Using Logic Programming to model Multi-Agent
Web Legal Systems — An Application Report

Paulo Quaresma and Irene Rodrigues
Departamento de Informaética

Universidade de Evora
Evora, Portugal

pg,ipr@di.uevora.pt

ABSTRACT

A logic programming framework for the definition of coop-
erative multi-agent legal web information retrieval systems
is proposed. Cooperation is achieved through the use of di-
alogue processing techniques, namely, the inference of the
user intentions and the existence of a pro-active system be-
haviour, which tries to help users in their searches.

The proposed architecture has a core IR module, which ac-
cesses the legal knowledge bases, and three specialised logic
programming agents: an agent manager that receives the
user web initial requests and it establishes the connection
with a specific user agent; a user agent, which is specific to
each user, and it has information about the user profile and
the previous interrogation context; and an agent monitor
that informs the agent manager of the latest changes in the
knowledge bases allowing these changes to be transmitted
to all users which have one of their previous queries results
changed.

The logic programming modules were defined using dynamic
logic programming and LUPS, a language for updates [1,
3]. The proposed framework was implemented in a Linux
environment using XSB Prolog and it was applied to the
legal knowledge base of the Portuguese Attorney General
[15].

The evaluation results show that the integration of dialogue
processing techniques with a legal IR system, allow an im-
provement of the system, namely, decreasing the average
number of interactions per query.

1. INTRODUCTION

Legal information retrieval systems are rapidly increasing
their complexity, namely, the size and the content of their
knowledge bases. As a consequence much work has been
done trying to develop more powerful legal IR systems, inte-

grating reasoning mechanisms with the IR modules, and cre-
ating third generation knowledge based systems [19]. How-
ever, there has not been much work trying to incorporate
human-computer interaction techniques into legal IR sys-
tems. In fact, legal IR systems need a top dialogue layer,
giving them the capability to interact cooperatively with the
users. Cooperation can be achieved through the inference
of the user intentions and goals, the pro-active organization
of the set of retrieved documents accordingly with the users
goals, and the interpretation of the queries taking into ac-
count the previous interaction context.

We propose a new system, which integrates dialogue pro-
cessing techniques with a first generation legal IR system,
and that is able to achieve a better degree of cooperativeness
and to reduce the average number of interactions needed to
retrieve the intended set of documents. In fact, the main
goals of this work are to show the need for dialogue capa-
bilities in legal IR systems and to propose a framework able
to handle these requirements.

As a methodology for developing our system, we decided to
create specialized legal agents, which would communicate
between them, with the users, and with the IR knowledge
bases. These legal agents need to be integrated in a gen-
eral architecture and they should incorporate several typical
characteristics from the agents theory: rationality, memory,
cooperativity.

As logic programming has been previously used with success
to model rational agents and their interactions [12, 3], we
propose the use of the logic programming paradigm to model
legal agents that behave in a rational and cooperatively way.
Namely, we would like our legal agents to be able:

e To infer the ”real” user intentions. When a user asks
for documents with a particular keyword, usually he is
interested in documents that may not have that key-
word and he is not interested in all documents with
that keyword [10, 13].

e To establish cooperative interactions with the users.
The system, taking into account the inferred user in-
tentions, should be able to help the user in the process
of refining his queries.

In order to achieve these goals the logic legal agents need

the capability:

e To model the users mental state (beliefs, intentions,
goals)

e To record the previous user interactions with the sys-
tem (user questions and the system answers) [5, 6].

e To infer new user attitudes from their mental state,
the user interaction history, and the user actions.

e To plan the system’s actions, using the inferred user
attitudes and the system’s cooperative rules of be-
haviour.

e To interact with the information retrieval module, in
order to obtain answer sets of relevant documents;

e To obtain new partitions (labelled clusters) of the re-
trieved set of documents, taking into account the user
model [17, 7].

On the other hand, an architecture for a web legal informa-
tion retrieval system must take into account that:

e The number of users registered in the system is large
(thousands).

e Typically there are more then one user using the sys-
tem at the same instant.

e The users may interrupt their session for large periods
of time.

e The users would like to be informed when a previous
query result changes due to updates in the knowledge
bases.

Taking into account the described requisites and constraints,
the proposed architecture is based on three specialised logic
programming agents:

e An agent manager that receives the user web initial
requests and it is responsible to establish a connection
with a specific user agent;

This agent receives the user initial requests from his
web browser; it verifies if the user is registered and if it
has no pending requests; then, if necessary, it launches
other agent, the user agent.

e A specialised user agent that given an user request
and its interrogation context is able to cooperatively
interact with the user (inferring the user intentions,
and planning the system cooperative actions).

