
How to model legal reasoning using
dynamic logic programming:

a preliminary report
Nuno Graça and Paulo Quaresma

Departamento de Informática,
Universidade de Évora,
7000 Évora, Portugal

ngraca|pq@di.uevora.pt

Abstract.
Dynamic logic programming allows the representation and the inference of evolv-

ing knowledge.
Legal knowledge reasoning needs the capability to model laws that change over

time and to model laws produced by distinct entities with different priorities at differ-
ent time points.

In this paper we propose the use of dynamic logic programming to model these
legal dynamic situations. Some examples are discussed and the implementation of a
legal oracle server is described.

1 Introduction

It is well known that knowledge representation needs to take into account the dynamic na-
ture of knowledge. As new information is acquired, new pieces of knowledge need to be
dynamically added to or removed from the knowledge bases. Moreover, information may be
produced from different sources having different degrees of reliability and, as a consequence,
having different priorities.

In [2] dynamic logic programming was proposed as a possible solution to the problem
of knowledge base updates and in [3] a new language, LUPS – Language of UPdateS, was
described and applied to the representation of actions.

On the other hand, legal knowledge reasoning needs the capability to model laws that
change over time and to model laws produced by distinct entities with different priorities
at different time points. These problems have been studied by several researchers, being
Prakken and Sartor’s work one of the most relevant [8, 10]. In their work they have pro-
posed an argument-based extended logic programming framework with defeasible priorities.
In another work, Sartor [7] and Provetti [11] have proposed the use of Event Calculus [5] as
the base formalism to model time. A complete survey about the existent approaches to the
use of logic to model legal reasoning was presented in [9].

In this paper we propose the use of dynamic logic programming to model some legal
dynamic situations. Specifically, we will deal with the representation of evolving rules and
with the problem of having several sources of laws with possible contradictions.

In order to fully explore these situations, a legal server was implemented in Prolog and it
is able to receive logic programming descriptions of laws and events and to answer queries
about what is valid in specific states. Some simple examples are described and discussed.



2 How to model legal reasoning using dynamic logic programming: a preliminary report

At this stage, it is important to point out that we do not claim that dynamic logic program-
ming is able to deal with every legal reasoning situation. This paper is just a preliminary step
in this direction.

In section 2 the logic programming framework used to model the legal server is presented.
Then, in section 3, the legal server implementation is briefly described and in section 4, exam-
ples of hypothetical server interactions are presented. Finally, in section 5 some conclusions
and future work are pointed out.

2 Dynamic Logic Programming

Before describing the legal server it is necessary to present the formalism used to implement
it. As referred in the previous section, the basic formalism is the dynamic logic programming
paradigm and the related language used to represent actions: LUPS1.

2.1 Dynamic Knowledge Representation

One of the main requirements of the formalism used to represent legal knowledge is to be
able to handle evolving knowledge. In fact, legal knowledge may be represented by specific
knowledge states but, after each event, such as a law change, knowledge evolves to another
state. The formalism should be able to handle these situations, allowing the inference of what
properties are valid in each knowledge state.

Dynamic logic programming (DLP) was proposed [2] as a possible solution to this evo-
lution requirement. In fact, DLP defines how a knowledge base can be updated by another
knowledge base, obtaining a new knowledge base.

Specifically, given an original knowledge base KB, and an updating knowledge base
KB′, it is possible to obtain a new updated knowledge base KB∗ = KB⊕KB′ that consti-
tutes the update of the knowledge base KB by the knowledge base KB ′. In order to make
the meaning of the updated knowledge base KB ⊕ KB ′ declaratively clear and easily ver-
ifiable, in [2] there is a complete semantic characterisation of the updated knowledge base
KB⊕KB′. In this work, knowledge bases are defined by sets of generalized logic programs
and the updated knowledge base is obtained by a linear-time transformation of the knowl-
edge bases KB and KB ′ into normal logic programs The basic idea is to add new logic
programming rules for modeling inheritance, update, and default situations (the transforma-
tion is fully described in the referred paper). As a result, not only the update transformation
can be accomplished very efficiently, but also query answering in KB⊕KB ′ is reduced to
query answering about normal logic programs using the stable model semantics.

