Updating and revising the agents
mental state in dialogues

Paulo Quaresma and José Gabriel Lopes
{pq,gpl}@di.fct.unl.pt
Departamento de Informatica,
Faculdade de Ciéncias e Tecnologia,
Universidade Nova de Lisboa,

2825 Monte da Caparica
Portugal

January 25, 2000

Abstract

In this paper we present an extended logic programming framework
that allows to model dialogues between different kinds of agents. Namely,
it will be shown how this framework is able to handle dialogues between
agents with different levels of sincerity, cooperativeness, credulity, and
activity.

In this framework an agent/computational system is modeled by a
set of extended logic programming rules representing its mental state.
These rules describe the agent behavior, attitudes (believes, intentions,
and objectives), world knowledge, and temporal and reasoning procedures.
The complete mental state is defined by the well founded model of the
extended logic program that models the agent.

Using this modeling process an agent is able to participate in dia-
logues, updating and revising its mental state after each sentence. The
revision process includes the capability to remove contradictions in the
agent mental state.

1 Introduction

In order to participate in dialogues, an agent/computational system needs the
capability to model its mental state. Namely, it is necessary to represent the
agent attitudes (believes, intentions, and objectives), world knowledge and tem-
poral, reasoning and behavior rules. In this paper, we propose a logic pro-
gramming framework that allows the representation of agent models and the

definition of update and revise procedures. In a dialogue, these procedures are
executed after each event (sentence) and they update the agent model using the
information associated with the different speech acts.

Agent models are defined as logic programs extended with explicit negation
and the semantics of the programs is given by the well founded semantics of
logic programs with explicit negation (from Pereira et al. Alferes and Pereira
1996; Alferes et al. 1995; Alferes 1993). The well founded semantics has a
complete and sound top-down proof procedure with polynomial complexity and
there is an implemented prototype (Damésio et al. 1994) which allows us to
obtain experimental results.

At each time instant, the agent mental state is given by the well founded
model of the logic program that models the agent. In a dialogue, after each
sentence, it is necessary to update the agent model with the new information.
This process is done through the update of the logic program with the facts
that describe the events: identification of the time and speech acts associated
with each event.

However, the update process may create a contradictory mental state. For
instance, it is possible that an event initiates a belief that is contradictory with
some previous believes. In these situations, it is necessary to revise the agent
mental state, terminating the attitudes that supported the contradiction.

The updated and, eventually, revised agent mental state may be used as the
input of a planning procedure that tries to satisfy the agent objectives.

The proposed framework has some advantages over many classical dialogue
systems: Litman and Allen (Litman 1985; Litman and Allen 1987; Allen et al.
1991), Carberry (Carberry 1985; Carberry 1988), Pollack (Pollack 1986; Pollack
1990). In fact, it supports the recognition of attitudes using a formal framework
with a specific semantic. Moreover, it allows the representation of several kinds
of users and it supports the existence of contradictory states, eliminating the
contradiction when necessary. These characteristics allow this framework to
handle a wider range of dialogues, dealing with error situations and non-well
behaved agents.

In the next section, the logic programming framework is briefly described.
In section 3 we present the agent modelling process, with a special focus on
the capability to model agents with different levels of sincerity, cooperativeness,
credulity, and activity. The procedures to update and revise the agents mental
state after each event are described in section 4 and 5. The planning recognition
process is described in section 6. Finally, in section 7 some conclusions and open
problems are pointed out.

2 Logic programming framework

Logic programs extended with explicit negation are finite set of rules of the form

e H+ Bi,...,Bp,not Cq,...,n0t Cp, (m >0,n>0)

where H, By, ..., By, Ci,..., C,, are objective literals. An objective literal is
an atom A or its explicit negation —A; not stands for negation by default; not
L is a default literal. Literals are objective or default and ——L = L.

The set of all ground objective literals of a program P designates the ex-
tended Herbrand base of P and it is represented by H(P). An interpretation
I of an extended program P is represented by 7" U not F', where T and F' are
disjoint subsets of H(P). Objective literals of T are true in I; objective literals
of F' are false by default in I; objective literals of H(P) — I are undefined in I.
Moreover, if =L € T then L € F.

