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1 Introduction

Ontologies provide a formal description of the objects and
their relations in a domain. They have a key importance
for applications such as information retrieval, database
integration, peer-to-peer systems, e-commerce, or semantic
web services. In information retrieval systems, the terms
defined in an ontology are used as metadata to markup
the Web’s content and these semantic markups are
semantic index terms for information retrieval, in order to
improve the information retrieval (Jun-feng et al., 2005).
Other typical application is question answering, where the
data sources used to construct the answer are described
using populated ontologies instead of databases. Tasks in

both these systems require support from more than one
ontology for obvious reasons, and an ontology mapping
is required. In a question answering system, our approach
can be used to define mappings between the ontologies on
the fly to describe data sources available to construct an
answer. The ontologies are taken as input to the individual
agents and the argumentation result can be used to search
in such data sources.

Ontology mapping process takes two ontologies as
input and determines as output correspondences between
the semantically related entities of those ontologies.
There are several mapping approaches related to different
aspects of concepts similarity. In this paper, we focus
in an approach based on argumentation to combine
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ontology mapping methods. Different ontology mapping
approaches are combined, as terms may be mapped
by a measure of lexical similarity (Stoilos et al., 2005;
Maedche and Staab, 2002), or they can be evaluated
semantically, usually on the basis of semantic oriented
linguistic resources, or considering the term positions in
the ontology hierarchy (Hakimpour and Geppert, 2001).
It is assumed that the approaches are complementary to
each other and combining different ones reflect better
solutions when compared to the solutions of the individual
approaches.

We extend an argumentation framework, namely,
Value-based Argumentation Framework (VAF)
(Bench-Capon, 2003), in order to represent arguments
with confidence degrees. The VAF allows to determine
which arguments are acceptable, with respect to the
different audiences represented by different agents.
We then associate to each argument a confidence degree,
representing how confident an agent is in the similarity of
two ontology terms.

Our agents apply different mapping approaches and
cooperate in order to exchange their local results
(arguments). Next, based on their preferences and
confidence of the arguments, the agents compute their
preferred mapping sets. The arguments in such preferred
sets are viewed as the set of globally acceptable arguments.

We evaluate our argumentation model using a
benchmark for ontology mapping.1 The results are
promising especially what concerns precision. These tests
demonstrate the application of our model for practical
ontologies.

The paper has been divided into the following sections:
Section 2 introduces ontologies and the state-of-art
formalism used to represent them; Section 3 comments
on ontology mapping approaches; Section 4 comments
on argumentation framework; Section 5 presents our
argumentationmodel; Section 6presents onewalk through
example; Section 7 presents the evaluation of our model;
Section 8 presents the final remarks and the future work.

2 Ontologies and OWL-Description Logic

The standard definition of ontology most used in the
literature is from Gruber (1993), “an explicit specification
of the conceptualisation of the domain”. From this
definition Gangemi et al. (2005) point out that:

• the ontology makes things explicit – without an
ontology many design assumptions may be implicit
in the executable representation

• the ontology is supposed to be formal: the notions it
captures are thus precise and unambiguous

• the ontology concerns some specific domain

• the ontology represents a conceptualisation
– different people will conceptualise a domain
differently according to experience, and their tasks in

the domain – and there is no a single ontology
applicable to a domain.

Specifically, ontologies contain the types of objects in the
domain; the attributes which these objects may have;
the relationships which these objects may enter into;
and the values that the attributes may have for particular
types.

Although the terms ‘taxonomy’ and ‘ontology’
are used to describe sometimes the same kind of
knowledge representation, there is a substantial difference.
A taxonomy contains only ‘is-a’ relationship (classes
and subclasses) whereas an ontology describes a domain
completely, using other kinds of relationships, such as
‘part-whole’, and more complex descriptions, such as
transitive and inverse proprieties.

A well-known formalism used to represent ontologies
is Description Logics (DLs), a family of Knowledge
Representation (KR) formalisms that represent the
knowledge of an application domain (‘the world’) by
first defining the relevant concepts of the domain (its
terminology), and then using these concepts to specify
properties of objects and individuals occurring in the
domain (Baader et al., 2003).

