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Departamento de Informática
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7000-671 Évora, Portugal

tcg@di.uevora.pt

Paulo Quaresma
Departamento de Informática
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ABSTRACT

Text classification is an important task in the legal domain.
In fact, most of the legal information is stored as text in a
quite unstructured format and it is important to be able to
automatically classify these texts into a set of concepts.

Support vector machines (SVM) have shown to be good
classifiers for text bases [Joachims, 2002]. In this paper,
SVM are applied to the classification of legal texts – the
Portuguese Attorney General’s Office Decisions – and the
relevance of linguistic information in this domain, namely
lemmatisation and part-of-speech tags, is evaluated.

The obtained results showed that linguistic information can
be successfully used to improve the classification results and,
simultaneously, to decrease the number of features needed
by the learning algorithms.

1. INTRODUCTION

The learning problem can be described as finding a general
rule that explains data given a sample of limited size. In
supervised learning, we have a sample of input-output pairs
(the training sample) and the task is to find a deterministic
function that maps any input to an output such that the
disagreement with future input-output observations is min-
imised. If the output space has no structure except whether
two elements are equal or not, we have a classification task.
Each element of the output space is called a class. The
supervised classification task of natural language texts is
known as text classification.

Text classification is also an important task in the legal do-

main. In fact, most of the legal information is stored as text
in a quite unstructured format and it is important to be able
to automatically classify these texts into a set of concepts.

Research interest in this field has been growing in the last
years. Several learning algorithms were applied such as de-
cision trees [Tong & Appelbaum, 1994], linear discriminant
analysis and logistic regression [Schütze et al. , 1995], näıve
Bayes algorithm [Mladenić & Grobelnik, 1999] and Support
Vector Machines (SVM)[Joachims, 2002].

In the legal domain, much work has been done in data
and text classification tasks. For instance, [Wilkins & Pil-
laipakkamnatt, 1997] used decision trees to extract rules to
estimate the number of days until the final disposition of
cases; [Zeleznikow & Stranieri, 1995] developed rule based
and neural networks legal systems; [Borges et al. , 2003] used
neural networks to model legal classifiers; [Thompson, 2001]
proposes a framework for the automatic categorisation of
case law; [Schweighofer & Merkl, 1999, Schweighofer et al.
, 2001] describes the use of self-organising maps (SOM),
to obtain clusters of legal documents in an information re-
trieval environment and explores the problem of text clas-
sification in the context of the European law; [Liu et al. ,
2003] describes classification and clustering approaches to
case-based criminal summaries and [Brüninghaus & Ash-
ley, 2003, Bruninghaus & Ashley, 1997] describe also re-
lated work using linear classifiers for documents. However,
in these research work the relevance of linguistic information
in legal classification tasks is not studied in detail.

In our work, the application of support vector machines to
the problem of legal text classification is described and an
evaluation of the relevance of linguistic information is per-
formed.

In previous work, we evaluated the SVM performance com-
pared with other Machine Learning algorithms [Gonçalves
& Quaresma, 2003] and in [Silva et al. , 2004], linguistic in-
formation was applied to the preprocessing phase of text
mining tasks. In this one, we apply a linear SVM to a
legal text base, the Portuguese Attorney General’s Office
dataset – PAGOD [Quaresma & Rodrigues, 2003], perform-
ing a thorough study on several preprocessing techniques
such as feature reduction, feature subset selection and term
weighting.



The relevance of using some linguistic information, such as
lemmatisation and part-of-speech tags (POS), to reduce the
number of features is studied in detail and showed that it is
possible to strongly reduce the number of features and the
complexity of the legal text classification problem without
loosing accuracy.

We also considered another experiment trying to evaluate
the impact of the imbalance nature of this dataset: we
made a balancing experiment by over-sampling and con-
cluded that it generates better performance, especially for
those categories with worse results when using the original
number of positive and negative examples.

In Section 2, a brief description of the Support Vector Ma-
chines theory is presented, while in Section 3 the PAGOD
dataset is characterised. Section 4 describes our experimen-
tal setup and Section 5 our experiments. Conclusions and
future work are pointed out in Section 6.