2.2 LUPS – Language of UPdateS

In DLP, a knowledge base evolves from one knowledge state 2 to another as a result of a
knowledge update. Given the current knowledge state KS, its successor knowledge state
KS ′ = KS⊕KB is obtained as a result of the occurrence of a non-empty set of simultaneous
updates, represented by the updating knowledge base KB.

However, dynamic knowledge updates, do not provide any language allowing the spec-
ification of knowledge state changes. Accordingly, in [3] it was described a fully declara-
tive, high-level language for knowledge updates called LUPS “Language of UPdateS”) that

1This section is based on a previous work describing DLP and LUPS [4]
2In this context, a knowledge state can be viewed as a snapshot of the knowledge base at a specific point

(state).



How to model legal reasoning using dynamic logic programming: a preliminary report 3

describes transitions between consecutive knowledge states KSn. It consists of update com-
mands, which specify what updates should be applied to any given knowledge state KSn in
order to obtain the next knowledge state KSn+1. In this way, update commands allow us to
implicitly determine the updating knowledge base KBn+1. The language LUPS can therefore
be viewed as a language for dynamic knowledge representation.

The simplest update command consists of adding a rule to the current knowledge state
and has the form: assert (L← L1, . . . , Lk). For example, when a law stating that abortion is
illegal is adopted, the knowledge state might be updated via the command: assert (illegal ←
abortion).

In general, the addition of a rule to a knowledge state may depend upon some precon-
ditions being true in the current state. To allow for that, the assert command in LUPS has a
more general form:

assert (L← L1, . . . , Lk) when (Lk+1, . . . , Lm) (1)

The meaning of this assert command is that if the preconditions Lk+1, . . . , Lm are true in
the current knowledge state, then the rule L← L1, . . . , Lk should hold true in the successor
knowledge state. Normally, the so added rules are inertial, i.e., they remain in force from then
on by inertia, until possibly defeated by some future update or until retracted.

However, in some cases the persistence of rules by inertia should not be assumed. Take,
for instance, the simple action request help. This is likely to be a one-time event that should
not persist by inertia after the successor state. Accordingly, the assert command allows for
the keyword event, indicating that the added rule is non-inertial.

assert event (L← L1, . . . , Lk) when (Lk+1, . . . , Lm) (2)

Update commands themselves (rather than the rules they assert) may either be one-time, non-
persistent update commands or they may remain in force until cancelled. In order to specify
such persistent update commands (which are called update laws) there is the syntax:

always [event] (L← L1, . . . , Lk) when (Lk+1, . . . , Lm) (3)

Note the word event is optional and it defines if the update command should persist or if it is
only a one-time command.

To cancel persistent update commands, we use:

cancel (L← L1, . . . , Lk) when (Lk+1, . . . , Lm) (4)

To deal with rule deletion, there is the retraction update command:

retract (L← L1, . . . , Lk) when (Lk+1, . . . , Lm) (5)

meaning that, subject to precondition Lk+1, . . . , Lm, the rule L← L1, . . . , Lk is retracted.
The main difference between cancel and retract is that the first is used to cancel persistent

always commands and the other is used to cancel assert commands.
Knowledge can be queried at any knowledge state KSq with:

holds B1, . . . , Bk, not C1, . . . , not Cm at state q? (6)

and is true if and only if the conjunction of its literals holds at the state KSq. In this equation
q stands for an identifier of the knowledge state (it can be defined as an integer being 0 the
identifier for the initial knowledge state); not stands for the default negation and the predicate
holds verifies if the literals belong to the stable model of the knowledge base KSq.



