Modelling Agent Interaction in Logic Programming

Luis Moniz Pereira and Paulo Quaresma
{lmp|pq}@di.fct.unl.pt
CENTRIA - Al CENTRE
Departamento de Informdtica
Universidade Nova de Lisboa
2825 Monte da Caparica
Portugal

August 30, 1998

Abstract

We present a logic programming framework im-
plemented over Prolog which is able to model an
agent’s mental state. An agent is modeled by a
set of extended logic programming rules repre-
senting the agent’s behavior, attitudes (beliefs,
intentions, and goals), world knowledge, and
temporal and reasoning procedures. At each
stage the agents’s mental state is defined by the
well founded model of the extended logic pro-
gram plus some constraints.

Via this modeling an agent is able to inter-
act with other agents, updating and revising
its mental state after each event. The revision
process includes the ability to remove contradic-
tions in the agent’s mental state.

It is shown how this framework can handle
interactions between agents with different be-
havior rules, namely, with different levels of co-
operativeness and credulity.

1 Introduction

In order to interact with other agents, an agent
needs the ability to model its mental state.
Namely, it is necessary to represent its attitudes
(beliefs, intentions, and goals), world knowledge
and temporal, reasoning and behavior rules. We
propose a logic programming framework that al-
lows the representation of agent models and the
definition of update and revise procedures to
be executed after each event. This framework
is based on a previous work of Quaresma [9]
and it is implemented using the REVISE system
[4] and the XSB-Prolog from SUNY at Stony

Brook.

Agents are defined as logic programs extended
with explicit negation and constraints and the
semantics is given by the well founded semantics
of logic programs with explicit negation (from
Pereira et al. [1]). The well founded seman-
tics has a complete and sound top-down proof
procedure with polynomial complexity for finite
programs.

At each new step, the agent’s mental state
is given by the well founded model of the logic
program that models the agent after it has un-
dergone possible revision. After each event, it
is necessary to update the agent model with the
new information. This is done through the up-
dating of the logic program with the facts that
describe the events. The update process may
create a contradictory mental state. For in-
stance, it is possible that an event initiates a
belief that is contradictory with some previous
beliefs. In these situations, it is necessary to
revise the agent’s mental state, terminating the
attitudes that support the contradiction. This is
achieved through the definition of revision pref-
erences.

This approach also solves the existing prob-
lems in Giangrandi and Tasso work [6] where
the revised model is obtained through the use
of heuristics to obtain the minimal model. On
the other hand, the update procedures allow us
to reason about past and present attitudes and
to build an intentional structure of the inter-
action. This an advantage over Ferguson’s ap-
proach [5] where his framework does not allow
these kind of introspective reasoning. The use of
extended logic programming with well founded

semantics also avoids the complexity problems
with the modal logic approach of Sadek [10] in
his definition of rational agents.

In the next section, the logic programming
framework is briefly described. In section 3 we
present the agent modelling process, with a spe-
cial focus on its capability to model agents with
different levels of cooperativeness and credulity.
The procedures to update and revise the agents’
mental state after each event are described in
section 4 and 5. Finally, in section 6 some con-
clusions and open problems are pointed out.

2 Logic programming
framework

Logic programs extended with explicit negation
are finite set of rules of the form

e H + B,...,B,, not

Cp (m>0,n2>0)

not Ci,...,

where H, By, ..., B, C4,..., Cp, are objective
literals. An objective literal is an atom A or its
explicit negation —A; not stands for negation by
default; not L is a default literal. Literals are
either objective or default and ——L = L.

The set of all ground objective literals of a
program P designates the extended Herbrand
base of P and is represented by H(P). A partial
interpretation I of an extended program P is
represented by T'U not F', where T and F' are
disjoint subsets of H(P). Objective literals in T'
are true in I; objective literals in F' are false by
default in I; objective literals of H(P) — (TUF)
are undefined in I. Moreover, if =L € T then
LeF.

