Using NLP techniques to create legal ontologies in alogic
programming based web information retrieval system

José Saias and Paulo Quaresma
Departamento de Informatica,

Universidade de Evora,

7000 Evora, Portugal
jsaias|pq@di.uevora.pt

ABSTRACT

Web legal information retrieval systems need the capability
to reason with the knowledge modelled by legal ontologies.
Using this knowledge it is possible to represent and to make
inferences about the semantic content of legal documents.

In this paper a methodology for applying NLP techniques to
automatically create a legal ontology is proposed. The on-
tology is defined in the OWL semantic web language and it
is used in a logic programming framework, EVOLP+ISCO,
to allow users to query the semantic content of the doc-
uments. ISCO allows an easy and efficient integration of
declarative, object-oriented and constraint-based program-
ming techniques with the capability to create connections
with external databases. EVOLP is a dynamic logic pro-
gramming framework allowing the definition of rules for ac-
tions and events.

An application of the proposed methodology to the legal
web information retrieval system of the Portuguese Attorney
General’s Office is described.

1. INTRODUCTION

Modern web legal information retrieval systems need the
capability to represent and to reason with the knowledge
modelled by legal ontologies. In fact, ontologies allow the
definition of class hierarchies, object properties, and rela-
tion rules, such as, transitivity or functionality. Using this
knowledge it is possible to represent semantic objects, to as-
sociate them with legal documents, and to make inferences
about them.

OWL (Ontology Web Language) is a language proposed by
the W3C consortium (http://www.w3.org) to be used in the
”semantic-web” environment for the representation of on-
tologies. This language is based in the previous DAML+OIL
(Darpa Agent Markup Language - [13]) language and it is

defined using RDF (Resource Description Framework - [8]).

In this paper a methodology to automatically create an
OWL ontology from a set of legal documents is proposed.
The methodology is based on natural language processing
techniques, namely, a syntactical parser and a semantic an-
alyzer able to obtain a partial interpretation of the docu-
ments. A preliminary version of this work aiming to create
a daml+oil ontology was presented in [12].

This task has similarities with the the work of Boer et al.
[5] in the context of the IST programme E-POWER and E-
COURT. However, we do not intend to propose any kind of
standard for legal ontologies; our aim is to define a method-
ology to automatically create a base ontology from a specific
set of legal documents.

After the creation of the OWL legal ontology, documents
are enriched with instances of legal classes and a logic pro-
gramming based framework is used to support inferences
over them. The logic programming framework is based on
ISCO [1] and EVOLP [2].ISCO is a new declarative language
implemented over GNU Prolog with object-oriented predi-
cates, constraints and allowing simple connections with ex-
ternal databases. EVOLP is a dynamic logic programming
language that is able to describe actions and events, allowing
the system to make inferences about events, user intentions
and beliefs and to be able to have cooperative interactions.

Section 2 describes the natural language processing tech-
niques used to create the OWL ontology. Section 3 describes
ISCO, the basic logic programming framework. Section 4 de-
scribes EVOLP, the dynamic logic programming framework
defined over ISCO and Prolog. Section 5 describes the in-
teraction manager and section 6 provides a simple example.
Finally, in section 7 some conclusions and future work are
pointed out.

2. OWL ONTOLOGY CREATION

The OWL ontology is created from the output of natural
language processing tools:

e Text syntactical parsing. The documents are analysed
by the parser developed by E. Bick in the domain of the
VISL project (http://visL.hum.sdu.dk/visl [4]). This
parser is available for 21 different languages, namely



for the Portuguese language.

e Actions extraction. From the parser output, actions
were extracted with their associated agents and direct
objects.

The syntactical parser developed by E. Bick in the domain of
the VISL project is based in the Constraint Grammars for-
malism and it is able to cover a large percentage of the Por-
tuguese language. However, its output is in a non-standard
format and it was necessary to transform it into XML. A
translation tool was developed in Prolog and it is available
to the VISL users.

Having an XML version of the documents parse tree, several
XSLT transformations were created allowing the extraction
of specific chunks of the tree. Using this approach it was
possible to obtain a set of verbs and their associated agents
(subjects) and direct objects. This set of entities were trans-
formed into OWL instances and associated with the docu-
ments.

