A Logic Programming Agent for Controlling
Concurrent Distributed Web Dialogues

Paulo Quaresma and Irene Pimenta Rodrigues
Departamento de Informaética, Universidade de Evora, Portugal
{pqlipr}@di.uevora.pt
tel: +351 21 2948536, fax: +351 21 2948541

September 17, 2000

Abstract

We present a Prolog based dialogue manager for a web
information retrieval system that is able to coopera-
tively interact with the users helping them in their
searches. The proposed framework is based on three
specialised Prolog agents: an agent manager that re-
ceives all the user requests and it acts as an interface
with the specific user process agent; the user process
agent which is specific to each user and it has informa-
tion about the user profile and the previous interroga-
tion context; and an an agent monitor that informs the
agent manager of the latest changes in the document
databases allowing these changes to be transmitted to
all users that have one of their previous queries results
changed. This Prolog framework was implemented in a
Linux environment using XSB Prolog. In the paper a
detailed example in the law field is presented.

1 Introduction

We have designed a Prolog based dialogue manager for
a Web Information Retrieval system. In order to per-
form a dialog with the user, we want:

e To infer what are the user intentions with the
queries. When a user asks for documents with a
particular keyword, usually he is interested in doc-
uments that may not have that keyword and he is
not interested in all documents with that keyword.

e To supply pertinent answers or questions as a reply
to a user question. The system must supply some
information on the set of documents selected by
the user query in order to help the user refining
his query.

And we need:

e To record the previous user interactions with the
system (user questions and the system answers).

e To obtain new partitions (labelled clusters) of the
set of documents that the user selected with his

query(ies).

e To use domain knowledge whenever the system has
it.

In order to build the dialogue manager for a web
information retrieval system we must take into account
that:

e The number of users registered in the system is
large (thousands).

e Typically there are more then one user using the
system at the same instant.

e The users may interrupt their session for large pe-
riods of time.

e The users would like to be informed when a pre-
vious query result changes due to updates in the
database.

These facts make impossible to use a process to deal
with each user because the number of processes in an
operative system is limited, and most of the processes
will be blocked waiting for a user request.

The architecture that we designed to solve this prob-
lem has:

e An agent manager that receives all the user re-
quests and keeps a database with all the users in-
terrogation (dialogue) context.

The agent manager is implemented in Prolog: it
interfaces the web user requests; it verifies if the
user is registered and if it has no pending requests;
then it launches other Prolog agent, the agent pro-
cess.

e Several process agents that given an user request
and its interrogation context are able to answer the
respective user and to actualise his interrogation
context.

The agent process when it is launched: consults
the user database; answers the user; updates the
user database (interrogation context); and informs
the agent manager that it has finished.

e An agent monitor that informs the agent manager
of the latest changes in the documents databases.
These changes are transmitted to all users that
have one of their previous queries results changed.

This Prolog agent consults all the users database
to check for differences in the user query results.
When there are changes in a user, the agent adds
a new request in the user database that will be
handled by the agent process.

To model the knowledge the agent process represents
four levels of knowledge using dynamic logic program-
ming and the LUPS language [ALP*98, APP*99]. The
knowledge levels are: Interaction, Domain, Information
Retrieval and Text.

The Interaction Level is responsible for the dialogue
management. This includes the ability of the system
to infer user intentions and attitudes and the ability
to represent the dialogue sentences in a dialogue struc-
ture. The dialogue structure will be kept in the user
database. Note that dialogues in information retrieval
systems [LJ94] are different from dialogues in computa-
tional linguistics [LA87, Pol90, CCC98, CL99, MP93,
Loc98] because our user normally does not have a plan
to execute, he actually does not have a precise goal such
as: ’go to Boston’ or ’phone to Mary’. Our users may
want to see some documents, but they do not know
which particular documents.

The Domain Level includes knowledge about the text
domain and it has rules encoding that knowledge.

The Information Retrieval Level includes knowledge
about documents and their relationship. The agent pro-
cess has logic programming rules for computing labelled
clusters that will be used as knowledge about the doc-
uments selected by the user.

The Text Level has knowledge about the words and
sequence of words in each text of the knowledge base.

2 Dynamic LP and LUPS

Before describing the systems’ architecture it is neces-
sary to briefly present the dynamic logic programming
paradigm and the language used to represent actions.