An interpretation I of an extended logic pro-
gram P is a partial stable model of P iff ®p(I) =
I (see [1] for the definition of the ® operator).

The well founded model of the program P is
the F-least partial stable model of P. The well
founded semantics of P is determined by the set
of all partial stable models of P.

Pereira et al. [1] showed that every non-
contradictory program has a well founded model
and they also presented a complete and sound
top-down proof procedure for several classes of
programs.

In their work, Pereira et al. proposed a re-
vision process that restores consistency for con-
tradictory programs, taking back assumptions
of the truth value of negative literals. As will be

described in section 4, we use a two-valued revi-
sion process where the selected model is the pre-
ferred extended stable model (XSM) obtained as
the join of all minimal non-contradictory sub-
models (MNS). This model is called PCFXSM
— Preferred Contradiction Free eXtended Sta-
ble Model (see [1, 9, 8]).

2.1 Events

In order to interact with other agents, an agent
must be able to deal with time and events. In
fact, it is very important that agents have the
capability to represent time and events and they
should be able to reason about their mental
state at a given time point. They should also
be able to change their mental state as a conse-
quence of some external or internal events.

For a time formalism we use a variation of the
Event Calculus [7] that allows events to have an
identification and a duration and allows events
to occur simultaneously. In this approach time
is linear and discrete.

The predicate holds_at defining the properties
that are true at a specific time is:

holds_at(P,T) < happens(E,T;,Tf),
initiates(E, Tp, P),
Tp < T,
persists(Tp, P,T).
not clipped(Tp, P,T).(2)
happens(C,Tei, Teyr), (3)
terminates(C,Tc, P),
not out(Tc,Tp,T).

T < Te.

Tc < Tp.

(1)

+

persists(Tp, P,T)
clipped(Tp, P,T) <+

Out(Tc,Tp,T) —
out(Te,Tp,T) <«

(4)
(5)

The predicate happens(E,T;, Ty) means that
the event E took place, starting at 7; and
ending at Ty; initiates(E,T,P) means that
the event FE initiates fluent P at time T}
terminates(E,T, P) means that event E termi-
nates P at time T; persists(T;, P,T) means
that P persists from T; until T (at least);
clipped(T;, P,T) means that P was terminated
in a time T; that cannot be proved to be outside
(T3, T[; out(Ty,T;, T) means that T < Ty (T is
before the time that terminated the property P)
or T; < T; (the termination time is before the
initiating time). There exists also the predicate
act(E,A) which states that action A is associ-
ated with event E; the predicate ev_gen(P,T')
which means that property P was generated

before time T by an event; and the predicate
enabled(E,T;) which means that the event FE
may occur at time T; (its pre-conditions are sat-
isfied);

Note that a property P is true at a time T'
(holds_at(P,T)), if there is a previous event that
initiates P and if P persists until 7. P persists
until T if there cannot be proved by default the
existence of another event that terminates P be-
fore time T'.

We need additional rules for the relation be-
tween not holding a property and holding its
negation and not holding the negation of a prop-
erty and holding the property:

—holds_at(P,T) < holds_at(-~P,T).
-holds_at(~P,T) < holds_at(P,T).

(6)
(7)

The above predicates require being related by
some integrity rules in the form of denials!.
Note that the constraints will be used in a 2-
value revision. In this paper we will present only
a general constraint relating a property and its
negation (see [9] for a complete description):

< L,~L. (8)

3 Agents’ mental states

In our proposal, agents are modeled by the well
founded model of an extended logic program
with the following structure:

1. Rationality rules (RR). These rules de-
scribe the relation between the different at-
titudes (beliefs, intentions, and goals).

2. Behavior rules (BR). These rules define
the agent’s activity, cooperativeness, and
credulity.

3. Actions description (Ac). These rules de-
scribe the actions that may be executed by
the agent.

4. A temporal formalism (7). These are the
rules presented in the previous section re-
garding events.

5. World knowledge (W K).These rules de-
scribe the agent’s world knowledge: events,
actions, entities, taxonomies.

In the next subsections we will analyze the
first three structures: rationality rules, behavior
rules, and actions description.