2. SUPPORT VECTOR MACHINES

Support Vector Machines, a learning algorithm introduced
by Vapnik and coworkers [Cortes & Vapnik, 1995], was mo-
tivated by theoretical results from the statistical learning
theory. It joins a kernel technique with the structural risk
minimisation framework.

Kernel techniques comprise two parts: a module that per-
forms a mapping into a suitable feature space and a learning
algorithm designed to discover linear patterns in that space.
The kernel function, that implicitly performs the mapping,
depends on the specific data type and domain knowledge of
the particular data source. The learning algorithm is gen-
eral purpose and robust. It’s also efficient, since the amount
of computational resources required is polynomial with the
size and number of data items, even when the dimension of
the embedding space grows exponentially [Shawe-Taylor &
Cristianini, 2004]. Four key aspects of the approach can be
highlighted as follows:

• Data items are embedded into a vector space called
the feature space.

• Linear relations are discovered among the images of
the data items in the feature space.

• The algorithm is implemented in a way that the coor-
dinates of the embedded points are not needed; only
their pairwise inner products.

• The pairwise inner products can be computed effi-
ciently directly from the original data using the kernel
function.

These stages are illustrated in Figure 2.

The structural risk minimisation (SRM) framework creates
a model with a minimised VC dimension. This developed
theory [Vapnik, 1998] shows that when the VC dimension
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Figure 1: Kernel function: The nonlinear pattern of
the data is transformed into a linear feature space.

of a model is low, the expected probability of error is low as
well, which means good performance on unseen data (good
generalisation).

SVM can also be derived in the framework of the regulari-
sation theory instead of the SRM one. The idea of regular-
isation, introduced by Tickonov and Arsenin [Tikhonov &
Arsenin, 1977] for solving inverse problems, is a technique
to restrict the (commonly) large original space of solutions
into compact subsets.

3. DATASET DESCRIPTION

The working dataset (PAGOD – Portuguese Attorney Gen-
eral’s Office Decisions), has 8151 legal documents and rep-
resents the decisions of the Portuguese Attorney General’s
Office since 1940. It is written in the European Portuguese
language, and delivers 96 MBytes of characters. All doc-
uments were manually classified by juridical experts into a
set of categories belonging to a taxonomy of legal concepts
with around 6000 terms.

Each PAGOD document is classified into multiple categories
so, we have a multi-label classification task. Normally, this
task is solved by splitting it into a set of binary classification
tasks and considering each one independently.

A preliminary evaluation showed that, from all potential
categories only about 3000 terms were used and from all
8151 documents, only 6388 contained at least one word on all
experiments. For these documents, we found 77723 distinct
words, and averages of 1592 words and 362 distinct words
per document.

Table 1 presents the top ten categories (the most used ones)
and the number of documents that belongs to each one.

4. EXPERIMENTAL SETUP



category # docs
pensão por serviços excepcionais
/ excepcional services pension 906
deficiente das forças armadas
/ army injured 678
prisioneiro de guerra
/ war prisoner 401

estado da Índia
/ India state 395
militar
/ military 388
louvor
/ praise 366
funcionário público
/ public officer 365
aposentação
/ retirement 342
competência
/ authority 336
exemplar conduta moral e ćıvica
/ exemplary moral and civic behavior 289

Table 1: PAGOD’s top ten categories: label and
number of documents.

This section presents the choices made in our study: how
did we represent a document, the kind of procedure we used
to reduce/construct features, the process for obtaining the
part-of-speech tags and how we measured learners’ perfor-
mance.

The linear SVM was run using the WEKA [Witten & Frank,
1999] software package from the Waikato University from
New Zealand, with default parameters performing a 10-fold
cross-validation procedure.

To represent each document we chose the bag-of-words ap-
proach, a vector space model (VSM) representation: each
document is represented by the words it contains, with their
order and punctuation being ignored. From the bag-of-
words we removed all words that contained digits.

To measure learner’s performance we analysed precision, re-
call and the F1 measures [Salton & McGill, 1983] of the
positive class. These measures are obtained from contin-
gency table of the classification (prediction vs. manual clas-
sification). For each performance measure we calculated the
micro- and macro-averaging values of the top ten categories.