As an example, suppose the following sentence:

O bombeiro salvou a crianga. The fireman saved the child.
This sentence has the VISL output:

STA:fcl

SUBJ :np

=>N:art(’o’ M S) 0
=H:n(’bombeiro’ M S) bombeiro

P:v-fin(’salvar’ PS 3S IND) salvou
ACC:np
=>N:art(’a’ F S) a

=H:n(’crianca’ F S) crianca

As it can be seen, the subject, predicate and direct object
were correctly parsed. From this output, our XML transla-
tor produces three files:

1. The first file links each word with a word tag with a
specific id.

<!DOCTYPE words SYSTEM "words.dtd">
<words>

<word id="word_1">0</word>

<word id="word_2">bombeiro</word>
<word id="word_3">salvou</word>
<word id="word_4">a</word>

<word id="word_5">crianca</word>
<word id="word_6">.</word>

</words>

2. The second file associates each word with its part-of-
speech information.

<!DOCTYPE words SYSTEM "wordsP0S.dtd">
<words>

<word id="word_1">

<art canon="o" gender="M" number="S"/>
</word>

<word id="word_2">

<n canon="bombeiro" gender="M" number="S"/>
</word>

<word id="word_3">

<v canon="salvar">

<fin tense="PS" person="3S" mode="IND"/>
</v>

</word>

<word id="word_4">

<art canon="a" gender="F" number="S"/>
</word>

<word id="word_5">

<n canon="crianca" gender="F" number="S"/>
</word>

</words>

3. The third file has the parsing structure.

<!DOCTYPE text SYSTEM "text_ext.dtd">

<text>

<paragraph id="paragraph_1">

<sentence id="sentence_1" span="word_1..word_6">

<chunk id="chunk_1" ext="subj" form="np"
span="word_1..word_2">

<chunk id="chunk_2" ext="n" form="art" span="word_1">

</chunk>

<chunk id="chunk_3" ext="h" form="n" span="word_2">

</chunk>

</chunk>

<chunk id="chunk_4" ext="p" form="v_fin" span="word_3">

</chunk>

<chunk id="chunk_5" ext="acc" form="np"
span="word_4..word_5">

<chunk id="chunk_6" ext="n" form="art" span="word_4">

</chunk>

<chunk id="chunk_7" ext="h" form="n" span="word_5">

</chunk>

</chunk>

</sentence>

</paragraph>

</text>

From this XML structure, using XSL transformations, it is
quite easy to obtain the subject, predicate and acc (direct
object) chunks.

The extracted chunks are used to automatically create an
ontology of entities. Figure 1 show a graphical view of the
top-level classes:

The following OWL code defines class Document with two
properties: number and title.

<owl:Class rdf:ID="Document">
<owl:label>Document</owl:label>
</owl:Class>

<owl:DataTypeProperty rdf:ID="number">

<owl:domain rdf:resource="#Document"/>

<owl:type rdf:resource="&owl;FunctionalProperty"/>
<owl:range rdf:resource="&xsd;integer"/>
</owl:DataTypeProperty>

<owl:DataTypeProperty rdf:ID="title">

<owl:domain rdf:resource="#Document"/>

<owl:type rdf:resource="&owl;FunctionalProperty"/>
<owl:range rdf:resource="&xsd;string"/>
</owl:DataTypeProperty>



Document Entity
number:int name:string
title:string
Subjec
Ver
DocumentID

Object

Action

Figure 1: Top-level classes

This code defines classes Action and Entity (with property
name).

<owl:Class rdf:ID="Action">
<owl:label>Action</owl:label>
</owl:Class>

<owl:Class rdf:ID="Entity">
<owl:label>Entity</owl:label>
</owl:Class>

<owl:DataTypeProperty rdf:ID="name">

<owl:domain rdf:resource="#Entity"/>

<owl:type rdf:resource="&owl;FunctionalProperty"/>
<owl:range rdf:resource="&xsd;String"/>
</owl:DataTypeProperty>

This code relates Action and Entity through four different
object properties: subject, verb, object, documentID. This
means that each action is characterized by the document
where it appears and by its subject, verb,and object entities.