1We use the symbol < to denote an integrity
constraint.

3.1 Rationality rules

These rules define relations between the agents
attitudes: beliefs (bel), goals (goal), and inten-
tions (int). Beliefs are defined by the predi-
cate bel(A, P) which means that agent A beliefs
in property P; goals are defined by the predi-
cate goal(A, P) which means that agent A wants
property P to became true in the future; inten-
tions are defined by the predicate int(A, Act)
which means that agent A has the intention to
execute action Act.

Using this predicates it is possible to represent
an agent’s beliefs about other agents’ beliefs or
to represent introspective beliefs.

It is necessary to represent the relations and
the constraints between these attitudes. In this
paper we will present only two of these relations
(for a complete description see [9, 3, 2]):

o Integrity

< holds_at(bel(A, P),T),

holds_at(bel(A,—~P),T). (9)
< holds_at(goal(A, P),T),
holds_at(goal(A,—P),T). (10)

o Necessity

holds_at(bel(A, P),T) < holds_at(P,T).
(11)

The necessity rule creates the problem of in-
finite loops, which can be solved in the imple-
mentation process by defining a maximum level
of recursiveness [9].

3.2 Behavior rules

These rules allow the definition of the agent be-
havior. As behavior properties we have consid-
ered the credulity and cooperativeness.

3.2.1 Credulity

Credulity defines how an agent accepts new in-
formation.

The main process defines how beliefs are
transferred:

holds_at(bel(H,P),T) <«
holds_at(bel(H,bel(S, P)),T),
holds_at(transf(S,H, P),T).

(12)

This rule defines that an agent believes in
a proposition if he believes that another agent
believes in it and if the information transfer
process is valid.

The fundamental rule is the one that defines
how an information transfer may occur. We
have defined four types of transference from
speaker to hearer:

1. The totally naive agent that always accepts
new information from a sincere speaker:

holds_at(transf(S,H,P),T) +
holds_at(bel(H,naive(H)),T),
holds_at(bel(H, sincere(S),T)

Note that this rule may create a contradic-
tory state (initiating beliefs that are contra-
dictory with previous ones). The contradic-
tion removal process is described in section
5.

2. A credulous agent accepts new information
if it doesn’t contradict his previous beliefs:

holds_at(transf(S,H,P),T) +«3)
holds_at(bel(H, credulous(H)),T),
not holds_at(bel(H,-P),T),
holds_at(bel(H, sincere(S),T).

3. A rational agent accepts the new informa-
tion if it is plausible, i.e., if there exists an
hypothetical sequence of actions that could
achieve it:

holds_at(transf(S,H,P),T) <+
holds_at(bel(H, rational(H)),T),
plausible(P),
holds_at(bel(H, sincere(S),T).

The plausible predicate is in fact a
meta-predicate that creates an hypothetical
model by adding a new integrity constraint
to the existing model

IC' = IC U {< not holds_at(P,t)}

If it is possible to abduce a sequence of
actions not limited in time that supports
the property P (satisfying all integrity con-
straint), then the information P is plausi-
ble.

4. The skeptical agent never accepts new in-

formation from the other agents:

—holds_at(transf(S,H,P),T) <«
holds_at(bel(H, skeptical(H)),T),
holds_at(bel(H, sincere(S),T).

This kind of agent never learns from others,
only from his own experiences.

3.2.2 Cooperativeness

This property defines how intentions and goals
are transferred between agents.
For a totally cooperative agent:

holds_at(int(H, A),T) <+ (14)
holds_at(bel(H,int(S, A)),T),
holds_at(bel(H, cooperative(H)),T).

holds_at(goal(H, P),T) +(15)
holds_at(bel(H, goal(S, P)),T),
holds_at(bel(H, cooperative(H)),T).

Using these rules a cooperative agent accepts

as new intentions and goals what he believes are
the intentions and goals of his interlocutors.