A DL Knowledge Base (KB) comprises two
components: TBox and ABox. TBox contains the
terminology, which specifies the vocabulary of an
application domain. ABox contains assertions about
named individuals in terms of the TBox. The vocabulary
consists of concepts and roles. Concepts denote set
of individuals while roles denote binary relationship
between individuals. Atomic concepts and roles can
be used to build complex description of concepts and
roles, using constructors. The language for building
descriptions is a feature of different DLs, and different
systems are distinguished by their description languages,
i.e., the expressiveness of the language according with the
constructors that they support.

OWL-DL ontology language is a variant of the
SHOIN(D) (Baader et al., 2003) DL, which provides
constructors for full negation, disjunction, a restricted
form of existential quantification, and reasoning with
concrete datatypes. OWL-DL is the state-of-the-art to
represent expressive ontologies.

The set of SHOIN(D) concepts is defined by the
following syntactic rules, where A is an atomic concept,
R is a role name, d is a concrete domain, ci are individuals,
and n is a non-negative integer:

C → A |¬ C|C1 � C2|C1 � C2|∃R.C|∀R.C|
n S |n S |{a1, . . . , an}|n T |nT|
∃T1, . . . ,Tn.D|∀T1, . . . ,Tn.D

D → d |{c1, . . . , cn}
Here, we consider the semantics of a SHOIN(D) KB by
Haase andMotik (2005),which transformsKBaxioms into
a first-order formula. Each atomic concept is mapped into
a unary predicate and each role is mapped into a binary
predicate.
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3 Ontology mapping approaches

The previous work of Rahm and Bernstein (2001),
Shvaiko (2004) and Shvaiko and Euzenat (2004) present a
broad overview of the various approaches on automated
ontology matching, classifying the mapping approaches
in terms of input and techniques utilised in the mapping
process. Kalfoglou and Schorlemmer (2003) present other
style of ontology mapping classification that is based on
frameworks, methods and tools, translators, mediators,
etc. Choi et al. (2006) present the broad scope of
ontology mapping, mapping categories (mapping between
an integrated global ontology and local ontologies,
mapping between local ontologies, and mapping on
ontology merging and alignment), their characteristics,
and a comprehensive overview of ontologymapping tools,
systems, and related work. We point out that Kalfoglou
and Schorlemmer (2003) and Choi et al. (2006) present a
different style of ontology mapping classification from the
one proposed by us, which is based on the classification of
Rahm and Bernstein (2001), Shvaiko (2004) and Shvaiko
andEuzenat (2004).Wepoint out that a recent reference on
ontology mapping is Euzenat and Shvaiko (2007), which
presents a broad overview of the proposals for ontology
mapping presented in the literature.

Rahm and Bernstein (2001) distinguishes between
individual and combining matchers. Individual matchers
comprise schema-based and instance-based, element and
structure levels, linguistic and constrained-basedmatching
techniques. Combining matchers comprise hybrid and
composite matchers.

Based on this previous taxonomy, Shvaiko (2004)
distinguishes between heuristic and formal techniques
at schema-level; and implicit and explicit techniques at
element-and structure-level. Shvaiko and Euzenat (2004)
introduces new criterions which are based on:

• general properties of matching techniques, i.e.,
approximate and exact techniques

• interpretation of input information, i.e., syntactic,
external, and semantic techniques at element and
structure levels

• the kind of input information, i.e., terminological,
structural, and semantic techniques.

Moreover, Giunchiglia and Shvaiko (2004) distinguishes
between weak semantics and strong semantics
element-level techniques. Weak semantics techniques are
syntax-driven techniques (e.g., techniques which consider
labels as strings, or analyse data types, or soundex of
schema elements) while strong semantics techniques
exploit, at the element level, the semantics of labels
(e.g., based on the use of thesaurus).