2.1 Dynamic Knowledge Representation

Given an originalknowledge base K B, and a set of up-
date rules represented by the updating knowledge base
KB', it is possible to obtain a new updated knowledge
base K B* = KB®K B’ that constitutes the update of
the knowledge base K B by the knowledge base K B'. In
order to make the meaning of the updated knowledge
base K B® K B’ declaratively clear and easily verifiable,
in [ALP198] there is a complete semantic characteriza-
tion of the updated knowledge base KB & KB'. It
is defined by means of a simple, linear-time transfor-
mation of knowledge bases KB and KB' into a nor-

mal logic program written in a meta-language. As a
result, not only the update transformation can be ac-
complished very efficiently, but also query answering in
KB@®K B' is reduced to query answering about normal
logic programs.

2.2 Language for Dynamic Representation of
Knowledge

Knowledge evolves from one knowledge state to an-
other as a result of knowledge updates. Given the cur-
rent knowledge state K S, its successor knowledge state
KS' = KS[KB] is generated as a result of the occur-
rence of a non-empty set of simultaneous (parallel) up-
dates, represented by the updating knowledge base K B.
Consecutive knowledge states KS, can be therefore
represented as K Syo[K B;|[K Bs]...[K B,], where K Sy is
the default state and K B;’s represent consecutive up-
dating knowledge bases.

Dynamic knowledge updates, as described above,
did not provide any language for specifying (or pro-
gramming) changes of knowledge states. Accordingly,
in [APP*99] it was introduced a fully declarative,
high-level language for knowledge updates called LUPS
(“Language of UPdateS”) that describes transitions be-
tween consecutive knowledge states K.S,,. It consists of
update commands, which specify what updates should
be applied to any given knowledge state K.S,, in order
to obtain the next knowledge state K.Sp4+1. In this
way, update commands allow us to implicitly deter-
mine the updating knowledge base KB, 1. The lan-
guage LUPS can therefore be viewed as a language for
dynamic knowledge representation. Below we provide
a brief description of LUPS that does not include all of
the available update commands and omits some details.

The simplest update command consists of adding
a rule to the current knowledge state and has the
form: assert (L < Lq,...,L). For example, when
a law stating that abortion is illegal is adopted, the
knowledge state might be updated via the command:
assert (illegal < abortion).

In general, the addition of a rule to a knowledge state
may depend upon some preconditions being true in the
current state. To allow for that, the assert command
in LUPS has a more general form:

assert (L < Ly,...,Ly) when (Lgy1,...,Ly) (1)

The meaning of this assert command is that if the pre-
conditions Lgy1, ..., L,, are true in the current knowl-
edge state, then the rule L « Lq,..., L should hold
true in the successor knowledge state. Normally, the so
added rules are inertial, i.e., they remain in force from
then on by inertia, until possibly defeated by some fu-
ture update or until retracted.

However, in some cases the persistence of rules by
inertia should not be assumed. Take, for instance, the
simple fact alarm_ring. This is likely to be a one-time

event that should not persist by inertia after the suc-
cessor state. Accordingly, the assert command allows
for the keyword event, indicating that the added rule
is mon-inertial.

assert event (L < Lq,...,Ly) when (Lgy1,...,Ly)
(2)
Update commands themselves (rather than the rules
they assert) may either be one-time, non-persistent up-
date commands or they may remain in force until can-
celled. In order to specify such persistent update com-
mands (which we call update laws) there is the syntax:

always [event] (L + Ly,...,Ly) when (Lgt1,-..,Lny)

(3)

To cancel persistent update commands, we use:
cancel (L < Ly,...,L;) when (Lgy1,...,Ly) (4)

To deal with rule deletion, we employ the retraction
update command:

retract (L < Li,...,Lg) when (Lgy1,...,Ly) (5)

meaning that, subject to precondition Lgy1,..., Ly,
the rule L « Ly,..., Ly is retracted. Note that cancel-
lation of a persistent update command is very different
from retraction of a rule. Cancelling a persistent up-
date means that the given update command will no
longer continue to be applied, but it does not remove
any inertial effects of the rules possibly asserted by its
previous application(s).