The non-cooperative agents don’t accept the

intentions and goals of its interlocutors:

-holds_at(int(H, A),T) +16)
holds_at(bel(H,int(S, A)),T),
holds_at(bel(H, pass_non_coop(H)),T).

—holds_at(goal(H,P),T) <£17)
holds_at(bel(H, goal(S, P)),T),
holds_at(bel(H, pass_non_coop(H)),T).

3.3 Actions description

The agents’ model must have a description of
the actions that may be executed by agents.

Actions are described in terms of their pre-

conditions and effects. For instance, if action A
has pre-conditions P, ..., P,, and it has the effect

F, then it can be represented by the following
set of rules:

enabled(E,T;) + act(E,A),

holds_at(Py,T;),
holds_at(P,,T;).
act(E, A),
happens(E,T;,Ty),
holds_at(Py,T;),

initiates(E, Ty, F) +

seey

holds_at(P,,T;).

Note that in the initiates predicate we need
to test explicitly the action’s pre-conditions be-
cause we may have different effects depending
on the pre-conditions. For instance, to turn on
the car key may cause different effects depend-
ing on whether the car has fuel or not.

4 Updating an agent’s men-
tal state

The agent’s mental state, as defined in the previ-

ous sections, must be updated after each event.
This process is defined through the use of logic

program updates in the following way:

Definition 1 Let P be the agent logic program
at a given time:

P= RRUAcUTUBRUWK

where RR are the rationality rules, Ac are the
rules defining the domain actions, T are the
temporal axioms presented in section 2.1, BR
are the behavior rules, and WK are the world
knowledge rules (including the events represen-
tation,).

Let E be the logic program representing events
€1, ..., €n With its associated actions ay, ..., Q.

act(e1,a1).
happens(er,t1,t1). ...happens(en, tn,ty,).
act(er,a1). ...act(en,am).
The new agent’s attitudes At are the properties
bel/2, goal/2, and int/2) that hold in the Pre-

ferred Contradiction Free eXtended Stable Model
(PCFXSM) of the updated program P U E:

holds_at(At,t) € PCFXSM(PUE)

The update process may initiate some atti-
tudes which are inconsistent with the previous
mental state.

As an example, suppose agent a believes at
time t¢1, that Kathy is at the hospital:

holds_at(bel (a, at(hospital, kathy)), t1).

At a greater time point, t2 > t1, he is in-
formed that she is at home:

happens(ey,ta, ta).
act(e1,inform(b, a, at(home, kathy))).

If agent a is naive, he will adopt the new in-
formation. However, there might exist an in-
tegrity constraint stating that is contradictory
to believe that an agent may be at two different
places at the same time:

< holds_at(bel(A,at(B,L1)),T),
holds_at(bel(A,at(B, L)), T),
L1 # L.

In this situation, the model must be revised,
and some attitudes should be terminated. This
process is handled through the calculation of the
PCFXSM and will be described in the next sec-
tion.

5 Revising Mental States

Contradiction may be caused by the effects of
the new events (these effects may violate some
integrity constraints).

In fact, contradictions caused by the effects
of events can be associated with integrity con-
straint rules of the following form:

< holds_at(Py,T), holds_at(Py,T).

Suppose that an event initiated property
Py, and property P; is also valid; a possi-
ble approach could be to terminate P; (or
P,). This can be done adding the property
terminates(E, T, Py) to the set of revisables and
defining an order relation between the contra-
diction free extended stable models.

Given a set of minimal non-contradictory sub-
models, it is necessary to define a procedure
that creates an order between them and chooses
the preferred solution. Depending on the ap-
plication domain, it might be better to have a

conservative approach (keeping the oldest atti-
tudes) or a more progressive one (keeping the
new attitudes). The order relation is built us-
ing the time when each property was initiated:
initiates(E, T, P). The sum of these times gives
an order between the models (mapping each
model to its summing value).