As in Rahm and Bernstein (2001), we distinguish
between individual and combiningmatchers. However, we
divided the individual matchers on data level, ontology
level, or context level, but we kept the combining matcher
divided on hybrid or composite.

At the data level, data instances are used as input to
the matching process. At the ontology level, the terms
of the ontology structure and the hierarchy are taking
into account. Then, as Rahm and Bernstein (2001), we
distinguish between element-level matcher and structure
level matcher. Finally, the ontology’s application context
can be used, i.e., how the ontology entities are used in some
external context. This is specially interesting, for instance,
to identify WordNet sense that must be considered to
specific terms.

At the element-level we consider, according to Shvaiko
and Euzenat (2004), semantic and external matchers.
However, we replaced the syntactic by lexical and
added a constraint-based matchers. We assume that the
term ‘syntactic’ refers to morpho-syntactic categories
of words (i.e., implicating some word annotation).
We consider that the term ‘lexical’ is more appropriated
to refer to the category of approaches based on string
similarity.

The lexical approaches use metrics to compare
string similarity. One well-known measure is the
Levenshtein distance or edit distance (Levenshtein,
1966), which is given by the minimum number of
operations (insertion, deletion, or substitution of a
single character) needed to transform one string into
another. Based on Levenshtein measure, Maedche and
Staab (2002) proposes a lexical similarity measure for
strings, the String Matching (SM), that considers the
number of changes that must be made to change
one string into the other and weighs the number
of these changes against the length of the shortest
string of these two. Other common metrics are: the
Smith–Waterman (Smith and Waterman, 1981), which
additionally uses an alphabet mapping to costs; and
the Euzenat et al. (2004) which searches for the largest
common substring.

Semanticmatchers consider semantic relations between
concepts to measure the similarity between them, usually
on the basis of one thesaurus or similar semantic oriented
linguistic resources. The well-known WordNet2 database,
a large repository of English items, has been used
to provide these relations. This kind of mapping is
complementary to the pure string similarity metrics. Cases
where stringmetrics fail to identify high similarity between
strings that represent completely different concepts are
common.For example, for thewords ‘score’ and ‘store’ the
Levenshtein metric returns 0.68, which is a high metric if
we consider that the they represent very different concepts.
On the other hand terms like ‘student’ and ‘learner’ are
semantically similar although they are lexically distant
from each other.

Constraint-based matchers are based on data
types, value ranges, uniqueness, cardinalities, and
other information constraints in the matching process.
For example, the similarity between two terms can be
based on the equivalence of data types and domains,
of key characteristics (e.g., unique, primary, foreign),
or relationship cardinality (e.g., 1 : 1 relationships)
(Rahm and Bernstein, 2001).
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Finally, at the element-level, we consider that external
matchers consider some type of external information, such
as user input or previous matching results.

Structural matchers use the ontology structure as
input to the matching process (i.e., the positions of the
terms in the ontology hierarchy are considered). Several
approaches using this intuition have been proposed:
super(sub)-concept rules consider that if super or sub
concepts are the same, the actual concepts are similar to
each other (Dieng and Hug, 1998; Ehrig and Sure, 2004);
boundedpathmatching takes twopathswith links between
classes defined by the hierarchical relations, compare
terms and their positions along these paths, and identify
similar terms (see, for instance, Anchor-prompt algorithm
Noy and Musen, 2001; Hovy, 1998); leaves-rules,
where two non-leaf schema elements are structurally
similar if their leaf sets are highly similar, even if
their immediate children are not, see, for example
Madhavan et al. (2001).

We also consider, as Rahm and Bernstein (2001),
hybrid and composite matchers, at combining matcher
level. Hybrid matchers use multiple matching criteria
(e.g., name and type equality) within an integrated
matcher; and compositematchers (which can use amanual
or automatic process) combine multiple match results
produced by different match algorithms. Our approach
is an automatic composite matcher and then we add a
cooperative approach at automatic level, which can be
based on negotiation or argumentation. We point out that
an automatic mapping approach can be also based on
machine learning techniques, as presented by Doan et al.
(2003), which combines multiple matchers using a learning
approach.