3 The system architecture

The architecture is based on three specialised Prolog
agents:

e An agent manager that receives all the user re-
quests and it acts as an interface with the specific
user process agent;

e The user process agent which is specific to each
user and it has information about the user profile
and the previous interrogation context;

e An agent monitor that informs the agent manager
of the latest changes in the documents databases
allowing these changes to be transmitted to all
users that have one of their previous queries re-
sults changed.

As it can be seen in figure 1, each user communicates
with the agent manager, which redirects the event to
the specific user process agent (launching the user pro-
cess, if needed). In order to obtain a cooperative an-
swer, each user process agent accesses the respective
user interaction context (composed by logic program-
ming facts) and the databases. Afterwards, it updates

User 1 Usern
N4

Monitor | —— | Manager

N

UlAgent| -

Un Agent
!

Interaction
Structure- Un

!

Interaction
Structure- Ul

Databases

Figure 1: General architecture

the interaction structure and communicates the answer
to the agent manager, which redirects it to the user.

On the other hand, the monitor agent is always ac-
cessing the databases and the interaction structures
trying to detect changes in the given answers. Then,
it informs the agent manager, which will inform the
change to the user process agent.

This architecture was implemented in a Linux envi-
ronment using XSB Prolog.

4 The agent manager

The agent manager receives the user requests, analyses
them and redirects them to the respective user process
agent.

In this process there is a technical problem related
with the fact that it is not possible to have all the user
process agents running at the same time (we expect
thousands of users). Our solution was to have only alive
the user agents correspondent to the active users. So,
one of the agent manager tasks is to keep track of the
active users and to launch the respective user process
agent, if needed.

This behaviour is described by the following logic
programming rules:

always inform(Manager,USER_AGENT_ID,A)

when request(USERID,Manager,A),
alive(USER_AGENT_ID)

always alive(USER_AGENT_ID) —
launch(USER-AGENT_ID)

As described, these rules state that after a request
from the user ID, the user process agent is launched (if
needed) and the user action is redirected to it. Note
that launch is an abductive action, which will be ab-
duced and executed only if needed, i.e. if its value is
currently false or unknown.

The user event is analysed by the user process agent
(see next section) and an answer is obtained. The an-
swer is dynamically transformed in a HTML page which
is sent to the correct user. This behaviour is represented
by the following rule:

always inform(Manager,USER ID,HTML)
when inform(USER_AGENT_ID,Manager,A),
tr(A,HTML)

Another task of the agent manager is to receive infor-
mation from the monitor agent about database changes
related to user queries (see section 6). The received in-
formation is redirected to the user process agent and
it can be used afterwards to inform the user of the
database changes. The correspondent dynamic logic
programming rule is:

always inform(Manager,USER_AGENT_ID,P)
when inform(MONITOR,Manager,P)

5 The user process agent

This agent is specific to each user and it processes the
user requests. It is launched by the agent manager to
treat a user request. This agent receives the user re-
quest and in order to process it, he must consult the
user database to obtain the interpretation context for
the user request.

When this agent terminates his service, the fulfilment
of a user request, he updates the user database with the
interpretation of the user request and the agent answer;
he informs the manager agent that he has finished his
work and he dies.

In order to fulfil a user request the agent must:

e Load the user interaction context. The interaction
context is a structure where all the previous user-
system interactions are kept.

e Interpret the speech act in the interaction context.
The agent must infer the user intentions and beliefs
from its speech act (multimodal) [QR99a)].

e Perform a set actions that are inferred in order to
fulfil the user intentions.

e Save the new interaction context for this user.

e Inform the manager agent that he has finished.

Interaction example Suppose that the user his a
retired fireman that has saved a child from drowning in
a river during his holidays putting his life at risk. Since
he has caught a pneumonia as a consequence, he wants
to know if he can get a pension for relevant services to
his country.

[User - Q1:] Documents about pensions for relevant
services?

[System - Q2:] There are 243 documents, listed in the
right frame. For further refinement you may choose one
(or none) option in each column:
Pensions that were: || Pensions for:

given militaries

or refused or civilians
Documents with keyword:
drowning
or medal
or in duty
or ..

Options in column 1 and 2 are obtained using rules
that model legal knowledge on legislation on pensions
for relevant servicesfQR99b]. Options on column 3
are obtained by clustering the set of 243 documents
[LQRI9].

[User - Q3:] chooses: civilians and drowning.