Precision is the number of correctly classified documents
divided by the number of documents classified into the class.

Recall is given by the number of correctly classified docu-
ments divided by the number of documents belonging to the
class.

F1 is the weighted harmonic mean of precision and recall and
belongs to a class of functions used in information retrieval,
the Fβ-measure. Fβ can be written as follows

Fβ(h) =
(1 + β2)prec(h)rec(h)

β2prec(h) + rec(h)

Macro-averaging corresponds to the standard way of com-
puting an average: the performance is computed separately
for each category and the average is the arithmetic mean
over the ten categories.

Micro-averaging does not average the resulting performance
measure, but instead averages the contingency tables of the
various categories. For each cell of the table, the arithmetic
mean is computed and the performance is computed from
this averaged contingency table.

All significance tests were done regarding a 95% confidence
level.

5. EXPERIMENTS

This section presents all SVM experiments made. First we
used some typical information retrieval preprocessing tech-
niques. Then, using the best setup, we used part-of-speech
tags as a feature selection procedure. For each of these
two classes of experiments we also considered balancing the
dataset by over-sampling.

5.1 IR preprocessing experiments

We considered three classes of preprocessing experiments:
feature reduction/construction, feature subset selection and
term weighting. For each of class, we considered several
different values. This subsection describes them.

5.1.1 Feature Reduction/Construction
On trying to reduce/construct features we used some linguis-
tic information: we applied a Portuguese stop-list (the set of
non-relevant words such as articles, pronouns, adverbs and
prepositions), and POLARIS (a lexical database) to gener-
ate the lemma for each Portuguese word. We made three
different experiments:

• rdt1: consider all words of the original documents (ex-
cept, as already mentioned, the ones that contained
digits)

• rdt2: consider all words except the ones that belong
to the stop-list

• rdt3: consider all words (but the ones that belong to
the stop-list) transformed onto its lemma

5.1.2 Feature Subset Selection
For the feature subset selection we used a filtering approach,
keeping the features that receive higher scores according to
different functions:



• scr1: term frequency. The score is the number of times
the feature appears in the dataset; only the words oc-
curring more frequently are retained;

• scr2: mutual information. It evaluates the worth of an
attribute by measuring the mutual information with
respect to the class. Mutual Information, I(C;A),
is an Information Theory measure [Cover & Thomas,
1991] that ranks the information received to decrease
the uncertainty. The uncertainty is quantified through
the Entropy, H(X).

• scr3: gain ratio – GR(A, C). The worth is the gain
ratio with respect to the class. Mutual Information is
biased through attributes with many possible values.
Gain ratio tries to oppose this fact by normalising mu-
tual information by the feature’s entropy.

Mutual information and gain ratio are defined in terms of
the probability function p(x) where C is the class and A is
the feature. H(C|A) is the class entropy when we know the
feature’s value. These quantities are defined by the following
expressions:

H(X) = −
X

x

p(x) log
2
p(x)

I(C; A) = H(C) − H(C|A)

= −
X

c

p(c) log
2
p(c) +

+
X

a

p(a)
X

c

p(c|a) log
2
p(c|a)

GR(A,C) =
I(C; A)

H(A)

For each filtering function, we tried different threshold val-
ues. This threshold, for the term frequency scoring function,
is the number of times the feature appears in all documents.
We performed experiences for thr1, thr50, thr100, thr200,
thr400, thr800, thr1200 and thr1600, where thrn means that
all words appearing less than n are eliminated.

For the mutual information and gain ratio scoring functions,
thrn means that we select the same number of features that
would be selected by the term frequency scoring function
with the thrn threshold value.

Table 2 shows the number of features obtained for each
combination of feature reduction/construction and feature
subset selection experiments. The last two rows show, per
document, the average number of all (avgall) and distinct
(avgdistinct) features.

Term Weighting
Term weighting techniques usually consist of three compo-
nents: the document component, the collection component

rdt1 rdt2 rdt3
thr1 68886 68688 42423

thr50 9479 9305 5983
thr100 6439 6275 4413
thr200 4238 4085 3147
thr400 2578 2440 2115
thr800 1515 1390 1332

thr1200 1076 962 956
thr1600 831 724 743
avgall 1339 802 768

avgdistinct 306 277 215

Table 2: Number of features for each threshold value
and feature construction/reduction combination.

and the normalisation component. In the final feature vec-
tor x, the value xi for word wi is computed by multiplying
the three components.