Due to the complexity of the problem using only one
approach is usually not satisfactory. These approaches
are complementary to each other. Combining different
approaches must reflect a better solution when compared
to the solutions of individual approaches.

4 Argumentation framework

Our argumentation model is based on the VAFs
(Bench-Capon, 2003), a development of the classical
argument system of Dung (1995). First, we present the
Dung’s framework, upon which the VAF rely. Next, we
present the VAF and our extended framework.

4.1 Classical argumentation framework

Dung (1995) defines an argumentation framework as
follows.

Definition 4.1.1: An argumentation framework is a pair
AF = (AR, attacks), where AR is a set of arguments and
attacks is a binary relation on AR, i.e., attacks ⊆ AR ×
AR. An attack(A, B) means that the argument A attacks
the argumentB. A set of argumentsS attacks an argument
B if B is attacked by an argument in S.

The key question about the framework is whether a given
argument A, A ∈ AR, should be accepted. One reasonable
view is that an argument should be accepted only if every
attack on it is rebutted by an accepted argument (Dung,
1995). This notion produces the following definitions:

Definition 4.1.2: AnargumentA ∈ AR isacceptablewith
respect to set arguments S(acceptable(A, S)), if (∀x)(x ∈
AR) ∧ (attacks(x,A)) −→ (∃y)(y ∈ S) ∧ attacks(y, x).

Definition 4.1.3: A set S of arguments is conflict-free if
¬(∃x)(∃y)((x ∈ S) ∧ (y ∈ S) ∧ attacks(x, y)).

Definition 4.1.4: A conflict-free set of arguments S is
admissible if (∀x)(x ∈ S) −→ acceptable(x, S).

Definition 4.1.5: A set of arguments S is a preferred
extension if it is a maximal (with respect to inclusion set)
admissible set of AR.

A preferred extension represent a consistent position
within AF, which can defend itself against all attacks and
which cannot be further extended without introducing a
conflict.

The purpose of Bench-Capon (2003) in extending the
AF is to allow associate arguments with the social values
they advance. Then, the attack of one argument on another
is evaluated to saywhether or not it succeeds by comparing
the strengths of the values advanced by the arguments
concerned.

4.2 Value-based Argumentation Framework

In Dung’s frameworks, attacks always succeed. However,
in many domains, including the one under consideration,
arguments lack this coercive force: they provide reasons
which may be more or less persuasive (Laera et al., 2006).
Moreover, their persuasivenessmayvaryaccording to their
audience.

The VAF is able to distinguish attacks from successful
attacks, those which defeat the attacked argument, with
respect to anorderingon the values that are associatedwith
the arguments. It allows accommodate different audiences
with different interests and preferences.

Definition 4.2.1: A Value-based Argumentation
Framework (VAF) is a 5-tuple VAF = (AR, attacks,
V , val, P ) where (AR, attacks) is an argumentation
framework, V is a nonempty set of values, val is a function
whichmaps from elements ofAR to elements of V andP is
a set of possible audiences. For eachA ∈ AR, val(A) ∈ V .

Definition 4.2.2: An Audience-specific Value Based
Argumentation Framework (AVAF) is a 5-tuple VAFa =
(AR, attacks, V , val, valprefa) where AR, attacks, V and
val are as for a VAF, a is an audience and valpref a is a
preference relation (transitive, irreflexive and asymmetric)
valpref a ⊆ V × V , reflecting the value preferences of
audience a. valpref(v1, v2) means v1 is preferred to v2.
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Definition 4.2.3: An argument A ∈ AR defeatsa
(or successfully attacks) an argument B ∈ AR for
audience a if and only if both attacks (A, B) and not
valpref (val(B), val(A)).

An attack succeeds if both arguments relate to the same
value, or if no preference value between the values has been
defined.

