M

a

f

c
h d

b
f

Z

W

N

P

M

K

O

Y

a
h

d

b
f

m

e

Graph A Graph B

Fig. 4. The graphs A and B to obtain their direct product.

3.4 Classification process

For the classification, it is necessary to first calculate the direct product graph
between all pairs of documents. Having these graph products it is then possible



A=Z

B=W

a
A=Z

B=W

F=M

a

b

A=Z

B=W

F=M

E=K

a

d

b

A=Z

B=W
G=P F=M

E=K

a
h

d

b

Step 1 Step 2 Step 3 Final Step

Graph A x B

Fig. 5. Steps performed to obtain direct product from graphs A and B.

to calculate the value of the kernel function (equation 1) that will give us the
degree of semantic similarity between each two documents.

Having the value function for all pairs of documents, we have the kernel
matrix that can be given to the Support Vector Machines algorithm to optimise
the separating hyperplane between classes of documents. Figure 6 illustrates
the process for obtaining the classifier: the matrix kernel of the graph product
function is the LibSVM input that, in turn, generates a classification model.

LibSVM

(Pre-calculated matrix)

Direct Product 
Graph

Classifier

Graph

X1

male

X2
X3

throw

event
ball

agent

pacient

Fig. 6. Functional diagram for obtaining a classifier from text semantic information
(represented as a graph).

4 Experiments

To assess the quality of the tools for obtaining the semantic information from
documents and a valid use of this information in the construction of text clas-
sifiers, we performed a set of experiments. This section describes and evaluates
them.

For the evaluation we used a subset of the most known corpus for text clas-
sification – Reuters-215781 dataset. The Reuters-21578 dataset is a multi-label
1 http://www.daviddlewis.com/resources/testcollections/reuters21578/



classification problem. It was compiled by David Lewis and originally collected
by the Carnegie group, from the Reuters newswire in 1987. We randomly chose
50 documents for each of the five most common classes: earn, acq, money-fx,
grain and crude.

Each document from each class was processed to obtain semantic represen-
tation. The average processing time for generating each DRS was 26.44 seconds
with an average success rate (ratio between the number of DRSs obtained and
the number of texts analysed) of 92.23%.

4.1 Classifier

The graphs generated from the DRSs were then used as the text semantic rep-
resentation for classification. This subsection presents the preliminar results.

Since the process to generate a classifier model is very time consuming,
we randomly selected 25 documents for each of the five classes: acq, crude,
interest, money and trade (taking into attention that documents should be-
long to only one of those classes).

We performed 5 random runs for each pair of classes.We tried several values
for SVM cost parameter (C) in range [0.1..2]. The best results were obtained for
C = 0.2.

For the direct product kernel, we chose λn = γ−n (the parameter that weights
the adjacency matrix En

x for paths of size n), with γ = 2, for distances of size
less than or equal to 4. It corresponds to weights of 1, 1

2 ,
1
4 ,

1
8 for paths of length

1, 2, 3 and 4, respectively. For greater path we considered λn = 0.
Table 1 shows the mean accuracy (and standard deviation) for each binary

problem.

crude interest money-fx trade

acq 51%± 1.6 54%± 3.9 51%± 1.5 52%± 1.5
crude 52%± 1.3 50%± 2.2 52%± 2.4
interest 50%± 2.2 52%± 1.5
money-fx 52%± 1.5

Table 1. Mean and standard deviation accuracy values using graphs to represent text
semantic information.

5 Conclusions and future work

This paper presents a proposal for using documents semantic information for
text classification. Although the set of conducted experiments was limited one
can say that this work presents an interesting proposal since:

– the semantic information is represented in a way that enables the use of
machine learning methods;



– the DRS referents mapping allows the use of this kernel function in a generic
Support Vector Machines algorithm;

– the obtained classifier have accuracy values that are a proof of concept that
is possible to classify documents based on his semantic representation;

However some improvements can be made:

– by analysing the results, a better mapping between referents should be found
to improves the similarity measure between documents;

– by revising the weights assigned to paths of different lengths, an evaluation
of the importance of longer paths could be studied (unlike the geometric
series used that penalise paths with greater length).

As future work we intend to evaluate other mappings between referents. One
such mapping could be to consider as vertex labels the label of its ties. When
having more than one tie, statistical measures may be applied to choose the most
profitable one. This mapping will allow the simple application of direct product
graph, where vertices will be matched by their label.

Other line of work is to perform more tests both extending the number of
documents and classes considered. The use of other datasets should also be
considered.
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