So, for each model m at a given time T we
obtain a value v:

>

holds_at(P,T)Em
initiates(E, Tp, P) € m, and
VT, T < Tp,initiates(E,T,P) ¢ m

v = Tp,where Tp is such that

Using this process if we want a conservative
behavior we should choose the model with the
minimum value; if we want a more progressive
behavior we should choose the model with max-
imum value.

As an example, suppose the situation of the
previous section where agent a believes Kathy
is at the hospital and he is informed that she is
at home:

holds_at(bel(a, em(hospital, kathy)), t2).
holds_at(bel(a,em(home, kathy)), t2).

We have the integrity constraint, shown be-
fore:

< holds_at(bel(X,at(L1,Y)),T),
holds_at(bel(X,at(L2,Y),T),
Li # L.

The revision process obtains the non-
contradictory solutions and it also obtains the
preferred solution (accordingly with a pre-
defined order criteria):

1. Terminate the belief that Kathy is at the
hospital;

2. Terminate the belief that Kathy is at home.

6 Conclusions

We have proposed an agent modeling process
with the following characteristics:

1. It was defined over a logic programming
framework implemented over Prolog;

2. It allows the definition of reasoning and be-
havior rules. These rules allow the model-
ing of non-well behaved agents;

3. It has an update and revise procedure de-
fined for any event that may occur.

Moreover this framework integrates under a
logic programming environment temporal rea-
soning, user modeling, update programs, and
contradiction removal mechanisms.

As future work we also intend to integrate this
agent modeling framework in a more general ar-
chitecture allowing a more powerful represen-
tation of interactions. Namely, the architecture
should be modular and distributed and it should
be able to deal with interruptions and real time
problems.

Acknowledgements

This work was partially supported by PRAXIS
project MENTAL (2/2.1/TIT/1593/95), and
DIXIT (2/2.1/TIT/1670/95).

References

[1] José Julio Alferes and Luis Moniz Pereira.
Reasoning with Logic Programming, vol-
ume 1111 of Lecture Notes in Artificial In-
telligence. Springer, 1996.

[2] Michael Bratman. What is Intention?, in
Intentions in Communication. MIT, 1990.

[3] Philip Cohen and Hector Levesque. Com-
municative actions for artificial agents. In
ICMAS, pages 65-72, 1995.

[4] Carlos Damaésio, Wolfgang Nejdl, and
Lufs Moniz Pereira. Revise: An ex-
tended logic progamming system for re-
vising knowledge bases. In Morgan Kauf-
mann, editor, KR’94, 1994.

[6] George Ferguson. Knowledge Represen-
tation and Reasoning for Mixed-Initiative
Planning. PhD thesis, University of
Rochester, 1995.

[6] Paolo Giangrandi and Carlo Tasso. Man-
aging temporal knowledge in student mod-
eling. In Anthony Jameson, Cécile Paris,
and Carlo Tasso, editors, Proceedings of
the 6th International Conference on User

(8]

[10]

Modeling, pages 414-426. SpringerWien-
NewYork, 1997.

Lode Missiaen. Localized Abductive Plan-
ning with the Event Calculus. PhD thesis,
Univ. Leuven, 1991.

Luis Moniz Pereira, José Jilio Alferes, and
Joaquim Nunes Aparicio. The extended
stable models of contradiction removal se-
mantics. In P. Barahona, L. M. Pereira, and
A. Porto, editors, 5th Portuguese AI Con-
ference, Volume 541 of LNAI, pages 105—
119. Springer-Verlag, 1991.

Paulo Quaresma. Inferéncia de Atitudes
em Didlogos. PhD thesis, Faculdade
de Ciéncias e Tecnologia da Universidade
Nova de Lisboa, 1997. In Portuguese.

M. Sadek, P. Bretier, and F. Panaget.
Artimis: Natural dialogue meets ratio-
nal agency. In Martha Pollack, editor,
IJCAI’97 - 15th International Conference
on Artificial Intelligence, pages 1030-1035.
Morgan Kaufmann, 1997.