<owl:0bjectProperty rdf:ID="subject">
<owl:domain rdf:resource="#Action"/>
<owl:range rdf:resource="#Entity"/>
</owl:0bjectProperty>

<owl:0ObjectProperty rdf:ID="object">
<owl:domain rdf:resource="#Action"/>
<owl:range rdf:resource="#Entity"/>

</owl:0bjectProperty>

<owl:0bjectProperty rdf:ID="verb">
<owl:domain rdf:resource="#Action"/>
<owl:range rdf:resource="#Entity"/>
</owl:0bjectProperty>

<owl:0bjectProperty rdf:ID="documentID">
<owl:domain rdf:resource="#Action"/>
<owl:range rdf:resource="#Document"/>
</owl:0bjectProperty>

This code gives examples of entities and one document.

<pgr:Entity rdf:ID="el42">
<pgr:name>fireman</pgr:name>

</pgr:Entity>

<pgr:Entity rdf:ID="e21">
<pgr :name>child</pgr:name>
</pgr:Entity>

<pgr:Entity rdf:ID="e32">
<pgr:name>to save:name>
</pgr:Entity>

<pgr:Document rdf:ID="d2">

<pgr :number>555</pgr : number>

<pgr:title>Pension for relevant services</pgr:title>
</pgr:Document>

As it was referred, the next step was to add semantic infor-
mation to each document:

e For each extracted verb, an instance of the correspon-
dent action with its subject and direct object was cre-
ated. For example, in document 555 the verb to save
and the entities fireman and child are related by the
following links:

<pgr:Action rdf:ID="al">
<pgr:subject rdf:resource="#e142"/>
<pgr:object rdf:resource="#e21"/>
<pgr:verb rdf:resource="#e32"/>
<pgr:documentID rdf:resource="#d2"/>
</pgr:Action>

This code means that in document 555 there is an instance of
an action with verb to save and having a fireman as subject
and a child as direct object.

3. I1SCO

ISCO [1] is a logic based development language implemented
over GNU Prolog that gives the developer several distinct
possibilities:

e It supports Object-Oriented features: classes, hierar-
chies, inheritance.

e It supports Constraint Logic Programming. Specifi-
cally, it supports finite domain constraints in ISCO
queries.

e it gives a simple access to external relational databases
through ODBC. It has a back-end for PostgreSQL and
Oracle.

e It allows the access to external relational databases as
a part of a declarative/deductive object-oriented (with
inheritance) database. Among other things, the sys-
tem maps relational tables to classes — which may be
used as Prolog predicates.

e It gives a simple database structure description lan-
guage that can help in database schema analysis. Tools
are available to create an ISCO database description
from an existing relational database schema and also
the opposite action.



The proposed system uses ISCO’s capability to establish
connections from Prolog to relational databases in an effi-
cient and simple way. For example, the following SQL table:

CREATE TABLE "document" (
"number" int4 NOT NULL,
"title" text,

Constraint "number_pkey"

Primary Key ("number")

);

Maps into the following ISCO class definition (and vice-
versa):

external (pgr,document) class document.
number: int. key.
title: text.

Taking this ISCO feature into account, a translator from
OWL into ISCO class definitions was developed. This trans-
lator was applied to every OWL class described in the previ-
ous section and, as a consequence, correspondent SQL tables
and ISCO classes definitions were obtained. Moreover, each
OWL class instance was transformed into an SQL table row
and an ISCO logic programming fact. As an example, the
action al presented previously is translated into the follow-
ing fact:

action(ID=al, subject=’#el142’, object=’#e21’,
verb=#e32’, documentID="#d42’).

For each defined class a set of Prolog predicates implement-
ing the four basic operations are created: query, insert, up-
date and delete.

Variables occurring in queries are mapped to SQL and may
carry CLP(FD) constraints, which will be expressed in SQL,
whenever possible. For example, suppose variable X is an FD
variable whose domain is (1..1000), the query

document (number = X, title = Y)

will return all pairs (X, Y) where X is a document number
and Y is the document’s title. X is subject to the constraints
that were valid upon execution of the query, ie. in the range 1
to 1000.

ISCO class declarations feature inheritance, simple domain
integrity constraints and a global integrity constraints.