An interpretation I of an extended logic program P is a partial stable model
of P iff ®p(I) = I (see Alferes and Pereira 1996 for the definition of the &
operator).

The well founded model of the program P is the F-least partial stable model
of P. The well founded semantics of P is determined by the set of all partial
stable models of P.

Pereira et al. (Alferes and Pereira 1996; Alferes et al. 1995) showed that
every non-contradictory program has a well founded model and they also pre-
sented a complete and sound top-down proof procedure for several classes of
programs.

In their work, Pereira et al., proposed a revision process that restores consis-
tency for contradictory programs, taking back assumptions of the truth value of
negative literals. As it will be described in section 4, we also use this approach
in order to revise the agents mental state.

2.1 Events

The agent modeling process must be able to deal with time and events. In fact,
it is very important that agents have the capability to reason about their mental
state at a given time point. They should also be able to change their mental
state as a consequence of some external or internal events.

As a time formalism we propose a variation of the Event Calculus (Shanahan
1989; Eshghi 1988; Missiaen 1991) that allows events to have an identification
and a duration. As a consequence events may occur simultaneously.

The predicate holds_at defining the properties that are true at a specific
time is:

holds_at(P,T) < happens(E,T;,Ty), (1)
initiates(E, Tp, P),
Te < T,
persists(Tp, P,T).
persists(Tp, P,T) <+ not clipped(Tp,P,T). (2)
clipped(Tp, P,T) <« happens(C,T.;,T.ys), (3)

terminates(C,T¢, P),

not out(Te, Tp,T).
out(Te,Tp,T) + T <T¢. (4)
out(Te,Tp,T) + Tc<Tp. (5)

The predicate happens(E, T;, Ty) means that the event E occurred between
T; and Ty; initiates(E, T, P) means that the event E initiates P at time T
terminates(E, T, P) means that event E terminates P at time T'; persists(T;,
P,T) means that P persists since T; until T' (at least); succeeds(E,T;) means
that the event E may occur at time T; (its pre-conditions are satisfied).

Note that a property P is true at a time T (holds_at(P,T)), if there is a
previous event that initiates P and if P persists until T'. P persists until T if it
can not be proved by default the existence of another event that terminates P
before the time T'.

We need additional rules for the relation between not holding a property
and holding its negation and we also need to define the relation between the
two kinds of negation:

—holds_at(P,T) < holds_at(—P,T). (6)
—holds_at(P,T) < not holds_at(P,T). (7

The predicates need to be related by some integrity rules:
1. Events can not initiate and terminate a property at the same time:

« initiates(E, T, P), terminates(E,T, P). (8)

2. Events can not initiate/terminate a property and its negation:

+ initiates(E, T, P),initiates(E,T,—P). 9)
+ terminates(E, T, P), terminates(E,T,—P). (10)

3. Events can not be associated to different time intervals:

— happens(E,Ty;, Tif), (11)
happens(E, Ty, Tay),
T = T,
not(T,-f = Tzf).

4. Events can not have a negative duration:

 happens(E,T;,Ty), not(T; < Ty). (12)

5.

Events must have an associated action:

< happens(E,T;,Ty), (13)
not(act(E, A)).

6. Properties must be initiated by some event:

— holds_at(P,T), (14)
not(ev_gen(P,T)).
ev_gen(P,T) < happens(E,T;,Ty),
initiates(E, Tp, P),
T;<T,<T,
persists(Tp, P, T).

7. Events can not occur if the pre-conditions are not satisfied:

3

< happens(E,T;,Ty), not succeeds(E,T;). (15)

Agents mental state

In our proposal, agents are modeled by the well founded model of an extended
logic program with the following structure:

1.

Rationality rules (RR). These rules describe the relation between the dif-
ferent attitudes (believes, intentions, and objectives).

. Behavior rules (BR). These rules define the agent activity, cooperative-

ness, credulity, and sincerity.

. Actions description (Ac). These rules describe the actions that may be

executed by the agent. In the domain of dialogues, these rules describe
the speech acts, their pre-conditions and effects.

. A temporal formalism (T'). These are the rules presented in the previous

section.

. World knowledge (W K).These rules describe the agent world knowledge:

entities, taxonomies, ...