Definition 4.2.4: An argument A ∈ AR is acceptable
to audience a (acceptablea) with respect to set
of arguments S, acceptablea(A, S) if (∀x)((x ∈ AR ∧
defeatsa(x,A)) −→ (∃y)((y ∈ S) ∧ defeatsa(y, x))).

Definition 4.2.5: A set S of arguments is conflict-free
for audience a if (∀x)(∀y)((x ∈ S ∧ y ∈ S) −→ (¬attacks
(x, y) ∨ valpref (val(y), val(x)) ∈ valpref a)).

Definition 4.2.6: A conflict-free set of arguments S for
audience a is admissible for an audience a if (∀x)(x ∈
S −→ acceptablea(x, S)).

Definition 4.2.7: A set of arguments S in the VAF is a
preferred extension for audience a (preferreda) if it is
a maximal (with respect to set inclusion) admissible for
audience a of AR.

In order to determine the preferred extension with respect
to a value ordering promoted by distinct audiences,
(Bench-Capon, 2003) introduces the notion of objective
and subjective acceptance.

Definition 4.2.8: An argument x ∈ AR is subjectively
acceptable if and only if x appears in the preferred
extension for some specific audiences but not all.
An argument x ∈ AR is objectively acceptable if and only
if, x appears in the preferred extension for every specific
audience. An argument which is neither objectively nor
subjectively acceptable is said to be indefensible.

4.3 Extended Value-based Argumentation
Framework

We extend the VAF in order to represent arguments with
confidence degrees. Two elements have been added to
the VAF: a set with confidence degrees and a function
which maps from arguments to confidence degrees.
The confidence value represents the confidence that an
individual agent has in some argument.

We assumed that the confidence degrees is a criteria
which is necessary to represent the ontology mapping
domain. Confidence degrees are important in the context
of agent-based IR systems in distributed heterogeneous
environments, such as the web.

Definition 4.3.1: An Extended Value-based
Argumentation Framework (E-VAF) is a 7-tuple
E-VAF = (AR, attacks, V , val, P , C, valC) where (AR,
attacks, V , val, P ) is a VAF, C is a nonempty set of values

representing the confidence degrees, valC is a function
which maps from elements of AR to elements of C.
valC ⊆ C × C and valprefC(c1, c2) means c1 is preferred
to c2.

Definition 4.3.2: An argument x ∈ AR defeatsa
(or successfully attacks) an argument y ∈ AR for
audience a if and only if attacks(x, y) ∧ (valprefC
(valC (x), valC (y)) ∨ (¬valpref (val(y), val(x)) ∧
¬valprefC (valC (y), valC (x)))).

An attack succeeds if (a) the confidence degree of the
attacking argument is greater than the confidence degree
of the argument being attacked; or if (b) the argument
being attacked does not have greater preference value than
attacking argument (or if both arguments relate to the
same preference values) and the confidence degree of the
argument being attacked is not greater than the attacking
argument.

Definition 4.3.3: A set S of arguments is conflict-free for
audience a if (∀x)(∀y) ((x ∈ S ∧ y ∈ S) −→ (¬attacks
(x, y) ∨ (¬valprefC (valC (x), valC (y)) ∧ (valpref (val(y),
val(x)) ∨ valprefC (valC (y), valC (x))))).

5 E-VAF for ontology mapping

In our model, dedicated agents encapsulate different
mapping approaches. Each approach represents a different
audience in an E-VAF, i.e., the agents’ preferences are
based on specific approach used by the agent. Different
audiences represent different preferences in the arguments.
In this paper, we consider three audiences: lexical (L),
semantic (S), and structural (E) (i.e.,P = {L, S, E}, where
P ∈ E-VAF). We point out that our model is extensible to
other audiences.