The agent process when it is launched consults the
user database (profile and previous context); receives
the user requests, infers the user attitudes, plans its ac-
tions, accesses the knowledge bases, answers the user;
and updates the user database (interrogation context).

e An agent monitor that informs the agent manager of
the latest changes in the knowledge bases. The changes
are transmitted to all users which have one of their
previous queries results changed.

This agent consults all the users database to check for
differences in the user query results. When there are
changes, the agent sends a request to the user agent
to inform the user about these changes.

This 3-agent architecture was applied to the Portuguese At-
torney General information retrieval system [15] and it is
available in the web (http://www.pgr.pt — in Portuguese).

Our architecture is, as far as we know, different from the
other legal IR systems available. In fact, the integration
of the dialogue processing knowledge (user intentions and
goals, interaction structure, actions and behaviour rules)
with a legal IR system, is a new approach and it allows us
to model nicely the system’s behaviour (cooperative, pro-
active). Moreover, the use of a multi-agent architecture al-
lowed us to modularize our solution, specializing the agents,
and being able to handle future extensions of the system
(through the use of new agents or the extension of existent
ones).

Some of the modules of our system can be compared with
other existent legal IR systems. For instance, our IR module
is based on SINO [8] and it was changed in a way that has
many similarities with the work described in [4], namely,
allowing the extraction of textual information using local-
ization, inference, and controlled vocabulary. As in [11], we
are also able to use concepts and a concept taxonomy in or-
der to retrieve sets of documents. On the other hand, in the
dialogue processing domain, our approach has similarities
with the work of Carberry [5] and Litman [9] through the
use of speech acts to recognize plans and with Pollack[13],
which represents plans as mental attitudes.

2. DYNAMICLPAND LUPS

Before describing the systems’ architecture it is necessary
to briefly present the dynamic logic programming paradigm
and the language used to represent actions'.

2.1 Dynamic Knowledge Representation

Given an original knowledge base KB, and a set of update
rules represented by the updating knowledge base KB', it
is possible to obtain a new updated knowledge base KB* =
KB®K B’ that constitutes the update of the knowledge base
K B by the knowledge base KB'. In order to make the mean-
ing of the updated knowledge base KB ® KB’ declaratively
clear and easily verifiable, in [1] there is a complete semantic
characterisation of the updated knowledge base KB® KB'.
It is defined by means of a simple, linear-time transforma-
tion of knowledge bases KB and KB’ into a normal logic
program written in a meta-language. As a result, not only
the update transformation can be accomplished very effi-
ciently, but also query answering in KB&K B’ is reduced to
query answering about normal logic programs.

!This section is based on a previous work describing LP and
LUPS [3]

2.2 Language for Dynamic Representation of
Knowledge

Knowledge evolves from one knowledge state to another as
a result of knowledge updates. Given the current knowledge
state K S, its successor knowledge state KS' = KS[KB]|
is generated as a result of the occurrence of a non-empty
set of simultaneous (parallel) updates, represented by the
updating knowledge base K B.

Dynamic knowledge updates, as described above, did not
provide any language for specifying changes of knowledge
states. Accordingly, in [2] it was introduced a fully declara-
tive, high-level language for knowledge updates called LUPS
“Language of UPdateS”) that describes transitions between
consecutive knowledge states KS,. It consists of update
commands, which specify what updates should be applied to
any given knowledge state K S, in order to obtain the next
knowledge state K'S,+1. In this way, update commands al-
low us to implicitly determine the updating knowledge base
KBy 1. The language LUPS can therefore be viewed as a
language for dynamic knowledge representation.

The simplest update command consists of adding a rule to
the current knowledge state and has the form: assert (L +
Ly,...,Lyg). For example, when a law stating that abortion
is illegal is adopted, the knowledge state might be updated
via the command: assert (illegal < abortion).

In general, the addition of a rule to a knowledge state may
depend upon some preconditions being true in the current
state. To allow for that, the assert command in LUPS has
a more general form:

assert (L < Li,...,Ly) when (Lgy1,...,Lm) (1)

The meaning of this assert command is that if the precondi-
tions Lgy1,..., L, are true in the current knowledge state,
then the rule L <— Lq,..., L should hold true in the suc-
cessor knowledge state. Normally, the so added rules are
inertial, i.e., they remain in force from then on by inertia,
until possibly defeated by some future update or until re-
tracted.