In the next subsections we will analyze the first two structures: rationality
rules and behavior rules.

3.1 Rationality rules

These rules define relations between the agents attitudes: believes (bel), objec-
tives (ach), and intentions (int).

The main relations are (for related work see Bratman 1990; Cohen and
Levesque 1990a; Cohen and Levesque 1990b; Perrault 1990):

o Integrity

1 <« holds_at(bel(A, P),T), holds_at(bel(A,—P),T). (16)
L <« holds_at(ach(A, P),T), holds_at(ach(A,-P),T). (17

e Consistency

—holds_at(bel(A,—P),T) < holds_at(bel(A,P),T). (18)
—holds_at(ach(A,—P),T) < holds_at(ach(A,P),T). (19)

e Introspection

1« holds_at(bel(A, P),T), holds_at(bel (A, —bel(A, P)),T). (20)
1 < —holds_at(bel(A, P),T), holds_at(bel (A, bel (A, P)),T). (21)

e Necessity
holds_at(bel(A, P),T) <« holds_at(P,T). (22)

3.2 Behavior rules

These rules allow the definition of the agent behavior. As behavior properties
we have considered the credulity, sincerity, activity, and cooperativeness.

The behavior properties are represented by agent believes (about himself
and about the other agents). For instance, an agent a believes at a time ¢ that
the agent b is sincere, credulous, cooperative and reactive.

holds_at(bel(a, sincere(b)), t).

(bel(
(bel())>t)-
holds_at(bel(a, cooperative(b)), t).
holds_at(bel(a,reactive(b)),t).

holds_at(bel(a, credulous(b

Note that this approach allows an agent to have different behaviors depending
of the time instant. Moreover, an agent may change his believes about the
others behavior. However, in this paper we will not discuss the events that may
contribute to these changes.

3.2.1 Credulity

Credulity defines how an agent accepts information from other agents. The
main process defines how believes are transferred:

holds_at(bel(H, P),T) <« holds_at(bel(H,bel(S, P)),T), (23)
holds_at(bel(H,credulous(H)),T).

This rule defines that an agent believes in a proposition if he believes that
another agent believes in it and if he is credulous (at that time). This rule can
be changed for a more sceptical agent adding more pre-conditions (check if the
belief is not contradictory with some previous belief).

The credulity property has also consequences over the description of the
speech acts. In fact, the effect of a speech act depends on the model that the
hearer has of the speaker.

In this paper, we will show only the effect of the in form speech act:

initiates(E, Ty, bel(H,bel(S, P))) < act(E,inform(S, H, P)), (24)
happens(E, Ti, Ty),
holds_at(bel(H, sincere(S)),T).

3.2.2 Sincerity

Sincerity defines what is the relation between what agents speak and what they
believe.
The effect of a inform speech act for a sincere agent is:

initiates(E, Ty, bel (S, bel(H,bel(S, P)))) <+ act(E,inform(S, H,P)), (25)
happens(E,T;, Ty),
holds_at(bel (S, sincere(S)),T),
holds_at(bel(S, P),T).

For a non sincere speaker, the effect will be (note that the speaker informs
the incorrect truth value of P):

initiates(E, Ty, bel(S, bel(H,bel(S, —P)))) <« act(E,inform(S, H,—P)), (26)
happens(E,T;, Ty),
holds_at(bel(S, sincere(S)), T),
holds_at(bel(S, P),T).

3.2.3 Cooperativeness

This property defines how intentions and objectives are transferred between
agents.
For a cooperative agent:
holds_a(int(H,A),T) <« holds_at(bel(H,int(S, A)),T), (27)
holds_at(bel(H, cooperative(H)),T).

holds_a(ach(H,P),T) < holds_at(bel(H,ach(S,P)),T), (28)
holds_at(bel(H, cooperative(H)), T).

For a non cooperative agent:

holds_a(—int(H,A),T) < holds_at(bel(H,int(S, A)),T), (29)
holds_at(bel(H, non_cooperative(H)),T).

holds_a(-ach(H,P),T) + holds_at(bel(H,ach(S,P)),T), (30)
holds_at(bel(H,non_cooperative(H)),T).