4 How to model legal reasoning using dynamic logic programming: a preliminary report

The language LUPS has a declarative and procedural semantics [2] so that the update
commands not only have a definite declarative meaning but also can be readily implemented.
The procedural semantics for LUPS is obtained by the translation of the LUPS program into a
normal logic program, written in a meta-language. The translation of LUPS into XSB-Prolog
is available at http://centria.di.fct.unl.pt/˜jja/updates/lups.p

3 Legal Server

The legal server is a XSB-Prolog process able to deal with connections via a user defined
TCP/IP port. The overall architecture is presented in figure 1.

�

�

�

�Client 1 �
�

�
�. . .
�

�

�

�Client n

!
!

!
!

a
a

a
a

Legal Server

Figure 1: Architecture

There are two possible commands that clients may send to the legal server:

• Update

• Query

The clients send sequences of update rules and/or queries about properties and they receive
the answers to their queries.

These commands will be described in detail in the next two sub-sections:

3.1 Update command

The update rules have the following syntax:

update(KB, Agent, LUPSList) (7)

where KB means knowledge base and allowing the definition and the update of distinct
knowledge bases; Agent defines the name of the agent performing the action; and LUPSList

is a Prolog list of LUPS commands.
As an example, we may have:

update(law, crimeLaw, [(always (illegal ← abortion))]) (8)

It is also possible to use predicate update with only two arguments, KB and LUPSList,
meaning we want to update or to query the KB as a top priority independent agent. This
special top agent has also the possibility to define priorities among the different agents:

higherPriority(Agent1, Agent2). (9)

The priority relations will have important consequences in the processing of the agents up-
dates.

After receiving an update predicate, the legal server will create corresponding LUPS up-
dates, evolving the KB received as a parameter to a new state. The translation between the
client requests (rule 7) and the LUPS updates follows these rules:



How to model legal reasoning using dynamic logic programming: a preliminary report 5

1. For every request received from agent Agent1

(a) For every LUPS command in LUPSList having a rule with head H create a corre-
sponding command, substituting H by HAgent1

(b) For each distinct predicate H (head of some LUPS command) introduced by the
request, create the new rule:

always (H ← HAgent1, not−HA1, . . . , not−HAn) (10)

where A1, . . ., An are agents with higher priority than Agent1 and not and− stand
for the default and explicit negation, respectively.

The general idea of the first part of the translation is to index every conclusion (head of
the rules) to the corresponding agent. The second part of the translation relates the agents
beliefs with its more priority agents: an agent belief is only accepted if it is not contradictory
with a belief of another more priority agent.

As a simple example, rule 8 would produce the following LUPS rules:

always (illegalcrimeLaw ← abortion) (11)

always (illegal ← illegalcrimeLaw) (12)

If, for instance, Constitutional Law is an agent of a higher priority, then we would have
the following rule (instead of rule 12):

always (illegal ← illegalcrimeLaw, not− illegalconstitutionalLaw) (13)

3.2 Query command

The query commands have the following syntax:

query(KB, Agent, holds B1, . . . , Bk, not C1, . . . , not Cm at state q?) (14)

where KB means knowledge base and allowing the query of distinct knowledge bases; Agent

defines the name of the agent performing the action.
As in the previous section, it is possible to omit the second parameter and to query the

KB from the special top agent. As an example, we may have:

query(law, holds illegal at state now3?) (15)

4 Examples

In the next two sub-sections two kind of examples will be presented:

• Evolution of laws

• Laws produced by distinct agents/entities

3now stands for the integer identifier of the actual knowledge state. Users are allowed to use identifier now
and, even, to define arithmetic operations with it: now - 1 standing for the previous state.



6 How to model legal reasoning using dynamic logic programming: a preliminary report

4.1 Evolution of laws

Suppose there is a law stating that in order to have a specific degree it is necessary to be
enrolled in that degree and to verify certain conditions:

update(law1, [assert (degree(X)← enrolled(X), cond1(X))]). (16)

Now, suppose John enrolls himself in that degree:

update(law1, [assert (enrolled(john))]). (17)

But, after that, there is an update in the law and the needed conditions change:

update(law1, [retract (degree(X)← enrolled(X), cond1(X)), (18)

assert (degree(X)← enrolled(X), cond2(X))]).