5.1 Argumentation generation

First, the agents work in an independent manner,
applying themapping approaches and generatingmapping
sets. The mapping result will consist of a set of all
possible correspondences between terms of twoontologies.
Amappingm can be described as a 3-tuplem = (t1, t2, R),
where t1 corresponds to a term in the ontology 1, t2
corresponds to a term in the ontology 2, and R is the
mapping relation resulting from the mapping between
these two terms. The lexical and semantic agents are able
to return equivalence value to R, while the structural
agents return sub-class or super-class values to R. Each
mapping m is represented as a argument. Now, we can
define arguments as follows:

Definition 5.1.1: An argument ∈ AR is a 4-tuple
x = (m, a, c, h), where m is a mapping; a ∈ P is the
agent’s audience generating that argument (agent’s
preference, i.e., lexical, semantic or structural); c ∈ C is the
confidence degree associated to that mapping (certainty
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or uncertainty, as it will be commented below); h is one
of {−, +} depending on whether the argument is that m
does or does not hold.

The confidence degree is defined by the agent when
applying the specificmapping approach.Here, we assumed
C = {certainty, uncertainty}, where C ∈ E-VAF.

5.1.1 Lexical agent

The lexical agent adopts a metric to compare string
similarity. We used the lexical similarity proposed by
Maedche and Staab (2002). This metric is based on the
Levenshtein distance (edit distance) (Levenshtein, 1966),
which is given by the minimum number of operations
(insertion, deletion, or substitution of a single character)
needed to transformone string into another. The lengths of
the compared terms are considered to compute the lexical
similarity. This metric returns a value from the interval
[0, 1], where 1 indicates high similarity between two terms.

The agents are able to deal with compound terms. The
first step in this process is the tokenisation. The terms are
parsed into tokens by a tokeniser which also removes stop
words (‘and’, ‘of’, etc). The confidence of an argument
is computed according to the lexical similarity between
each token of the two compared terms. Table 1 shows
the possible values to s and h, where tSn correspond to
some token of the source term (source ontology), and
tTn correspond to some token of the target term (target
ontology). We assume that two terms are lexically similar
if the lexical similarity is greater than a threshold r.

Table 1 h and c to lexical audience

c +(h)
Certainty tS1 lexically similar to tT1

Uncertainty tS1 lexically similar to some aT1, . . . , tTn

Some tS1, . . . , tSn lexically similar to tT

Some tS1, . . . , tSn lexically similar to some
tT1, . . . , tTn

c −(h)
Uncertainty Otherwise

When all tokens are lexically similar with each other,
the terms match and the confidence of the argument
is certainty. In this case, for instance, the lexical
agent generates an argument x = (m, L, certainty), where
m = (t1, t2, +).

If some tokens of the terms are lexically similar, the
confidence of the argument is uncertainty. If there are no
lexically similar tokens between the terms, the agent is not
sure that the terms map (i.e., h equals to – and confidence
equals to uncertainty), because this agent knows that other
agent can resolve this mapping. In the specific case, if there
is no lexical similarity between the terms, the semantic
agent can resolve that mapping.

5.1.2 Semantic agent

The semantic agent considers the semantic (i.e., synonym,
hyponym, and hypernym) relations between concepts

to measure the similarity between them, on the basis
of WordNet3 database, a large repository of English
semantically related items. Table 2 shows the possible
values to s and h according to the semantic similarity.

Table 2 h and c to semantic audience

c +(h)
Certainty tS1 semantic relation with tT1

Uncertainty tS1 some semantic relation with some
tT1, . . . , tTn

Some tS1, . . . , tSn semantic relation with tT

Some tS1, . . . , tSn semantic relation with some
tT1, . . . , tTn

c −(h)
Certainty Otherwise

When all tokens have semantic relation with each other,
the confidence of the argument is certainty. The agent
generates, for instance, an argumentx = (m, S, certainty),
where m = (t1, t2, +). If some tokens have semantic
relation, the confidence of the argument is uncertainty.
Otherwise, if there are no semantic relation between
the tokens, the agent is not sure that the terms map
(i.e., h equals to – and confidence equals to uncertainty),
because this agent knows that other agent can resolve the
mapping. In the specific case, when the searched terms are
not available in WordNet, the lexical agent can decide the
mapping. It is commonbecause there is no complete lexical
database for every domain (i.e.,WordNet is incomplete for
some domains).