[System - Q4:] There are 45 documents, listed in the
right frame. For further refinement you may choose one
(or none) option in each column:

Documents with keyword:
death
or accident
or ...
Options in this column are obtain by reclustering the
45 documents.

[User - Q5:] Documents where there was a drowning
in a river.

[System - Q6:] Since there are 13 documents of the 45
above that match the concept, I've listed them in the
usual frame. For further refinement you may choose
one (or none) option in each column:

Documents with keyword:
car crash
or bridge
or ...

[User - Q7:] Where there was someone swimming?
[System - Q8:] Since there are no documents of the
13 above that match your new constraint. I assume
that you want that your query refines Q3, i.e. you are
looking for documents with the concept swimming, and
drowning and pensions for relevant services for civilians.
Do you want to see these documents?
[User - Q9:] Yes.

5.1 The user requests

This agent is expecting one of the following requests
from the user:

e A request that results from a multimodal act, such

— A request to return to a previous point of the

interaction:
request(USER_ID,new_context(Val))

The system users have access to a represen-
tation of the interaction context, a tree with
labels representing the requests. In order to
generate this multimodal act the user clicks
on the tree node representing the previous re-
quest. For instance, to return to point of re-
quest Q5, the user should click on the box
labelled Q5-Q6 in figure 1; this click will gen-
erate the request:

request(userl, new_context(#Q5))

(Q5-Q6] (Q7-Q8-Q9)

Figure 1: Dialogue Structure for Dialogue 1

A request to refine the previous selected set
of documents with an expression (build with
keywords connected by ands and ors):
request(USER_ID, System, re fine(Ezpr))

In the example, Q3 gives rise to this kind of re-
quest:

request(user, s, re fine(civilians and drowning))

e A natural language expression in the form of a
speech act:

1. request(USER_ID, System,

inform(sys,USER_ID,DRS))

. request(USER_ID, system,
inform_ref(sys,USER_ID,REF, DRS))

In the example, Q1 gives rise to this kind of
request:

request(old_fireman, s,
inform_ref(s,old_fireman, x,

[z, y:documents(x), concept(y), y=pension,
about(z,y)]).

. request(inform(USER_ID, system, no))
. request(inform(USER_ID, system,ok))

In the example, Q9 gives rise to this kind of
request.

request(in form(old_fireman, system, ok))

e A request from the agent monitor in order to in-
form the user that one of his previous requests has

a different result due to changes in the documents
database.

request(monitor, system,
inform(system, User_id, changes(Request))

This set of requests will enable us to encode all the
user interactions in our application.

5.2 The user interaction context

The user interaction context is kept in a dialogue struc-
ture. This structure records both user and system ques-
tions and answers. The structure is used to compute
the meaning of a user query and to allow the user to
return to a previous point of the dialogue and to build
a new branch from there.

The Dialogue structure is made of segments that
group sets of sentences (user and system sentences).
The dialogue structure reflects the user intentions, it is
built by taking into account the user and system inten-
tions. The dialogue segments have precise inheritance
rules defining how segments heritage their attributes
from the attributes of their sentences[QR99a).

The dialogue structure also enables the system to
recognise and to generate pertinent discourse phenom-
ena such as anaphoric references.

In order to interpret a user request this agent must
insert the new request into the user dialogue structure
and as result of this process a new structure is built.

The following LUPS rule[APP*99] controls the in-
sertion of the user request in the dialogue structure:

always ds(DSg) < update(U,DS_1,5,DSp)
when request(U,A,S), ds(DS_1).

This rule means that, when there is a request S and
a discourse structure DS_;, the new structure is ob-
tained from the update of the old structure with the
new request.

To fulfil the user request the agent will generate an
action A, that is added to the old dialogue structure
giving rise to a new one:

always ds(DS;) <« update(Ag,DSy,A,DS)
when action(Ag,A), ds(DSp).

DS, will be the structure to be used for the interpre-
tation of the next request by this user.

5.3 The inference of user attitudes

In order to be collaborative our system needs to model
user attitudes (intentions and beliefs). This task is also
achieved through the use of logic programming frame-
work rules and the dynamic LP semantics[QR99c].
The system mental state is represented by an ex-
tended logic program that can be decomposed in several

modules (see [QL95] for a more complete description of
these modules):

— Description of the effects and the pre-conditions
of the speech acts in terms of beliefs and intentions;

— Definition of behaviour rules that define how the
attitudes are related and how they are transferred be-
tween the users and the system (cooperatively).