After this change John verifies cond1 and Mary enrolls herself in the degree:

update(law1, [assert (cond1(john)), assert (enrolled(mary))]). (19)

Finally, Mary satisfies cond2:

update(law1, [assert (cond2(mary))]). (20)

If we query the KB about who has a degree and in which states:

query(law1, holds degree(X) at state S?]). (21)

We will obtain the behavior:

X = mary, S = 5.

Only Mary has a degree and only at state 5 (we are assuming initial state to be equal to 0).
Note that, if we change update 17 to:

update(law1, [assert (enrolled(john)), assert (cond1(john))]). (22)

We would get:

X = john, S = 2;

X = mary, S = 5.

This answer reflects the fact that rule defining how to obtain a degree has changed. However,
law updates are usually not retroactive: if John had a degree at state 2, then he shouldn’t have
lost his degree afterwards!

This requisite leads to a new schema for the representation of law changes4:

update(law2, [assert (degree(X)← en(X), cond1(X))]). (23)

update(law2, [assert (en(john))]). (24)

update(law2, [retract (degree(X)← en(X), cond1(X)) when (not en(X)),

assert (degree(X)← en(X), cond2(X)) when (not en(X))]). (25)

update(law2, [assert (cond1(john)), assert (en(mary))]). (26)

update(law2, [assert (cond2(mary))]). (27)

4Due to formatting problems we will use en instead of the predicate enrolled



How to model legal reasoning using dynamic logic programming: a preliminary report 7

Rule 25 captures the notion that the law changes only to those that are not yet enrolled in the
degree.

As intended, we’ll have:

X = john, S = 4;

X = john, S = 5;

X = mary, S = 5.

4.2 Laws from distinct entities

In this example we will try to show that LUPS and DLP are also able to model prioritised
rules without many changes.

Suppose there are three sources of knowledge defining what is needed to obtain a master’s
degree (conditions necessary and sufficient):

• S1: To write a thesis;

• S2: To obtain a certain amount of course credits;

• S3: To write a thesis and to obtain a certain amount of course credits (100 in this example).

We’ll have the following corresponding commands:

update(law3, s1, [assert (master(X)← thesis(X)), (28)

assert (−master(X)← −thesis(X))]).

update(law3, s2, [assert (master(X)← credits(X, N), N > 100), (29)

assert (−master(X)← credits(X, N), N <= 100)]).

update(law3, s3, [assert (master(X)← credits(X, N), N > 100, (30)

thesis(X)),

assert (−master(X)← (credits(X, N), N <= 100;

−thesis(X))]).

Suppose agents are related by the following relation s1 < s2 < s3:

higherPriority(s3, s2). (31)

higherPriority(s2, s1). (32)

With these constraints, the following update facts:

update(law3, [assert (thesis(john))]). (33)

update(law3, [assert (credits(mary, 120))]). (34)

update(law3, [assert (credits(john, 110))]). (35)

And the following queries:

query(law3, holds masters1(X) at state S?]). (36)

query(law3, holds masters2(X) at state S?]). (37)

query(law3, holds masters3(X) at state S?]). (38)

query(law3, holds master(X) at state S?]). (39)



8 How to model legal reasoning using dynamic logic programming: a preliminary report

We’ll have:

masters1(john), S = 4;

masters1(john), S = 5;

masters1(john), S = 6;

masters2(mary), S = 5;

masters2(mary), S = 6;

masters3(john), S = 6;

master(john), S = 6;

These results, as intended, state that according with S1 John has a master’s degree after
terminating his thesis (state 4); accordingly with S2 this is accomplished only at state 6 for
John (and 5 for Mary); and accordingly with S3 only John has a master’s degree and only at
state 6. As S3 is the most priority agent, its ”opinion” is the accepted by the legal server.

5 Conclusions and Future Work

The use of dynamic logic programming and its associated language, LUPS, to model some
characteristics of legal reasoning was proposed. Specifically, the problem of laws that change
over time and the problem of laws produced by different sources with different reliabili-
ties/priorities was dealt with.