3.2.4 Activity

An agent may be pro-active or reactive. A pro-active agent has some objectives

that were not transferred from other agents: the agent has his own motivations.

On the contrary, a reactive agent acts only as a response to other agents acts.
A pro-active agent as the following property (he has his own objectives):

holds_at(bel (A, proactive(A)),T) <+ holds_at(ach(A, P),T), (31)
not holds_at(bel(A, ach(B, P)),
not(A = B).

4 Updating an agent mental state
The agent mental state, as it was defined in the previous sections, must be

updated after each event.
This process is defined in the following way:

Definition 1 Let m be the agent model, : m = < RR, Ac,T, BR,W K >, where
RR are the rationality rules, Ac are the rules defining the domain actions, T
are the temporal arioms, BR are the behavior rules and WK are the works
knowledge rules.

The update function update : M x E™ — M, is defined such as:

1. update(m,e1 X ... X ep) = < RR1,Ac1,T1,BRi,WK; >

2. RRi = RR

3. Acr = Ac

4. T1=T

5. BRy = BR

6. WK1 = WKU{act(e1,a1), happens(e1,t1,t1)...,act(en,an),happens(en, tn,ty)},

the world description is updated with the new events ey, ..., en.

The new agent attitudes are the properties at (bel/2, ach/2, and int/2) that
hold in the new model:

holds_at(at,t) € WFM(RRU AcUT UBRUWK;)

The update process may initiate some attitudes which are inconsistent with
the previous mental state. In this situation, the model must be revised, and
some attitudes should be terminated. In the next section this process will be
described.

Using this update process it is possible to handle situations where the agent
believes in one property at a given time point, and then he changes his belief.
Note that the previous belief is not lost (the agent knows at which time interval
it hold).

As an example, agent a believes at time t1, that Kathy is at the hospital:

holds_at(bel(a, at(hospital,, kathy)), t1).
At a greater time point, t2 > 1, he is informed that she is at home:

happens(ey, ta, t2).
act(er,inform(b, a, at(home, kathy))).

If agent a is credulous, he will adopt the new information (using the speech act
in form presented previously):

1.

holds_at(bel(a, at(hospital,, kathy)), t2).

holds_at(bel(a, at(home, kathy)), ts).

However, there should be an integrity constraint stating that is contradictory
to believe that an agent may be at two different places at the same time:

1« holds_at(bel(A,at(B,L1)),T),
holds_at(bel(A, at(B, Ls)),T),
L1 # L.

In this situation, the model must be revised and one of the non-contradictory
solution must be chosen (see next section).

5 Revising Mental States

As it was shown, the update process may introduce contradiction in the agents
mental state. In fact, the new events (happens(e;, t,t'), act(e;, a;), with 1 <4 <
n), may introduce contradiction due to two different causes:

1. Contradiction caused by the new facts;
2. Contradiction caused by the effects of the new facts.

The first type of contradiction is caused by the violation of integrity con-
straints relating the description of facts (happens and act) and is analyzed at
subsection 5.1. The second cause of contradiction is associated with the effects
of the new events (see section 5.2).

5.1 Contradictory facts

Contradiction may be caused by the description of the new events. As an
example, suppose the open window action (very simplified version):

enabled(E,T;) <+ act(E,open_window), (32)
holds_at(closed window, T;).
initiates(E, Ty, opened_window) <« happens(E,T;,Ty), (33)

act(E, open_window),
holds_at(closed_ window, T;).

Suppose the window is open at time tg:

happens(eq, to, to)- (34)
act(eg, start). (35)
initiates(eo, to, opened_window). (36)

10

The agent recognized the following event:

happens(e, t,t'). (37)
act(e, open_window), (38)
to <t<t. (39)

In these conditions, the model is contradictory because the integrity con-
straint 15 is violated:

L < happens(E,T;,Ty),not enabled(E,T;).

In fact, it is not possible to infer enabled(e, t), because the following property
can not be inferred:
holds_at(janela_fechada,t).

Contradiction can be removed using two approaches:

1. Abducting one action that allows the satisfaction of some desired proper-
ties (for instance, a previous example that had closed the window);

2. Assuming that there was an incorrect event recognition.

The first approach is already supported by the proposed framework through
the use of the rules that allow the abduction of events (happens/3 and act/2).
These rules allow to avoid contradiction whenever is possible to abduce actions
that create the desired conditions.