Document component captures statistics about a particular
term in a particular document. Its basic measure is the term
frequency – TF (wi, dj). It is defined as the number of times
word wi occurs in document dj .

The collection component assigns lower weights to terms
that occur in almost every document of a collection. Its
basic statistic is the document frequency – DF (wi), i.e. the
number of documents in which wi occurs at least once.

The normalisation component adjusts weights so that small
and large documents can be compared on the same scale.

We made experiments for the following combination of com-
ponents:

• wgt1: binary representation. Each word occurring in
the document has weight 1; all others have weight 0.
The resulting vector is normalised to unit length.

• wgt2: raw term frequencies. – TF (wi, dj): is the num-
ber of times word wi occurs in document wj .

• wgt3: normalised term frequencies. It uses TF (wi, dj)
normalised to unit length.

• wgt4: TFIDF representation. Is TF (wi, dj) multiplied
by log(N/DF (wi)) where N is the total number of
documents and DF (wi) is the number of documents
in which wi occurs. The quantity is normalised to unit
length.

These IR preprocessing experiments can be represented graph-
ically in a n-dimensional space. First we have a three dimen-
sion space with one axis for feature reduction/construction,
feature subset selection and term weighting. In each axis
there are three or more possible values that represents dif-
ferent experiments. The feature subset selection axis is then
”sub-divided” in another two: the scoring function and the
threshold value. Figure 5.1.2 shows one of the possible ex-
periments.



Figure 2: Graphical representation of the IR exper-
iments.

5.1.3 Results
Here, we only show the F1 micro- and macro-averaging mean
values for all feature subset selection threshold values (thr1,
thr50, . . . , thr1600). Tables 3 and 4 show the results.

wgt1 wgt2 wgt3 wgt4
rdt1 0.743 0.666 0.733 0.723

scr1 rdt2 0.749 0.665 0.751 0.748
rdt3 0.746 0.642 0.754 0.749
rdt1 0.750 0.697 0.740 0.731

scr2 rdt2 0.756 0.695 0.752 0.745
rdt3 0.749 0.673 0.750 0.740
rdt1 0.740 0.672 0.731 0.714

scr3 rdt2 0.740 0.671 0.735 0.719
rdt3 0.734 0.642 0.731 0.712

Table 3: Micro-averaging mean F1 value for each
scoring function, feature reduction and term weight-
ing combination.

The rdt1, scr3, wgt2 and wgt4 experiments presented the
worst values. Other combinations of experiments showed
very similar, better results.

We used the rdt2.scr2.wgt3.thr400 setting for the remaining
experiments: rdt2 is easier and faster to obtain, src3 and
wgt3 produce more stable results and thr400 was always on
the set of the best values and presents a good trade-off be-
tween the performance and the time consumed to generate
the model.

5.2 Part-of-speech tag experiments

wgt1 wgt2 wgt3 wgt4
rdt1 0.645 0.479 0.628 0.612

scr1 rdt2 0.651 0.480 0.650 0.638
rdt3 0.648 0.457 0.654 0.639
rdt1 0.645 0.513 0.621 0.608

scr2 rdt2 0.647 0.511 0.633 0.618
rdt3 0.634 0.475 0.624 0.603
rdt1 0.599 0.478 0.585 0.567

scr3 rdt2 0.593 0.479 0.584 0.565
rdt3 0.586 0.439 0.577 0.554

Table 4: Macro-averaging mean F1 value for each
scoring function, feature reduction and term weight-
ing combination.

To obtain each word’s POS tag we used a parser for the Por-
tuguese language. This parser – PALAVRAS1 [Bick, 2000]
was developed in the context of the VISL (Visual Interactive
Syntax Learning) project in the Institute of Language and
Communication of the University of Southern Denmark.