4. EVOLP

As it was described in the previous section, ISCO allows a
declarative representation of ontologies and object instances.
However, there is also a need to represent actions and to
model the evolution of the knowledge.

In [3] it was introduced a declarative, high-level language for
knowledge updates called LUPS ( “Language of UPdateS”)
that describes transitions between consecutive knowledge

states. Recently, a new language, EVOLP [2], was pro-
posed having a simpler and more general formulation of
logic program updates. In this section a brief description of
the EVOLP language will be given. The interested reader
should refer to the cited article for a detailed description of
the language and of its formalization.

EVOLP allows the specification of a program’s evolution,
through the existence of rules which indicate assertions to
the program. EVOLP programs are sets of generalized logic
program rules defined over an extended propositional lan-
guage Lgssert, defined over any propositional language L in
the following way [2]:

e All propositional atoms in L are propositional atoms
in Lassert

e If each of Lo,..., L, is a literal in Lgssert, then Lo «—
Li,...,Ly is a generalized logic program rule over
Lassert~

e If R is a rule over Lqssert then assert(R) is a proposi-
tional atom of Lgssert.

e Nothing else is a propositional atom in Lgssert-

The formal definition of the semantics of EVOLP is pre-
sented at the referred article, but the general idea is the
following: whenever the atom assert(R) belongs to an in-
terpretation, i.e. belongs to a model according to the stable
model semantics of the current program, then R must be-
long to the program in the next state. For instance, the
following rule form:

assert(b «— a) «— ¢ (1)

means that if ¢ is true in a state, then the next state must
have rule b < a.

EVOLP has also the notion of external events, i.e. assertions
that do not persist by inertia. This notion is fundamental to
model interaction between agents and to represent actions.
For instance, it is important to be able to represent actions
and its effects and pre-conditions:

assert(E f fect) «— Action, PreConditions (2)

If, in a specific state, there is the event Action and if Pre-
Conditions hold, then the next state will have Effect.

5. INTERACTION MANAGEMENT
The interaction manager is built on the ISCO+EVOLP logic
programming framework.

As final goal, we aim to handle the following kind of ques-
tions:
e Documents where action A is performed

e Documents where action A is performed having sub-
ject S

e Documents where S is the subject of an action



Note that the inference engine needs to be able to deal with
the ontology relations. For instance, the question ”docu-
ments where action A is performed having subject S” means
”documents where action A (or any of its sub-classes) is per-
formed having subject S (or any of its sub-classes)”.

The interaction manager is composed by the following main
tasks:

e Query management

e Interaction management

5.1 Query management
The analysis of a natural language query is split in three
subprocesses: Syntax, Semantics, and Pragmatics.

511 Syntax

As syntactic analyser we are using the analyzer developed
by E. Bick and referred previously [4]. The VISL output
is translated into Prolog facts by the same translator re-
ferred in section 2. This translation can be handled by the
same translator because there is a direct relation between
the XML structure and the Prolog term structure.

As an example, the following query:

Quais os documentos em que bombeiros salvaram criangas?
“Which are the documents where firemen saved children?”

Has the following syntactical structure:

sentence(
sc(pron_det(’qual’,’M/F’,’P’,’<interr>’),’Quais’),
subj (np),
n(art(’o’,’M’,’P’),%0s’),
h(n(’documento’,’M’,’P’), ’documentos’),
advl(prp(’em’),’em’),
acc(fcl,
sub(conj_s(’que’),’que’),
subj (n(’bombeiro’,’M’,’P’), ’bombeiros’),
p(v_fin(’salvar’,’PS/MQP’,’3P’,’IND’),’salvaram’),
acc(n(’crianca’,’F’,’P’),’criancas’, ’7’)))).

5.1.2 Semantics

Each syntactical structure is translated into a First-Order
Logic expression. The technique used for this analysis is
based on DRS’s (Discourse Representation Structures [7]).
The semantic representation of a sentence is a DRS built
with two lists, one with the rewritten sentence and the other
with the sentence discourse referents. For instance, the se-
mantic representation of the sentence above is the following
expression:

document(A), fireman(B), save(C), child(D), action(E),
rel(E, B, C, D),
rel(A, E).

and the following discourse referents list:
[ref(A),ref(B),ref(C),ref(D),ref(E)]

These structures represent instances of firemen B, instances
of children D and instances of the save action C, which are
related by action instances F in documents D.