However this process does not guarantee that the model is always non-
contradictory. In this case it is necessary to use the contradiction removal
process described by Alferes and Pereira 1996. The revisable predicates are:

rev = {not happens(E,T;,T¢),not act(E, A)}

This set of revisables mean that is possible to revise the existence of events
and its associated actions, whenever necessary. If the new events can not be
incorporated in the agent model, then its existence should be revised (the model
should always be non-contradictory).

The revision process allows the definition of the preferred non-contradictory
solutions (Damdsio et al. 1994). We can define the revision process to revise
the newest/oldest events that support contradiction.

5.2 Contradictory Mental State

Contradiction may also be cause by the effects of the new events (these effects
may violate some integrity constraints).

This kind of contradiction can be detected through the calculus of the con-
tradiction support set of an extended logic program (Alferes and Pereira 1996).

11

Contradictions caused by the effects of events are associated with integrity con-
straint rules of the following form:

1 < holds_at(Py,T), holds_at(Py,T).

In this situation, the revising process allows the definition of preference rules
over the properties (preferring a non-contradictory solution where some proper-
ties hold). Suppose that an event initiated property P», and property P; is also
valid; a possible approach could be to revise P; (or P,) revising the assumption
that it hasn’t terminated.

As an example, suppose the situation of the previous section where agent a
believes Kathy is at the hospital and he is informed that she is at home:

holds_at(bel(a, em(hospital, kathy)), t2).
holds_at(bel(a, em(home, kathy)), t2).

We have the integrity constraint:

1« holds_at(bel(X,at(L1,Y)),T), (40)
holds_at(bel(X, at(L2,Y),T),
’l’LOt(Ll = Lg)

The revision process obtains the non-contradictory solutions and it also ob-
tains the preferred solution (accordingly with a pre-defined order between prop-
erties):

1. Terminate the believe that Kathy is at the hospital;

2. Terminate the believe that Kathy is at home.

6 Plan Recognition

The update and revise processes presented in the previous sections allow the
definition of the agent mental state, after each event. Using this model it is
possible to try to recognize the other agents plans in order to participate actively
in the interaction process.

An agent plan, at a given time, is the set of intentions about the actions he
wants to be realized:

Definition 2 From the agent a point of view, P,(b,t) is the agent’s b plan at
time t, and is defined by:

P,(b,t) = {int(b, X) : holds_at(bel(a,int(b,X)),t) € WFM(M,)}

where M, is the model of a.

12

After each event, an agent tries to recognize the other agents plans and he
uses them in order to plan his own actions.

An agent plan is given by P,(a,t), representing the actions he wants to be
performed:

P,(a,t) = {int(a, X) : holds_at(bel(a,int(a, X)),t) € WFM(M,)}

Plan recognition is, in this framework, the inference of the believes about
intentions. This plan recognition strategy may be seen as a mixture of the
classical-STRIPS approaches (Fikes and Nilsson 1971; Litman 1985) and the
mental states approach of Pollack (Pollack 1990). Actions are described in terms
of their pre-conditions and effects (as in classical planning), but the recognition
process is based on a attitude theory defining the agents mental states and their
relation with the speech acts.

The next step is to generate an agent plan. This process is done using
an abductive planning strategy that abduces the actions needed to create the
desired states. However this process is not described in this paper (see Quaresma
and Lopes 1995; Quaresma 1997).

7 Conclusions
We have proposed an agent modeling process with the following characteristics:

1. It was defined over a logic programming framework with a specific seman-
tic (well founded semantics of extended logic programs);

2. It has a complete and sound top-down proof procedure;

3. It allows the definition of reasoning and behavior rules. These rules allow
the modeling of non-well behaved agents;

4. Tt has an update and revise procedure defined for any event that may
occur;

5. It may be the base of a planning process that allows the participation of
agents in dialogues.

This framework has some advantages over previous systems because it is
formal, it may be implemented (in fact we have a working prototype), and it
supports a wide range of dialogue situations.

However, there are many problems to be deal as future work.