For instance, the rules which describe the effect of an
inform and a request speech act from the point of view
of the receptor (assuming cooperative agents) are:

always bel(A,bel(B,P)) when inform(B,A,P)

always bel(A)int(B,Action)) when re-
quest(B,A,Action)

In order to represent collaborative behaviour it is nec-
essary to model how information is transferred from the
different agents:

always bel(A,P) when bel(A,bel(B,P))

always int(A,Action) when
bel(A,int(B,Action))

These two rules allow beliefs and intentions to be
transferred between agents if they are not inconsistent
with their previous mental state.

After each event (for instance a user question) the
agents’ model (logic program) needs to be updated with
the description of the event that occurred. The dialogue
system recognises the speech act and it constructs the
associated speech act (request or inform). The speech
act will be used to update the logic program in order to
obtain a new model. Using this new model it is possible
to obtain the intentions of the system.

5.4 The agent actions

The agent actions are inferred in order to satisfy the
user request after its interpretation.

The agent actions are commands for the interaction
system, they are composed of the following items:

e A set of documents that match the user query, a
list of document numbers.

The set of documents is obtained by sending the in-
formation retrieval search engine, SINO, the com-
mand ”sino > search QQ”, with Q being the seman-
tic interpretation of the user request transformed
into a sino query[QR99b].

Our information retrieval system is based on SINO,
a text search engine from the AustLII Institute
[GMKO97] SINO is a word based text search engine
that allows boolean and free text queries.

e A set of suggestions for further refinement of the
user current, query, i.e.a list of lists with keywords
to be displayed.

This suggestions are obtained by:

— building labelled clusters of documents.

— using domain knowledge, the update of the
semantic/pragmatic interpretation of the user
request enables the computation of new mod-
els. The domain knowledge models will sup-
ply a set of concepts that can be used as sug-
gestions for the user query refinement.

e The new dialogue structure.

The inference of the agent actions is launched by the
following rules:

always partl(Q,L) when ds(D), trans-
late(D,Q), sino(Q,L).

always part2(Q,Sets) when partl(Q,L) clus-
ters(L,Sets).

always part3(Sem,M) when ds(D), ob-
tain(D,Sem), models(Sem,M).

always int(A,inform(A,User,[L,Sets,M]) when
part1(Q,L), part2(Q,Sets), part3(S,M).

These rules state that the new intended action is
composed by the information obtained from the infor-
mation retrieval module, the clustering module, and the
knowledge representation module.

5.5 The agent top goal

The agent top goal is to receive a request and to act
cooperatively. Then, it saves its states and launches
the goal terminates.

always action(A,Action) when re-
quest(U,A,R), ds(D), int(A,Action)

always terminates when action(Ag,A), ds(D),
save(D)

6 The agent monitor

The agent monitor informs the agent manager of the
users that must be informed about the latest changes
in the documents databases.

This agent runs after any change in the documents
databases, and he searches the users that may have the
results of their previous sessions changed by the update.

The agent monitor must consult all user database to
check for differences in each user query result. When
there are changes in a user, the agent adds a new re-
quest in the user database that will be handled by the
agent process.

A user may define in his profile if wants to be in-
formed when there are relevant changes in the docu-
ments database.

When the agent monitor is launched:

1. He builds a list with all the users that want to be
warned whenever there are relevant changes in the
documents database.

2. For each user in this list he opens the user database
where the interaction context is kept; and consults
the dialogue structure.

3. Then, for each user request he checks if the new
interpretation, after the changes, give the same re-
sults.

This is done by launching the agent process re-
quests with the request to be checked, after replac-
ing the user database by a new one with a dialogue
structure that only has the previous user requests.

In order to check if the request results are the same,
the agent monitor must compare the new agent
action with the old one (just the list of documents
selected by the query).

4. Whenever there are changes in the results of a user
request interpretation this agent sends a message
to the agent manager with the request:

request(monitor,system, inform(system, User.id,
changes(Request))

The agent manager is responsible for sending this
request into the agent process requests whenever
the user has a new request.

This agent communicates with the other two agents:
the agent manager receives its messages, and the agent
process requests are launched by it in order to test for
different results.