The POS tagger incorporated in PALAVRAS is reported
to have more than 95% accuracy for texts written in Por-
tuguese. Possible tags are:

noun (n)
proper noun (prop)
adjective (adj )
verb (v)
article (det)
pronoun (pron)
adverb (adv)
numeral (num)
preposition (prp)
interjection (in)
conjunction (conj )

From all tags, we just considered n, prop, adj and v.

Note that Portuguese is a rich morphological language: while
nouns and adjectives have 4 forms (two genres – male and
female and two numbers – singular and plural), a regular
verb has 66 different forms (two numbers, three persons –
1st, 2nd and 3rd and five modes – indicative, conjunctive,
conditional, imperative and infinitive, each with different
number of tenses ranging from 1 to 5).

The parser’s output is the syntactic analysis of each phrase
and the POS tag associated with each word. For example,
the morphological tagging of the phrase ”O Manuel ofereceu
um livro ao seu pai./Manuel gave a book to his father.” is:

o [o] <artd> <dem> DET M S

Manuel [Manuel] PROP M S

ofereceu [oferecer] V PS 3S IND VFIN

um [um] <quant> <arti> DET M S

livro [livro] N M S

a [a] <prp>

o [o] <artd> <dem> DET M S

1http://www.visl.sdu.dk/



seu [seu] <pron-det> <poss> M S

pai [pai] N M S

To have a base value of comparison, we also present the val-
ues for the best setting of the IR experiments (here named
base). Besides using rdt2 and thr400, we also examined the
generated models using thr1 and rdt3 setup from the previ-
ous subsection.

Table 5 shows the number of features obtained for each POS
tag experiment for original words (rdt2) and their lemmas
(rdt3). Table 6 shows the averages per document (of all and
distinct features) for each threshold value.

thr1 thr400

rdt2 rdt3 rdt2 rdt3
nn 24597 20388 1168 1026
vrb 27689 8899 601 542
nn + vrb 49838 27031 1752 1533
nn + adj 33431 25720 1535 1349
nn + prop 35273 30123 1329 1165
nn + adj + prop 43229 34877 1679 1473
nn + vrb + adj 58052 31981 2122 1855
nn + vrb + prop 59742 36287 1917 1669
base 68688 42423 2440 2115

Table 5: Total number of features for each POS ex-
periment.

all distinct
rdt2 rdt3 rdt2 rdt3

nn 437 424 126 110
vrb 212 184 120 76
nn + vrb 638 598 237 179
nn + adj 559 540 175 148
nn + prop 547 514 149 130
nn + adj + prop 668 630 196 166
nn + vrb + adj 759 714 285 216
nn + vrb + prop 747 688 260 198
base 1592 912 362 255

Table 6: Average of words per document (all and
distinct) for each POS experiment.

5.2.1 Results
For each experiment, we, once again, analysed precision,
recall and F1 measures and calculated the micro- and macro-
averaging of the top ten categories. Tables 7 and 8 shows
F1 micro- and macro-averaging values for each experiment.

Considering macro-averaging F1 values, the worst signifi-
cant experiments were vrb (with words or lemmas, for both
threshold values) and nn (lemmas with thr1). The micro-
averaging F1 worst significant values were obtained for the
same experiments and also for nn + vrb and nn + adj (with
lemmas with thr1) and nn (words with thr1).

The best values were obtained nn + prop, nn + adj + prop,
nn+adj +vrb, nn+prop+vrb and the base experiments. If
we take into account the number of features we can reduce

rdt2 rdt3
thr1 thr400 thr1 thr400

nn 0.787 0.814 0.781 0.812
vrb 0.770 0.786 0.762 0.783
nn + vrb 0.799 0.809 0.787 0.813
nn + adj 0.793 0.818 0.790 0.817
nn + prop 0.794 0.821 0.791 0.817
nn + adj + prop 0.801 0.817 0.797 0.822
nn + vrb + adj 0.801 0.809 0.797 0.818
nn + vrb + prop 0.803 0.809 0.798 0.818
base – – 0.800 0.811

Table 7: F1 micro-averaging values for each POS,
feature construction and threshold value combina-
tion.