However, in some cases the persistence of rules by inertia
should not be assumed. Take, for instance, the simple ac-
tion request help. This is likely to be a one-time event that
should not persist by inertia after the successor state. Ac-
cordingly, the assert command allows for the keyword event,
indicating that the added rule is non-inertial.

assert event (L < Li,..., L) when (Lg41,...,Lm) (2)

Update commands themselves (rather than the rules they
assert) may either be one-time, non-persistent update com-
mands or they may remain in force until cancelled. In order
to specify such persistent update commands (which we call
update laws) there is the syntax:

always [event] (L < Ly, ...,Ly) when (Ligt1,- .., Lm) (3)
To cancel persistent update commands, we use:

cancel (L < Ly,...,Ly) when (Lkt1,...,Lm) (4)

To deal with rule deletion, we employ the retraction update

command:
retract (L < Li,...,Ly) when (Lgt1,...,Lm) (5)

meaning that, subject to precondition Lg41,..., Ly, the
rule L < Li,...,L; is retracted. Note that cancellation
of a persistent update command is very different from re-
traction of a rule. Cancelling a persistent update means
that the given update command will no longer continue to
be applied, but it does not remove any inertial effects of the
rules possibly asserted by its previous application(s).

3. THE SYSTEM ARCHITECTURE

As it was pointed out in section 1 the architecture is based on
an information retrieval module and three specialised logic
agents:

e An information retrieval module, which is the respon-
sible for accessing the legal knowledge bases and inter-
acting with the other legal logic agents.

e An agent manager that receives the user web initial
requests and it is responsible to establish a connection
with a specific user agent;

e A specialised user agent that given an user request
and its interrogation context is able to cooperatively
interact with the user (inferring the user intentions,
and planning the system cooperative actions).

e An agent monitor that informs the agent manager of
the latest changes in the knowledge bases. The changes
are transmitted to all users that have one of their pre-
vious queries results changed.

As it can be seen in figure 1, each user initially communicates
with the agent manager, which redirects the event to the
specific user agent (launching the user process, if needed).
In order to obtain a cooperative answer, each user agent
infers the user intentions and it interacts with the informa-
tion retrieval module. Afterwards, it updates the interaction
structure and communicates the answer to the user.

On the other hand, the monitor agent is always accessing
the databases and the interaction structures trying to detect
changes in the given answers. Then, it informs the agent
manager, which will inform the change to the user process
agent.

This architecture was implemented in a Linux environment
using XSB Prolog.

4. THE INFORMATION RETRIEVAL

The information retrieval system is based on SINO [8] from
the AustLII Institute. SINO was changed in order to be
adapted to the Portuguese Language. Namely, the new sys-
tem uses the Portuguese lexicon (more than 900,000 words)
in order to handle morphological errors and to obtain the
base queried word. For instance, if the user asks to be
informed about documents where a specific word appear,
the systems also searches for documents containing derived
words (plurals for nouns, verbal forms for verbs, ...). We

User 1 User n
Monitor | — |Manager
UlAgent| - Un Agent

Interaction
Structure- Ul

Interaction
Structure- Un

Databases

Figure 1: General architecture

also have a chart parser for a subset of the Portuguese lan-
guage which is able to analyze the input and to extract a
semantic interpretation of the sentence.

As a top layer over the basic IR system we are using a juridi-
cal terms thesaurus. This thesaurus is a result from another
project: PGR - Selective access of documents from the Por-
tuguese Attorney General.

The juridical terms thesaurus can be described as a taxon-
omy which has the relations:

e is equivalent to

ex: law is equivalent to norm
e is generalised by

ex: prime minister is generalised by minister
e is specified by

ex: accident is specified by traffic accident

e is related with

ex: desertion is related with traffic accident

The thesaurus is used to expand queries to include all the
values that are equivalent or more specific or related, with

the initial query. For instance, the user query ”documents
about accidents?” is expanded to the query ”documents
about accidents or traffic accidents or ...”, which includes
all the related and the more specific terms of accident.

The result is a core IR system, which has many similarities
with the work described in [4], namely, allowing the extrac-
tion of textual information using localization, inference, and
controlled vocabulary.

5. THE AGENT MANAGER

The agent manager receives the initial user requests, analy-
ses them and redirects them to the respective user agent.