Dynamic logic programming revealed to be a powerful methodology to handle these kind
of requisites and the obtained solutions were quite satisfactory and easy to model. A legal
server able to receive law updates and requests was also implemented. These server is able to
handle requests from different agents and about different knowledge bases.

As future work, we intend to use an extension of DLP, MDLP – Multidimensional Dy-
namic Logic Programming, from J. Leite et al. [6] to allow a more generic approach and the
integration of several dimensions, such as time and priorities, and to compare it with other
existent approaches, such as Prakken and Sartor’s work.

Another possible direction is to use the new language, EVOLP, proposed by Alferes et. al
[1], to simplify LUPS.

We also intend to change the communication protocol to a standard agent communication
protocol, such as FIPA ACL [12]. In this way, our legal agent may be able to interact with a
larger community of computational agents.

Acknowledgements

We would like to thank the JURIX referees for their helpful comments on the first version of
this paper.

References

[1] J. Alferes, A. Brogi, J. Leite, and L. Pereira. Evolving logic programs. In S. Flesca, S. Greco, N. Leone,
and G. Ianni, editors, JELIA’02 – Proceedings of the 8th European Conference on Logics and Artificial
Intelligence, pages 50–61. Springer-Verlag LNCS 2424, 2002.

[2] J. J. Alferes, J. Leite, L. M. Pereira, H. Przymusinska, and T. Przymuzinski. Dynamic logic programming.
In Proc. of KR’98, 1998.



How to model legal reasoning using dynamic logic programming: a preliminary report 9

[3] J. J. Alferes, L. M. Pereira, H. Przymusinska, T. C. Przymusinski, and P. Quaresma. Preliminary ex-
ploration on actions as updates. In M. C. Meo and M. Vilares-Ferro, editors, Procs. of the 1999 Joint
Conference on Declarative Programming (AGP’99), pages 259–271, L’Aquila, Italy, September 1999.

[4] J. J. Alferes, L. M. Pereira, H. Przymusinska, T. C. Przymusinski, and P. Quaresma. An exercise with
dynamic logic programming. In L. Garcia and M. C. Meo, editors, Procs. of the 2000 APPIA-GULP-
PRODE Joint Conference on Declarative Programming (AGP’2000), La Habana, Cuba, December 2000.

[5] R. Kowalski and M. Sergot. A logic-based calculus of events. New Generation Computing, 24:67–95,
1986.

[6] J. Leite, J. Alferes, L. Pereira, H. Przymusinska, and T. Przymusinski. A language for multi-dimensional
updates. In J. Dix, J. Leite, and K. Satoh, editors, Computational logic in multiagent systems: Proceedings
of the 3rd international workshop CLIMA’02, number 93, pages 19–34. Roskilde University, Denmark,
2002.

[7] Rafael Marin and Giovanni Sartor. Time and norms: a formalisation in the event calculus. In ICAIL’99 –
Internatinal Conference on Artificial Intelligence and Law. ACM, 1999.

[8] H. Prakken and G. Sartor. Argument-based extended logic programming with defeasible priorities. Journal
of Applied Non-Classical Logics, 1-2:22–75, 1997.

[9] H. Prakken and G. Sartor. The role of logic in computational models of legal argument – a critical sur-
vey. In A. Kakas and F. Sadri, editors, Computational Logic: Logic Programming and Beyond. Essays in
Honour of Robert A. Kowalski, Part II, LNCS 2048, pages 342–380. Springer, 2003.

[10] H. Prakken and G. Sartor. The three faces of defeasibility in the law. Ratio Juris, 17(1), 2004.

[11] A. Provetti. The law of contracts in the event calculus. In GULP’92 – 9th Italian Conference on Logic
Programming, 1992.

[12] fipa.org www. FIPA ACL - Agent Communication Language. FIPA - Foundation for Intelligent Physical
Agents, 2001.