rdt2 rdt3
thr1 thr400 thr1 thr400

nn 0.727 0.728 0.719 0.721
vrb 0.649 0.642 0.639 0.645
nn + vrb 0.737 0.742 0.732 0.747
nn + adj 0.735 0.745 0.733 0.739
nn + prop 0.735 0.746 0.734 0.738
nn + adj + prop 0.743 0.749 0.742 0.754
nn + vrb + adj 0.738 0.747 0.743 0.756
nn + vrb + prop 0.740 0.745 0.743 0.754
base – – 0.743 0.753

Table 8: F1 macro-averaging values for each POS,
feature construction and threshold value combina-
tion.

from 2115 (base with rdt3 and thr400) to 1165 (nn + prp
with rdt3 and thr400) features without loosing accuracy.

5.3 Balancing dataset

This experiment was made to evaluate the impact of the im-
balance nature of the datasets, since, as referred for example
in [Japkowicz, 2000], this can be a source of bad results. In
fact, in the PAGOD dataset there are much more negative
than positive examples. For example, the ratio for the most
used category is about seven to one while for tenth most
used is about 22 to one (see Table 1).

We balanced the PAGOD dataset by over-sampling the pos-
itive examples of each learner (category) in order to have
an equal number of positive and negative ones. We made
experiments for each winning setting of the previous subsec-
tions – IR (rdt2.scr2.wgt3.thr400) and POS tag (nn + adj +
prop.rdt3.scr2.wgt3.thr400) experiments.

5.3.1 Results
Table 9 presents the original values for the IR experiment
while Table 10 presents the corresponding over-sampling re-
sults.

As can be seen, we achieve much better results by over-



sampling the datasets, especially on those categories with
very bad values for the original setting (like the funcionário
público and aposentação categories).

precision recall F1

aposentação 0.655 0.607 0.630
competência 0.408 0.322 0.360

deficiente. . . armadas 0.984 0.972 0.978

estado da Índia 0.992 0.982 0.987
exemplar. . . cıivica 0.940 0.869 0.903
funcionário público 0.477 0.203 0.285

louvor 0.813 0.806 0.809
militar 0.520 0.470 0.494

pensão. . . excepcionais 0.974 0.962 0.968
prisioneiro. . . guerra 0.993 0.993 0.993

Table 9: IR’s original results for the top ten cate-
gories.

precision recall F1

aposentação 0.850 1.000 0.919
competência 0.793 0.883 0.836

deficiente. . . armadas 0.997 0.997 0.997

estado da Índia 0.998 1.000 0.999
exemplar. . . cıivica 0.993 0.996 0.994
funcionário público 0.915 0.894 0.904

louvor 0.976 0.955 0.965
militar 0.965 0.955 0.959

pensão. . . excepcionais 0.993 0.997 0.995
prisioneiro. . . guerra 0.998 0.999 0.998

Table 10: IR’s over-sampling results for the top ten
categories.

This conclusion can also be thrown from the POS experi-
ment. Tables 11 and 12 show, respectively, the original and
over-sampling results.

precision recall F1

aposentação 0.657 0.589 0.621
competência 0.422 0.209 0.279

deficiente. . . armadas 0.990 0.978 0.984

estado da Índia 0.992 0.985 0.989
exemplar. . . cıivica 0.957 0.851 0.901
funcionário público 0.420 0.258 0.320

louvor 0.850 0.885 0.867
militar 0.615 0.512 0.559

pensão. . . excepcionais 0.976 0.975 0.975
prisioneiro. . . guerra 0.998 0.995 0.996

Table 11: POS’s original results for the top ten cat-
egories.

6. CONCLUSIONS AND FUTURE WORK

In this work the application of support vector machines
to the classification of Portuguese legal documents was de-

precision recall F1

aposentação 0.861 1.000 0.925
competência 0.799 0.891 0.842

deficiente. . . armadas 0.999 0.999 0.999

estado da Índia 0.999 1.000 0.999
exemplar. . . cıivica 0.993 0.999 0.996
funcionário público 0.921 0.912 0.916

louvor 0.976 0.965 0.970
militar 0.971 0.959 0.965

pensão. . . excepcionais 0.997 0.998 0.997
prisioneiro. . . guerra 0.999 1.000 0.999

Table 12: POS’s over-sampling results for the top
ten categories.

scribed and evaluated. Several information retrieval tech-
niques were used to reduce and select the document fea-
tures. Moreover, the use of part-of-speech information was
also studied and the impact of balancing the dataset (posi-
tive and negative examples).