Note that, at present, we are not able to deal with general
unrestricted queries and to translate them from a syntactical
into a semantic structure. In fact this a quite complex NLP
problem and we have decided to deal only with specific sub-
sets of the Portuguese language, namely, with interrogatives
about specific domains.

5.1.3 Pragmatic Interpretation

The pragmatic module receives the semantic query represen-
tation and tries to interpret it in the context of the database
information, which was constructed from the translation of
the OWL instances into ISCO facts (as described previously
in section 3).

In order to achieve this behavior the system tries to find
the best explanations for the sentence logic form to be true
in the knowledge base. This strategy for interpretation is
known as “interpretation as abduction” [6]. This process
was described in detail by Quintano et al. in [11].

From the description of the OWL (and ISCO) classes it is
possible to obtain the correspondent ISCO query:

document(id=A),

fireman(id=B),

save(id=C),

child(id=D),

action(id=I, subject=B, verb=C, object=D, documentID=A).

This query was obtained using additional logic programming
rules for the rel predicate, such as the following:

rel(A, B, C, D) <-
action(Ad),
entity(B),
verb(C),
entity(D),
abduct (action(A,B,C,D,_)).

Note that the ontology hierarchy is used to infer that fireman
and children are entities and to save is an action.

The interpretation of the ISCO predicates is done by ac-
cessing the database in order to collect (and constraint) all
entities identifiers:

- I =4 (104..109 : 156..157) — I constrained to all actions with
the desired properties

- A =4 (123 :145) — A is constrained to the documents that have
instances of the correspondent actions

The above expression contains the possible interpretations
of the query in the context of the database.

5.2 Interaction Management

The interaction manager has to represent the actions asso-
ciated with the queries (informs or request), and to model
the user attitudes (intentions and beliefs).

This task is also achieved through the use of the EVOLP
language (see [10, 9] for a more detailed description of these
rules). For instance, the rules which describe the effect of
an inform, and a request speech act are:



assert(bel(A, bel(B, P))) < inform(B, A, P). (3)
assert(bel(A, int(B, Action))) « request(B, A, Action)(4)

These rules mean that if an agent A is informed of a prop-

erty P, then it will start to believe that the other agent
believes in P; additionally, if B requests A to perform an
action Action, then A starts to believe that B intends Action
to be performed.

In order to represent collaborative behavior it is also neces-
sary to model the transference of information between the
agents:

assert(bel(A, P)) « bel(A, bel(B, P)). (5)
assert(int(A, Action)) < bel(A,int(B, Action)). (6)

These two rules means that if an agent A believes another
agent believes in P, then it will start to believe in P (it is
a cooperative, credulous agent); moreover, it will also adopt
the intentions of the other agents.

There is also the need for a rule linking the system intentions
and the accesses to the databases:

assert(inf(A, B, P)) «— int(A,inf(A, B, P)),isco(P).(7)
assert(not int(A, B,inf(A, B, P))) «— inf(A,B,P). (8)

The first rule defines that, if the system intends to inform
the user about some property, then it will access the ISCO
database and it will perform an inform action. The second
rule means that the inform action will end the intention to
perform the inform action!

6. EXAMPLE

Considering the already presented query:

Quais os documentos em que bombeiros salvaram criangas?
“Which are the documents where firemen saved children?”

The interaction manager receives the query pragmatic inter-
pretation:

Q = [ document(id=A),

fireman(id=B),

save(id=C),

child(id=D),

action(id=I, subject=B, verb=C, object=D, documentID=A) |.

After having the sentence rewritten into its semantic repre-
sentation form, the speech act is recognized:

request (user, system, inform(user, system, Q))

Using the request and the transference of intentions rules
the following property is supported:

int(system,inform(system, user, Q))

Now, using the rules presented in the previous section, the
system accesses the ISCO databases and it is able to obtain
the final constraints to the discourse referent variables:

- I =4 (104..109 : 156..157) — I constrained to all actions with
the desired properties

- A =4 (123 :145) — A is constrained to the documents that have
instances of the correspondent actions

Using the inferred constraints it is possible to obtain the set
of solutions to the user query and to answer him:

“Documento P123 e documento P145”
Document P123 and document P145.