5.1.3 Structural agent

The structural agent considers the positions of the terms in
theontologyhierarchy to verify if the terms canbemapped.
First, it is verified if the super-classes of the compared
terms are lexically similar. If not, the semantic similarity
between them is used. If the super-classes of the terms are
lexically or semantically similar, the terms can bematched.
The argument is generated according to the lexical or
semantic comparison. For instance, if the super-classes of
the terms are not lexically similar, but they are synonymous
(semantic similarity), an argument x= (m, E, confidence),
where m = (t1, t2, +), is generated, where confidence
varies according to the rules from Tables 1 or 2.

However, there are two main differences among the
confidences returnedby the structural, lexical and semantic
agents.

If the structural agent does not find similarity (lexical
or semantic) between the super-classes of the compared
terms, it is because the terms can be not mapped
(i.e., the terms occurs in different contexts). Then, the
confidence for no mapping is certainty. Otherwise, if the
structural finds similarity between the super-classes of
the compared terms, it is because they can be mapped,
but it does not mean that the terms are synonymous,
then the confidence for the mapping is uncertainty.
For instance, for the terms ‘Publication/Topic’ and
‘Publication/Proceedings’, the structural agent indicates



148 C. Trojahn et al.

that the terms can be mapped because they have the same
super-class, but not with confidence equals to certainty
because it is no able to indicate that the terms are similar.
Otherwise, for the terms ‘Digital-Camera/Accessories’
and ‘Computer/Accessories’, the agent can indicate that
the terms cannotbemappedbecause theyoccur indifferent
contexts (no-mappingwith confidence equals to certainty).

5.2 Preferred extension generation

After generating their set of arguments, the agents
exchange with each other their arguments.When all agents
have received the set of arguments of the each other, they
generate theirattacks set.Anattack (or counter-argument)
will arise when we have arguments for the mapping
between the same terms, but with conflicting values
of h. For instance, an argument x = (m1, L, certainty , +)
have as an attack an argument y = (m2, E, certainty ,−),
where m1 and m2 refer to the same terms in the
ontologies. The argument y also represents an attack to
the argument x.

When the set of arguments and attacks have been
produced, the agents need to define which of them
must be acceptable. To do this, the agents compute
their preferred extension, according to the audiences
and confidence degrees. A set of arguments is globally
subjectively acceptable if each element appears in the
preferred extension for some agent. A set of arguments
is globally objectively acceptable if each element appears
in the preferred extension for every agent. The arguments
are neither objectively nor subjectively acceptable are
considered indefensible.

6 Walk through example

Let us consider that three agents need toobtain a consensus
aboutmappings that link corresponding class names in two
different ontologies. We considered lexical (L), semantic
(S), and structural (E) audiences (mapping approaches).
We have selected the manual mappings between the
ontologies described in Tables 3 and 4.

As shown in Table 5, the preferred extensions of
the agents are composed by the arguments generated
by the corresponding audience. The preferred extension
of the lexical agents is {1, 5, 7}; the preferred extension
of the semantic agent is {2, 5, 8}; and the preferred
extension of the structural agent is {3, 6, 9}. Considering
the ‘subjectively acceptable’ arguments, the arguments 1,
2, 3, 5, 6, 7, and 8 can be considered as consensus (note that
the argument 4 is not acceptable).

Table 3 DL ontology 1

Consumer-electronics � �
Personal-computers � Consumer-electronics
Microprocessors � Personal-computers
Accessories � Personal-computers
Photo-and-cameras � Consumer-electronics

Table 4 DL ontology 2

Electronics � �
PC � Electronics
PC-board � PC
Cameras-and-photo � Electronics
Accessories � Cameras-and-photo
Digital-cameras � Cameras-and-photo

Table 5 Arguments and attacks

ID Argument At.