First, and as it was pointed out in the previous section, we have not ana-
lyzed the integration of the modeling process with the planning process and the
natural language generation phase. Moreover, it was not discussed the problem
of the recognition of speech acts from natural language sentences. These tasks

13

are pre-conditions for the construction of a robust natural language processing
system.

As future work we also intend to integrate this agent modeling framework
in a more general architecture allowing a complete representation of dialogues.
Namely, the architecture should be able to deal with cycles of conversation and
clarification dialogues (Lopes 1991; Quaresma and Lopes 1992).

References

Alferes, J. J.: 1993, Semantics of Logic Programs with Explicit Negation, Ph.D.
thesis, Faculdade de Ciéncias e Tecnologia da Universidade Nova de Lisboa

Alferes, J. J., Damésio, C., and Pereira, L. M.: 1995, A logic programming
system for nonmonotonic reasoning, Journal of Automated Reasoning 14,
93-147

Alferes, J. J. and Pereira, L. M.: 1996, Reasoning with Logic Programming, Vol.
1111 of Lecture Notes in Artificial Intelligence, Springer

Allen, J., Kautz, H., Pelavin, R., and Tenenberg, J.: 1991, Reasoning about
Plans, Morgan Kaufman Publishers, Inc.

Bratman, M.: 1990, What is Intention?, in Intentions in Communication, MIT

Carberry, S.: 1985, Pragmatic Modeling in Information System Interfaces,
Ph.D. thesis, University of Delaware

Carberry, S.: 1988, Modelling the user’s plans and goals, Computational Lin-
guistics 14(3), 23-37

Cohen, P. and Levesque, H.: 1990a, Intention is choice with commitment,
Artificial Intelligence 42(3)

Cohen, P. and Levesque, H.: 1990b, Persistence, Intention, and Commitment,
in Intentions in Communication, pp 33-70, MIT

Damasio, C., Nejdl, W., and Pereira, L. M.: 1994, Revise: An extended logic
progamming system for revising knowledge bases, in M. Kaufmann (ed.),
KR’9/

Eshghi, K.: 1988, Abductive planning with event calculus, in Proceedings of
the International Conference on Logic Programming

Fikes, R. E. and Nilsson, N. J.: 1971, Strips: A new approach to the application
of theorem proving to problem solving, Artificial Intellligence (2), 189-208

Litman, D. and Allen, J.: 1987, A plan recognition model for subdialogues in
conversations, Cognitive Science (11), 163-200

Litman, D. J.: 1985, Plan Recognition and Discourse Analysis: An Integrated
Approach for Understanding Dialogues, Ph.D. thesis, Dep. of Computer
Science, University of Rochester

Lopes, J. G.: 1991, Architecture for intentional participation of natural lan-
guage interfaces in conversations, in C. Brown and G. Koch (eds.), Natural
Language Understanding and Logic Programming III, North Holland

14

Missiaen, L.: 1991, Localized Abductive Planning with the Event Calculus, Ph.D.
thesis, Univ. Leuven

Perrault, R.: 1990, An Application of Default Logic to Speech Act Theory, in
Intentions in Communication, Chapt. 9, pp 161-186, MIT

Pollack, M.: 1990, Plans as Complex Mental Attitudes, in Intentions in Com-
munication, Chapt. 5, pp 77-104, MIT

Pollack, M. E.: 1986, Inferring Domain Plans in Question-Answering, Ph.D.
thesis, Dep. of Computer and Information Science, University of Pennsylva-
nia

Quaresma, P.: 1997, Inferéncia de Atitudes em Didlogos, Ph.D. thesis, Fac-
uldade de Ciéncias e Tecnologia da Universidade Nova de Lisboa, In Por-
tuguese. To appear

Quaresma, P. and Lopes, J. G.: 1992, A two-headed architecture for intelligent
multimedia man-machine interaction, in B. de Boulay and V. Sgurev (eds).
Artificial Intelligence V - methodology, systems, applications, North Holland

Quaresma, P. and Lopes, J. G.: 1995, Unified logic programming approach
to the abduction of plans and intentions in information-seeking dialogues,
Journal of Logic Programming (54)

Shanahan, M. P.: 1989, Prediction is deduction but explanation is abduction,
in Proceedings of the IJCAI

15