As it is not possible to have all the user agents running at
the same time (we expect thousands of users), our solution
was to have alive only the user agents correspondent to the
active users. So, one of the agent manager tasks is to keep
track of the active users and to launch the respective user
agent, if needed.

This behaviour is described by the following logic program-
ming rules:

always inform(Manager, AGENT_ID,A)
when request(USER_ID,Manager,A),
alive(AGENT_ID)

always alive(AGENT_ID) < launch(AGENT_ID)

As described, these rules state that after a request from the
user ID, the user process agent is launched (if needed) and
the user action is redirected to it. Note that launch is a
external system call, which will be the responsible to check
if the AGENT._ID is running and, if needed, to start its
process. As an example, suppose the agent manager receives
a request from the user Joe to be informed about documents
about militaries:

request(joe, manager, informref(manager, joe, X,
(doc(X), about(X,militaries)))).

Using the previous rules, the inference engine will try to sat-
isfy alive(joe_agent) and it will execute the external func-
tion launch(joe_agent). This function will, eventually, start
the joe_agent process. The effect of the main rule will be
the action:

inform (manager,joe_agent,
request(joe, joe_agent, informref(joe_agent, joe,
X, (doc(X), about(X,militaries)))).

Note that the agent manager changes the actions’ agents
(manager to joe_agent) during the redirection of the actions.

Another task of the agent manager is to receive information
from the monitor agent about database changes related to
user queries (see section 7). The received information is
redirected to the user agent and it can be used afterwards to
inform the user of the database changes. The correspondent
dynamic logic programming rule is:

always inform(Manager, AGENT_ID,P)
when inform(MONITOR,Manager,P)

For instance the following action:
inform(monitor, manager, changed(request(joe, ...)))
will be redirected to the user agent:

inform(manager,joe_agent,changed(request(joe,. ..)))

6. THE USER AGENT

This agent is specific to each user and processes its requests.
It is launched by the agent manager to handle user requests.
The agent receives the user request and it consults the user
database to obtain the interpretation context for the user re-
quest. After, the agent needs to infer the user intentions and
to plan its own actions. It accesses the knowledge bases, via
the information retrieval module, and it answers the user.

In summary, to fulfill a user request the agent must:

e Load the user interaction context. The interaction
context is a structure where all the previous user and
system interactions are kept.

e Interpret the user act in the interaction context. The
agent must infer the user intentions and beliefs from
its actions (multimodal).

e Perform a set actions that are inferred, in order to
fulfill the user intentions.

e Save the new interaction context for this user.

6.1 Theuser requests
This agent is expecting one of the following requests from
the user:

o A request that results from a multimodal act, such as:

— A request to return to a previous point of the
interaction:
request(USER_ID, AGENT_ID,new_context(Val))
The users have access to a representation of their
interaction context, a tree with labels represent-
ing the requests. In order to generate this mul-
timodal act the user clicks on the tree node rep-
resenting the previous request. For instance, the
user Joe may click on the tree node ” Uranium” in
figure 2 and the following event will be created:
request(joe, joe_agent, new_context(Uranium,)

— A request to refine the previous selected set of
documents with an expression (built with key-
words connected by ands and ors):
request(USERID,AGENT_ID,refine(Expr))

e A natural language expression in the form of a speech
act (as in the example of the previous section):

Military | | Cancer

Figure 2: Interaction context tree

1. request(USER_ID,AGENT_ID,
inform(AGENT_ID,USER_ID,S))

2. request(USER_ID,AGENT_ID,
inform_ref(AGENT_ID,USER_ID, REF,S))

e A request from the agent monitor to inform the user
that one of his previous requests has a different result
due to changes in the documents database.

request(Monitor, AGENT_ID,
inform(AGENT_ID,USER_ID, changes(Request))

This set of requests will enable the inference of the user
intentions and the planning of the agent’s actions, as it will
be shown in section 6.3.

6.2 Theuser interaction context

The user interaction context is kept in a dialogue structure.
This structure records both user and system questions and
answers. The structure is used to compute the meaning of
a user query and to allow the user to return to a previous
point of the dialogue and to build a new branch from there.

The Dialogue structure is made of segments that group sets
of sentences (user and system sentences). The dialogue
structure reflects the user intentions; it is built by taking into
account the user and the system intentions. The dialogue
segments have precise inheritance rules defining how seg-
ments heritage their attributes from the attributes of their
sentences. The dialogue structure also enables the system
to recognise and to generate pertinent discourse phenomena
such as anaphoric references.