1 (Photo-and-camera,Camera-and-photo, +,
L, certainty) –

2 (Photo-and-camera, Camera-and-photo, +,
S, certainty) –

3 (Photo-and-camera, Camera-and-photo, +,
E, uncertainty) –

4 (Personal-computer, PC, −, L, uncertainty) 5
5 (Personal-computer, PC, +, S, certainty) 4
6 (Personal-computer, PC, +, E, uncertainty) 4
7 (Consumer-electronic, Electronic, +,

L, uncertainty) –
8 (Consumer-electronic, Electronic, +,

S, uncertainty) –
9 (Consumer-electronic, Electronic, +,

E, uncertainty) –

7 Evaluation

The evaluation was made considering a benchmark for
ontology mapping.4 The set of ontologies we used are the
following: the reference ontology is compared with itself
(Test 101); the referenceontology is comparedwithanother
irrelevant ontology (Test 102); the reference ontology is
compared with itself with labels replaced by synonyms
(Test 205). The reference ontology used in Test 101 has
97 terms (33 class names; 40 data attributes; 24 object
attributes).

The agents were implemented in Java, and the
experiments ran on Intel(R) Core(TM) Duo UCP
2.00GHz, 2038MB. JWordNetAPI,5 which is an interface
to the WordNet database, is required by the semantic
agent.

Figure 1 shows the results for the Test 101, Test 102,
and Test 205. For Test 101, 97 manual mappings had been
defined. We considered only the mappings with certainty
retrieved by the argumentation model. 97 mappings were
retrieved. So, the precision and recall for this test is one
(Figure 2). For Test 102, there is no manual mapping,
considering that the source ontology is compared with
other completely irrelevant. However, our model retrieved
two mappings with certainty. We can not compute
precision and recall when there are no reference manual
mappings. For Test 205, 55 mappings were retrieved, from
which one was incorrect. In this test, the precision was 0.98
and recall was 0.50 (Figure 2). The low recall is associated
with some problemswhen searching inWordNet database:
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some multiwords terms can not be retrieved (i.e., start
pagewhen comparedwith beginning); there is information
that need to be retrieve using a thesaurus (i.e., short name
when compared with acronym); some information could
be retrieved by using the gloss of the synsets and atmoment
we do not use this information (i.e., the relationships
between the terms price and amount is represented in the
descriptionof the termprice: ‘the amount ofmoneyneeded
to purchase something’). So, we point out that better
results can be obtained when considering these problems
and using complementary databases such as thesaurus.

The results are promising especially what concerns
precision. Moreover, using these tests, we demonstrated
the application of our model for practical ontologies.

Figure 1 Results

Figure 2 Precision and recall

8 Final remarks and future work

This paper presented a composite mapping approach
based on the argumentation formalism to map ontologies.
Itwasusedanextendedargumentation framework, namely
VAF, with confidence degrees associated to arguments.

The VAF allows to determine which arguments are
acceptable, with respect to the different preferences
represented by different agents. The extension associates
to each argument a confidence degree, representing the
confidence that a specific agent has in that argument.
We assumed that the confidence degrees is a criteria which
is necessary to represent the ontology mapping domain.
We have used different agents’ output which use distinct
mapping algorithms in order to verify the behaviour of our
model.

We evaluated our argumentation model using a
benchmark for ontology mapping.6 The results were
promising especially what concerns precision. Using these
tests we demonstrated the application of our model for
practical ontologies.

In the future, we intend to develop further tests
considering also agents using constraint-based mapping
approaches (i.e., the similarity between two terms can be
based on the equivalence of data types and domains, of
key characteristics, or relationship cardinality); use the
ontology’s application context in our mapping approach
(i.e., how the ontology entities are used in some external
context, which is especially interesting, for instance, to
identifyWordNet senses thatmust be considered to specific
terms). Next, we will use the mapping result as input to
an ontology translation process in a question answering
system for the law domain.
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Notes

1http://oaei.ontologymatching.org/
2http://www.wordnet.princeton.edu
3http://www.wordnet.princeton.edu
4http://oaei.ontologymatching.org/tests/
5http://jwn.sourceforge.net (using WordNet 2.1).
6http://oaei.ontologymatching.org/