7. CONCLUSIONSAND FUTURE WORK

A methodology to automatically create a legal ontology was
proposed. The methodology used a syntactical analyser to
obtain sentence parse trees and XSL transformations to ex-
tract triples of subject-verb-objects. These triples are used
to define and to create instances of entities and actions. The
obtained ontology and the inferred instances are represented
in the OWL language and are used to enrich the initial doc-
uments.

On the other hand, translators from OWL into ISCO/Prolog
were developed and a logic programming based interaction
manager was developed. The interaction manager uses many
important features from its base LP framework: objects,
constraints, inheritance.

At present, the system is in a prototype phase and it needs
work in many areas:

e Ontology creation. The ontology was created auto-
matically but it was not possible to create many hier-
archical relations between the classes. In order to be
able to define these relations we intend to have two
approaches:

— Create connections with existent ontologies

— Manually define ontologies for specific sub do-
mains

e Normalisation of concepts. The parsing process was
not able to eliminate all entities duplicates and incor-
rections.

e OWL translation into ISCO/Prolog. A full translation
of the OWL language needs to be implemented.

e Evaluation. The system needs to be evaluated and to
be tested by users.

8. REFERENCES

[1] Salvador Abreu. Isco: A practical language for
heterogeneous information system construction. In
Proceedings of INAP’01, Tokyo, Japan, October 2001.
INAP.



2]

8]

[4]

[5]

[6]

[7]

8]

[9]

(10]

J. Alferes, A. Brogi, J. Leite, and L. Pereira. Evolving
logic programs. In S. Flesca, S. Greco, N. Leone, and
G. Tanni, editors, JELIA’02 — Proceedings of the 8th
European Conference on Logics and Artificial
Intelligence, pages 50-61. Springer-Verlag LNCS 2424,
2002.

J. J. Alferes, L. M. Pereira, H. Przymusinska, T. C.
Przymusinski, and P. Quaresma. Preliminary
exploration on actions as updates. In M. C. Meo and
M. Vilares-Ferro, editors, Procs. of the 1999 Joint
Conference on Declarative Programming (AGP’99),
pages 259-271, [’Aquila, Italy, September 1999.

Eckhard Bick. The Parsing System ”Palavras”.
Automatic Grammatical Analysis of Portuguese in a

Constraint Grammar Framework. Aarhus University
Press, 2000.

A. Boer, R. Hoekstra, R. Winkels, T. van Engers, and
F. Willaert. Proposal for a dutch legal xml standard.
In EGOV2002 — Proceedings of the First International
Conference on Electronic Government, 2002.

Jerry Hobbs, Mark Stickel, Douglas Appelt, and Paul
Martin. Interpretation as abduction. Technical Report
SRI Technical Note 499, 333 Ravenswood Ave., Menlo
Park, CA 94025, 1990.

H. Kamp and U. Reyle. From Discourse to Logic.
Kluwer, Dordrecht, 1993.

O. Lassila and R. Swick. Resource Description
Framework (RDF') - Model and Syntaz Specification.
W3C, 1999.

P. Quaresma and J. G. Lopes. Unified logic
programming approach to the abduction of plans and
intentions in information-seeking dialogues. Journal of
Logic Programming, 54, 1995.

Paulo Quaresma and Irene Rodrigues. Using logic
programming to model multi-agent web legal systems
— an application report. In Proceedings of the
ICAIL’01 - International Conference on Artificial
Intelligence and Law, St. Louis, USA, May 2001.
ACM.

Luis Quintano, Irene Rodrigues, and Salvador Abreu.
Relational information retrieval through natural
lanaguage analysis. In Proceedings of INAP’01, Tokyo,
Japan, October 2001. INAP.

José Saias and Paulo Quaresma. Semantic enrichment
of a web legal information retrieval system. In

T. Bench-Capon, editor, JURIX’2002 - Fifteenth
Annual International Conference on Legal Knowledge
and Information Systems, London, UK, Dezember
2002. IOS Press.

www.daml.org. DAML+OIL — DARPA Agent Markup
Language, 2000.