In order to interpret a user request this agent must insert the
new request into the user dialogue structure and, as result
of this process, a new structure is built.

The following LUPS rule controls the insertion of the user
request in the dialogue structure:

always ds(DSo) < update(U,DS_1,S,DSy) when
request(U,A,S), ds(DS-1).

This rule means that, when there is a request S and a dis-
course structure DS_1, the new structure is obtained from
the update of the old structure with the new request.

To fulfill the user request, the agent will generate an action
A, that is added to the old dialogue structure giving rise to
a new one:

always ds(DS1) < update(Ag,DSy,A,DS1) when
action(Ag,A), ds(DSo).

DS, will be the structure to be used for the interpretation
of the next request by this user.

The update predicate defines how a new sentence is inserted
in the existent discourse structure. As the code of this pred-
icate is rather large, it will not be presented here. Instead,
we will present the correspondent algorithm:

o If it is possible to join the semantic representation of
the sentence with the last discourse segment, then the
system assumes the user is refining his previous query.
Suppose the user first asks about ” militaries” and then
asks about ”cancer”; the system infers that he is in-
terested in ”militaries with cancer”.

e It it is not possible to join the sentence with the previ-
ous discourse segment, the system tries to join it with
a visible segment in the discourse structure (i.e. an an-
cestor of the last node in the tree dialogue structure).

e It it is not possible to join the sentence with any vis-
ible discourse segment, then the system assumes it is
a sub-dialogue about a new subject and it creates a
new segment without any ancestors in the tree dia-
logue structure.

6.3 Theinference of user attitudes

In order to be collaborative our system needs to infer the
user attitudes (intentions and beliefs). This task is also
achieved through the use of logic programming framework
rules and the dynamic LP semantics.

The system’s mental state is represented by an extended
logic program that can be decomposed in several modules
(see [14] for a complete description of these modules):

— Description of the effects and the pre-conditions of the
actions in terms of beliefs and intentions;

— Definition of behaviour rules that define how the attitudes
are related and how they are transferred between the users
and the system (cooperatively).

For instance, the rules which describe the effect of an in-
form and a request speech act from the point of view of the
receptor (assuming cooperative agents) are:

always bel(A,bel(B,P))
when inform(B,A,P)

always bel(A,int(B,Action))
when request(B,A,Action)

In order to represent collaborative behaviour it is necessary
to model how information is transferred from the different
agents:

always bel(A,P) when bel(A,bel(B,P))
always int(A,Action) when bel(A,int(B,Action))

These two rules allow beliefs and intentions to be transferred
between agents if they are not inconsistent with their previ-
ous mental state.

After each event (for instance a user question) received by
the user agent, the agents’ model (logic program) is up-
dated with the description of the event that occurred. Then,
the user agent calculates the new user model (well founded
model of the logic program) and infers the user attitudes.

As an example, suppose the already presented example of a
request from the user Joe: Documents about militaries?

This sentence is analyzed by a chart parser and a semantic
interpretation module and it is translated into a request act
to the agent manager:

request(joe, manager, informref(manager, joe, X,
(doc(X), about(X,militaries)))).

The agent manager informs the specialized user agent about
this request:

inform (manager,joe_agent,
request(joe, joe_agent, informref(joe_agent, joe,
X, (doc(X), about(X,militaries)))).

Then, using the request rule, the user agent infers:

bel(joe_agent, int(joe,
informref(joe_agent, joe, X,
(doc(X), about(X,militaries)))).

Using the collaborative rule for the transference of beliefs,
we have:

int(joe_agent,
informref(joe_agent, joe, X,
(doc(X), about(X,militaries)))).

Using the inferred intentions, the user agent will plan its
actions and it will answer the user (as it will be shown in
the next section).

6.4 Theagent actions

The agent actions are the result of an abductive planning
process, which tries to satisfy the inferred system intentions.

Suppose I is the set of inferred system intentions at a given
time and that A is the set of correspondent intended ac-
tions (each intention has as object an action). The planning
process is started by the creation of a new set of logical con-
straints, such that, for each intended action there exists an
associated constraint stating that the action must be per-
formed.

For instance, the intended action of the previous section will
create the following constraint:

false <+ —informref(joe_agent, joe, X,
(doc(X), about(X, militaries)))).

This constraint states that if it is not possible to have the in-
formref action performed, then we will have a contradictory
state.