The performance of the monitor agent can be im-
proved by parallelising the treatment of each user.

7 Conclusions

We have presented a logic programming based archi-
tecture for controlling cooperative multiuser web infor-
mation retrieval systems. This architecture is based on
three king of agents: the agent manager, which inter-
acts with the user and with the specialised user process
agents; the user process agents, which have the knowl-
edge specific to each user and interacts cooperatively
with them; and the monitor agent, which tries to de-
tect changes in the databases and to inform the users
about them.

The architecture was implemented using XSB Prolog
over a legal information retrieval system.

The initial evaluation results show that our cooper-
ative system is able to help the users decreasing the
number of queries needed to obtain the desired doc-
uments (around 20%). Although these preliminary re-
sults seem to be positive we haven’t finished a complete
evaluation of the results (we expect to have a more for-
mal evaluation by the end of the year 2000).

References

[ALP*98] J. J. Alferes, J. Leite, L. M. Pereira,
H. Przymusinska, and T. Przymuzinski. Dy-
namic logic programming. In Proc. of
KR’98, 1998.

[APP199] J. J. Alferes, L. M. Pereira, H. Przymusin-
ska, T. C. Przymusinski, and P. Quaresma.
Preliminary exploration on actions as up-
dates. In M. C. Meo and M. Vilares-
Ferro, editors, Procs. of the 1999 Joint
Conference on Declarative Programming
(AGP’99), pages 259-271, L’Aquila, Italy,
September 1999.

[CCCI8] J. Chu-Carroll and S. Carberry. Response
generation in planning dialogues. Computa-
tional Linguistics, 24(3), 1998.

[CL99] Sandra Carberry and Lynn Lambert. A pro-
cess model for recognizing communicative
acts and modeling negotiation subdialogs.
Computational Linguistics, 25(1), 1999.

[GMK97] G. Greenleaf, A. Mowbray, and G. King.
Law on the net via austlii - 14 m hyper-
text links can’t be right? In In Information
Online and On Disk’97 Conference, Sydney,
1997.

[LAS8T7] Diane Litman and James Allen. A plan
recognition model for subdialogues in con-
versation. Cognitive Science, 11(1), 1987.

[LJ94] Brian Logan and Karen Sparck Jones. Belif
revision and dialogue management in infor-
mation retrieva. Technical report, Univer-
sity of Cambridge, Computer Laboratory,
1994.

[Loc98] Karen E. Lochbaum. A collaborative plan-
ning model of intentional structure. Com-

putational Linguistics, 24(4), 1998.

[LQRY9] José Gabriel Lopes, Paulo Quaresma, and
Irene Pimenta Rodrigues. A Dialog Sys-
tem for Controlling Question/Answer Dia-
logues, volume 2, pages 75-86. R. Potapova,
Moscow, Russia, 1999.

[MP93] Johanna Moore and Cecile Paris. Planning
text for advisory dialogues:capturing inten-
tional and rhetorical information. Compu-

tational Linguistics, 19(4), 1993.

[Pol90] Martha Pollack. Plans as complex men-
tal attitudes. In Philip Cohen, Jerry Mor-
gan, and Martha Pollack, editors, Intentions
in Communications. MIT Press Cambridge,
1990.

[QL95]

[QR99a]

[QRI9b]

[QR99C]

P. Quaresma and J. G. Lopes. Unified logic
programming approach to the abduction of
plans and intentions in information-seeking
dialogues. Journal of Logic Programming,
54, 1995.

P. Quaresma and I. Rodrigues. An informa-
tion retrieval system with cooperative be-
havior. In NODALIDA’99 — Nordic Confer-
ence of Computational Linguistics, Trond-
heim, Norway, 1999.

P. Quaresma and I. Rodrigues. Pgr: A coop-
erative legal ir system on the web. In Gra-
ham Greenleaf and Andrew Mowbray, edi-
tors, 2nd AustLII Conference on Law and
Internet, Sydney, Australia, 1999. Invited

paper.

P. Quaresma and I. Rodrigues. Using dy-
namic logic programming to model cooper-
ative dialogues. In AAAI’99 Fall Symposium
on Modal and Temporal Logics based Plan-
ning for Open Networked Multimedia Sys-
tems, Cape Cod, USA, 1999. To be pub-
lished by IOS Press.