It was possible to identify a good combination of these fac-
tors having a F1 micro-averaging for the top ten categories of
0.822: POS = nn + adj + prop. rdt3.scr2.wgt3.thr400. This
means that it is a good approach to use only words tagged
as nouns, adjectives or proper nouns, lemmatised, ordered
with mutual information and weighted with normalised term
frequency.

Using the referred combination, it was possible to reduce
the number of features from a total 68886 distinct words to
1473 and to increase the F1 micro-averaging for the top 10
categories from 0.740 to 0.822.

In conclusion, it is possible to state that linguistic informa-
tion, such as, lemmatisation and part-of speech tags improve
SVM classifiers and strongly reduce the computational com-
plexity of the task.

As future work, and in order confirm these results, we intend
to make the same experiments with legal datasets written
in other languages and with non-legal datasets. It will be
important to evaluate if these results are binded to the Por-
tuguese language and/or the legal domain.

On the other hand, and aiming to develop better classifiers,
we intend to address the document representation problem
by trying more powerful representations than the bag-of-
words, allowing us to use word order and syntactical and/or
semantical information in the representation of documents.
To achieve this goal we plan to use other kind of kernel
such as the string kernel (see, for example, [Shawe-Taylor &
Cristianini, 2004]).
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258–267 of: Proceedings of ICML-99, 16th International
Conference on Machine Learning.

Quaresma, P., & Rodrigues, I. 2003. PGR: Portuguese
Attorney General’s Office Decisions on the Web. Pages
51–61 of: Bartenstein, Geske, Hannebauer, & Yoshie
(eds), Web-Knowledge Management and Decision
Support. LNCS/LNAI 2543. Springer-Verlag.

Salton, G., & McGill, M. 1983. Introduction to Modern
Information Retrieval. McGraw-Hill.

Schütze, H., Hull, D., & Pedersen, J. 1995. A
comparison of classifiers and document representations
for the routing problem. Pages 229–237 of: Proceedings
of SIGIR-95, 18th International Conference on Research
and Developement in Information Retrieval.

Schweighofer, E., & Merkl, D. 1999. A Learning
Technique for Legal Document Analysis. Pages 156–163
of: 7th International Conference on Artificial
Intelligence and Law. ACM.

Schweighofer, Erich, Rauber, Andreas, & Dittenbach,
Michael. 2001. Automatic text representation,
classification and labeling in European law. Pages 78–87
of: ICAIL.

Shawe-Taylor, J., & Cristianini, N. 2004. Kernel Methods
for Pattern Analysis. Cambridge University Press.

Silva, C.F., Vieira, R., Osorio, F.S., & Quaresma, P.
2004 (August). Mining Linguistically Interpreted Texts.
In: 5th International Workshop on Linguistically
Interpreted Corpora.

Thompson, Paul. 2001. Automatic categorization of case
law. Pages 70–77 of: ICAIL.

Tikhonov, V.M., & Arsenin, V.Y. 1977. Solution of
Ill-Posed Problems.

Tong, R., & Appelbaum, L.A. 1994. Machine learning
for knowledge-based document routing. In: Harman
(ed), Proceedings of 2nd Text Retrieval Conference.

Vapnik, V. 1998. Statistical learning theory. NY: Wiley.

Wilkins, D., & Pillaipakkamnatt, K. 1997. The
effectiveness of machine laerning techniques for
predicting time to case disposition. Pages 39–46 of: 6th
International Conference on Artificial Intelligence and
Law. ACM.

Witten, I., & Frank, E. 1999. Data Mining: Practical
machine learning tools with Java implementations.
Morgan Kaufmann.

Zeleznikow, J., & Stranieri, A. 1995. The Split-up
system: Integrating neural networks and rule based
reasoning in the legal domain. Pages 195–194 of: 5th
International Conference on Artificial Intelligence and
Law. ACM.