After the creation of this set of constraints, the user agent
will abduce the set of actions needed to satisfy the con-
straints. Note that in a general domain, this task may not
be always possible. However, in this domain we assume that
the user agent is always able to satisfy the user intentions
through the access of the IR modules (this means that it is
always possible to answer a user query).

In our example, the solution is quite simple and it is the
informref action:

informref(joe_agent, joe, X,
(doc(X), about(X,militaries))))

The abduced agent actions need to be performed and its
results should be answered to the user. So, the actions are
communicated to the IR module and its results are obtained.
They may be of the following kind:

o A set of documents that match the user query.

The set of documents is obtained by sending to the in-
formation retrieval search engine, SINO, the command
”sino > search Q”, with Q being the interpretation of
the user request.

As stated before, our information retrieval system is
based on SINO, a text search engine from the AustLII
Institute [8], that allows boolean and free text queries.

o A set of suggestions for further refinement of the user
current query, i.e. a list of lists with keywords to be
displayed.

These suggestions are obtained by:

— building labelled clusters of documents [16]. The
clusters are obtained through the use of a Scat-
ter/Gather algorithm [7] which clusters documents
into topically-coherent groups based on a existent
document classification (from the Portuguese At-
torney General Office).

— using domain knowledge. The domain knowledge
will supply a set of concepts that can be used as
suggestions for the user query refinement. Sup-
pose we have the following rules:

always military < air_force
always military <— navy
always military < army

In this situation, if the user asks for ”militaries”,
the user agent should be able to suggest the fol-
lowing possible refinements: air-force, navy, army.
This behaviour is achieved through the calcula-
tion of the models that support the user goal and
allowing the abduction of these predicates.

The following logic programming rule is used in order to
obtain the described user agent behaviour:

always int(AGENT_ID,inform(AGENT ID,USER_ID,R)
when abduced_actions(A), sino(A, R).

This rule means that, after having abduced a plan (ie. a
set of actions), the user agent sends the actions to the SINO
module and it will receive an answer (as described before),
This answer will be the object of a new intended inform
action from the user agent to the agent. In our example, it
might be the following intention:

int(joe_agent, inform(joe_agent, joe,
X in [docl, doc32, ..],
refine_by(air_force,navy,army)))

6.5 Theagent top goal

The agent top goal is to receive a request and to act cooper-
atively, namely, to infer the user intentions, plan the agent
actions, obtain answers from the IR system and give them
back to the user. Then, it saves its states and, if nothing
happens after some pre-defined period of time, it launches
the goal terminates (it assumes the user has closed the con-
nection).

always act(SYSTEM,Actions)
when request(USER,SYSTEM,R),
infer_intentions(USER,I),
add_constraints(I),
plan_actions(P),
infer_intentions(SYSTEM,I),
obtain_actions(I,Actions).

always terminates
when act(SYSTEM,A), save_state, wait(T).

7. THE AGENT MONITOR

The agent monitor informs the agent manager about the
users that must be informed of the latest changes in the
documents database.

This agent runs after any change in the knowledge bases,
and it tries to find the users that may have the results of
their previous sessions changed by the update.

It consults all user databases to check for differences in each
user query result. When there are changes the agent sends
a new request to the agent manager process.

A user may define in his profile if wants to be informed when
there are relevant changes in the documents database.

The main agent monitor tasks are:
1. To build a list with all the users that want to be warned

whenever there are relevant changes in the documents
database.

2. For each user in this list it opens the user database
where the interaction context is kept and consults the
dialogue structure.

3. Then, for each user request it checks if the new inter-
pretation, after the changes, give the same results.

This is done by requesting the user agent to check the
old user query. In order to check if the request re-
sults are the same, the agent monitor must compare
the new agent action with the old one (just the list of
documents selected by the query).

4. Whenever there are changes in the results of a user
request interpretation this agent sends a message to
the agent manager with the request:

request(Monitor,Manager,
inform(Manager, USERID, changes(Request))

The agent manager is responsible for sending this re-
quest into the agent user, which will use it in the next
inference process.

8. INTERACTION EXAMPLE

Suppose the user (Joe) is a parent of a military that is cur-
rently in a peace mission in Kosovo. He is worried about his
son possible health problems caused by uranium bombs and
he wants to find out if there are similar cases in the legal
knowledge bases.

[User - Q1:] Documents about militaries?

As it was already shown, this sentence is translated into the
following speech act:

request(joe, manager, informref(manager, joe, X,
(doc(X), about(X,militaries)))).

This speech act is the basis of an inference process that
supports the following system intention:

int(joe_agent, informref(joe_agent, joe, X,
(doc(X), about(X,militaries)))).

This intention is be used in the planning process and it leads
to the abduction of the correspondent informref action. The
abduced action is sent to the IR module and the answer is
shown to the user:

[System - Q2:] There are 124 documents, listed in the right
frame. For further refinement you may choose one (or none)
option in each column:

Militaries belonging to the:
air-force
navy
army

Documents with keyword:
pensions
illnesses

Options in column 1 are obtained using rules that model
legal knowledge about militaries. Options on column 2 are
obtained by clustering the set of 124 documents.

[User - Q3:] chooses: army and illnesses.

This user action is interpreted in the context of the exis-
tent dialogue structure and it is inferred that it may be a
refinement of the previous query:

request(joe, manager, informref(manager, joe, X,
(doc(X), about(X,militaries),
about(X,army), about(X,illnesses)))).

Then, the same approach is followed and the system answer
is:

[System - Q4:] There are 13 documents, listed in the right
frame. For further refinement you may choose one (or none)
option in each column:

Documents with keyword:
pensions
cancer

Options in this column are obtained by re-clustering the 13
documents.

[User - Q5:] Documents about cancer.

Again, the user sentence is interpreted in the context of the
dialogue structure and it is inferred that it might be another
query refinement:

request(joe, manager, informref(manager, joe, X,
(doc(X), about(X,militaries),

about(X,army), about(X,illnesses),

about(X, cancer)))).

[System - Q6:] There are 5 documents that match the con-
cept, I’ve listed them in the usual frame. For further refine-
ment you may choose one (or none) option in each column:

Documents with keyword:
lungs
leukemia

[User - Q7:] Uranium?

After this user query, the system infers that there are no
documents about the conjunction of all the previous con-
cepts so, probably, it is not a new refinement of the last
query but a refinement of one of its ancestors (as described
in section 6.2).

[System - Q8:] Since there are no documents of the 5 above
that match your new constraint, I assume that you want
your query to refine Q3, i.e. you are looking for documents
about militaries and ”army and illnesses” and ”Uranium”.
Do you want to see these documents?

[User - Q9:] Yes.

This example shows some of the flexibility and cooperative-
ness of the system, allowing users to dynamically refine their
queries and helping them in a pro-active way, giving hints
and clustering the retrieved documents.

During the interaction, the tree representation of the dia-
logue is being inferred and displayed in a visual tree-diagram.
As an example, the tree representation of the previous ex-
ample would be the following:

(Q5-Q6] (Q7-Q8-Q9]

9. EVALUATION

As it is widely known, the evaluation of legal systems with
knowledge representation and reasoning capabilities are a
very complex and difficult task [18].

The main goal of this evaluation process was not to evaluate
the information retrieval module but the impact of cooper-
ativity in the interaction process with the users.

We have defined two sets of users: one using the cooperative
agent technology and the other accessing directly the infor-
mation retrieval module. We have recorded their queries
during the second semester of the year 2000 and the prelim-
inary results seem to show that our system is able to help
the users decreasing the average number of queries needed
to obtain the desired documents (around 20%).

At the moment, we are beginning another evaluation pro-
cess: users from both sets are asked to obtain specific doc-
uments and the number of iterations needed to retrieve the
documents is measured. Finally, we will compare the results
obtained with and without the cooperation module.

10. CONCLUSIONS

We have presented a logic programming based architecture
for cooperative multi-agent legal web information retrieval
systems. Cooperation is achieved through the integration of
dialogue processing techniques with standard IR modules.

The architecture is based on three kind of agents: the agent
manager, which interacts with the user and with the spe-
cialised user agents; the user agents, which have the knowl-
edge specific to each user and interacts cooperatively with
them; and the monitor agent, which tries to detect changes
in the databases and to inform the users about them. The
architecture was implemented using XSB Prolog over a legal
information retrieval system (available in Portuguese from
http://www.pgr.pt).

The evaluation results, showed that our cooperative sys-
tem is able to help the users decreasing the average number

of queries needed to obtain the desired documents (around

20%).

As future work, we intend to obtain more evaluation results
(quantitative and qualitative) and to apply our system to
other legal information retrieval systems, namely to non-
Portuguese legal documents. We will also intend to apply
the system to other domains.

Acknowledgements
We would like to thank the ICAIL referees for their helpful
comments on the first version of this paper.

11. REFERENCES

[1] J. J. Alferes, J. Leite, L. M. Pereira, H. Przymusinska,
and T. Przymuzinski. Dynamic logic programming. In
Proc. of KR’98, 1998.

[2] J. J. Alferes, L. M. Pereira, H. Przymusinska, T. C.
Przymusinski, and P. Quaresma. Preliminary
exploration on actions as updates. In M. C. Meo and
M. Vilares-Ferro, editors, Procs. of the 1999 Joint
Conference on Declarative Programming (AGP’99),
pages 259-271, L’Aquila, Italy, September 1999.

[3] J. J. Alferes, L. M. Pereira, H. Przymusinska, T. C.
Przymusinski, and P. Quaresma. Dynamic knowledge
representation and its applications. In S. Cerri and
D. Dochev, editors, Proceedings of the 9th
International Conference on Artificial Intelligence -
Methodology, Systems, Applications (AIMSA’2000),
number 1904 in Lecture Notes in Artificial
Intelligence, pages 1-10, Varna, Bulgary, September
2000. Springer Verlag.

[4] T. Bueno, C. von Wangenheim, E. Mattos,
H. Hoeschl, and R. Barcia. Jurisconsulto: Retrieval in
jurisprudencial text bases using juridical terminology.
In Proceedings of the ICAIL’99 — Tth International
Conference on Artificial Intelligence and Law, pages
147-155. ACM, June 1999.

[6] S. Carberry and L. Lambert. A process model for
recognizing communicative acts and modeling
negotiation subdialogs. Computational Linguistics,
25(1), 1999.

[6] J. Chu-Carroll and S. Carberry. Response generation
in planning dialogues. Computational Linguistics,
24(3), 1998.

[7] D. R. Cutting, J. O. P. D. R. Karger, and J. W. Tukey.
Scatter/gather: A cluster-based approach to browsing
large document collections. In Proc. 15th Annual Int’l
ACM SIGIR Conf. on R6D in IR, June 1992.

[8] G. Greenleaf, A. Mowbray, and G. King. Law on the
net via austlii - 14 m hypertext links can’t be right?
In In Information Online and On Disk’97 Conference,
Sydney, 1997.

[9] D. Litman and J. Allen. A plan recognition model for
subdialogues in conversation. Cognitive Science, 11(1),
1987.

[10]

[11]

[12]

[13]

[14]

[19]

K. E. Lochbaum. A collaborative planning model of
intentional structure. Computational Linguistics,
24(4), 1998.

J. Osborn and L. Sterling. A judicial search tool using
intelligent concept extraction. In Proceedings of the

ICAIL’99 — 7th International Conference on Artificial
Intelligence and Law, pages 173-181. ACM, June 1999.

L. M. Pereira and P. Quaresma. Modelling agent
interaction in logic programming. In O. Yoshie, editor,
INAP’98 - The 11th International Conference on
Applications of Prolog, pages 150-156, Tokyo, Japan,
September 1998. Science University of Tokyo.

M. Pollack. Plans as complex mental attitudes. In

P. Cohen, J. Morgan, and M. Pollack, editors,
Intentions in Communications. MIT Press Cambridge,
1990.

P. Quaresma and J. G. Lopes. Unified logic
programming approach to the abduction of plans and
intentions in information-seeking dialogues. Journal of
Logic Programming, 54, 1995.

P. Quaresma and I. Rodrigues. Pgr: A cooperative
legal ir system on the web. In G. Greenleaf and

A. Mowbray, editors, 2nd AustLII Conference on Law
and Internet, Sydney, Australia, 1999. Invited paper.

P. Quaresma and I. P. Rodrigues. Automatic
classification and intelligent clustering for wwweb
information retrieval systems. Journal of Information
Law and Technology (JILT), 2, 2000.
http://elj.warwick.ac.uk/jilt/00-2/ — Extended and
revised version of the BILETA’2000 paper.

G. Salton. Automatic text processing: the
transformation, analysis, and retrieval of information
by computer. Addison-Wesley, 1989. Reading, MA.

A. Stranieri and J. Zeleznikow. The evaluation of legal
knowledge base systems. In Proceedings of the
ICAIL’99 — 7th International Conference on Artificial
Intelligence and Law, pages 18-24. ACM, June 1999.

J. Yearwood and A. Stranieri. The integration of
retrieval, reasoning and drafting for refugee law: a
third generation legal knowledge based system. In
Proceedings of the ICAIL’99 — Tth International
Conference on Artificial Intelligence and Law, pages
117-125. ACM, June 1999.

