A natural language dialogue manager for
accessing databases

Salvador Abreu?, Paulo Quaresma?, Luis Quintano!, and Irene Rodrigues?

! 1jcq@sc.uevora.pt, Servico de Computagio, Universidade de Evora, Portugal
spalpqlipr@di.uevora.pt, Departamento de Informéatica, Universidade de Evora,
Portugal

2

Abstract. A logic programming based dialogue system with the capa-
bility of inferring user attitudes and accessing heterogeneous external
relational databases while doing syntactic and semantic sentence parsing
is presented. The system was built using a logic programming language
— Prolog —, a development tool — ISCO [2] — and a language for rep-
resenting actions — LUPS[4]. An application of the developed system to
the Universidade de Evora’s Integrated Information System (SITUE) was
developed and some examples of typical dialogues are presented.

1 Introduction

Over the last couple of years Universidade de Evora has committed itself to the
development of an Integrated Information System (SIIUE) [3]. The information
stored in SITUE has been in growing demand by many university services and
external entities. As more data was gathered, SITUE has become the main source
of information for Universidade de Evora faculty, students and staff. As a conse-
quence, the development of a natural language dialogue system allowing users to
interact with SITUE directly in Portuguese was considered a major requirement.

The dialogue system needed to analyze the sentences (syntactically, seman-
tically, and pragmatically) and to interact with the SIITUE knowledge bases in
order to obtain the required information. The different modules were developed
in Prolog and the interaction with the knowledge bases was done using ISCO |3,
2], a new logic-based programming framework which is able to handle relational
database integration and web-based development. The pragmatic module was
built using a language for describing actions, LUPS[4], which allows the system
to make inferences about the user intentions and beliefs and to be able to have
cooperative dialogues with the users.

The remainder of this article is structured as follows: in section 2, the ISCO
language is described. In section 3, the LUPS language is briefly described. In
section 4 the overall structure of the system is presented; section 5 deal with
the semantic/ pragmatic interpretation. In section 6 a more extensive example
is presented and, finally, in section 7 we discuss some current limitations of the
system and lay out possible lines of future work.

2 ISCO

ISCO is a new Logic-Based development language implemented over GNU Pro-
log [5] that gives the developer several distinct possibilities, useful for the devel-
opment of applications such as SITUE:

— Gives a simple database structure description language that can help in
database schema analysis. Tools are available to create an ISCO database
description from an existing relational database schema and also the oppo-
site action, i.e. to create a relational database schema from a ISCO class
description.

— View relational databases as a part of a declarative/deductive object-oriented
(with inheritance) database. Among other things, the system maps relational
tables to classes — which may be used as Prolog predicates.

— Gives simple access to relational data through ODBC using a GNU Pro-
log interface with unixODBC, which has been developed within the SITUE
project.

— Creates ISCO/Prolog executables ready for use from PHP scripts [1] in web-
based interfaces. The PHP extensions have also been developed specifically
for use with ISCO.

The dialogue modules use ISCO’s capability to establish connections from
Prolog to the relational databases in an efficient way. Moreover, ISCO was di-
rectly used to access a relational database containing a fairly complete Por-
tuguese dictionary (Polaris) [8], which is used by the syntactical and semantical
analyzer module.

3 Dynamic LP and LUPS

Knowledge evolves from one knowledge state to another as a result of knowledge
updates. In [4] it was introduced a declarative, high-level language for knowl-
edge updates called LUPS (“Language of UPdateS”) that describes transitions
between consecutive knowledge states. It consists of update commands, which
specify what updates should be applied to any given knowledge state in order
to obtain the next knowledge state. Below, a brief description of LUPS that
does not include all of the available update commands and omits some details
is presented.

The simplest update command consists of adding a rule to the current knowl-
edge state and has the form: assert (L < Ly,...,Ly). In general, the addition
of a rule to a knowledge state may depend upon some preconditions being true
in the current state. To allow for that, the assert command in LUPS has a more
general form:

assert (L < Ly,...,Ly) when (Lgt1,...,Ly) (1)

The meaning of this assert command is that if the preconditions Lyy1,..., Ly
are true in the current knowledge state, then the rule L « Lj,..., L should

hold true in the successor knowledge state. The added rules are inertial, i.e.,
they remain in force from then on by inertia, until possibly defeated by some
future update or until retracted.

However, in some cases the persistence of rules by inertia should not be
assumed. Take, for instance, an user utterance. This is a one-time event that
should not persist by inertia after the successor state. Accordingly, the assert
command allows for the keyword event, indicating that the added rule is non-
inertial.

assert event (L < Lq,...,Lg) when (Lgy1,...,Ly) (2)

Update commands themselves (rather than the rules they assert) may either be
one-time, non-persistent update commands or they may remain in force until
canceled. In order to specify such persistent update commands (which we call
update laws) there is the syntax:

always [event] (L < L1,...,Ly) when (Lgy1,...,Lm) (3)

4 Natural Language Dialogue System

As was already stated the main goal of this work was to build a system that
could get a Portuguese natural language sentence sent by a user through a web
interface and respond accordingly.

To answer the question/sentence the system has to pass it from a web-based
interface to a GNU Prolog/ISCO active process (A), the process must analyze
the sentence accessing the relational database(s) when needed to get or check
any information (B) and finally when acquiring all needed information, it has to
build a comprehensive answer and pass it to the web-based interface (C).

GnuProlo
User ¥ g

ISCO

Relational
WWW Databases

Fig. 1. Simplified SITUE-NL system architecture

The parse that is made to the sentence is split in three different parts: Syntax,
Semantics, Pragmatics

The user sends the question about the information that exists in the SITUE.
For that he/she uses a web-based interface using the scripting language PHP[1]
and the tools available by the php module of ISCO.

The question is then sent to an active Prolog process that already knows
all the relational database structure to be used. ISCO manages the conversion
of that structure to Prolog predicates that can access the relational databases
through SQL primitives as selects, inserts, updates or deletes. In our case, as
we’re facing a querying system we only need to use selects.

Besides all database structures, this Prolog process does all syntactic, seman-
tic and pragmatic analysis. For that it previously had to do some pre-processing
with the relational database structure to generate semantic/pragmatic database
driven rules.

After analyzing the sentence received, the process has to generate an adequate
answer, which will be shown to the user through the web interface.

Syntax Analysis The question reaches the syntax analysis module in form of a
list to be parsed. This syntactic interpreter will identify the correct syntactic
structure of the sentence.

This syntactic interpreter was built using Chart Parsers[6]. This is one of
many techniques to build syntactic interpreters. The decision of developing the
interpreter using this technique was mainly because chart parsers can parse in-
complete sentences. The user can place complete or incomplete questions and the
system must be able to answer them accordingly, so the need to parse incomplete
sentences is essential.

The chart parser uses a set of syntactic rules that identify the Portuguese
sentence structures and tries to match these rules with the input sentence(s).

The interpreter also uses a lexicon to identify the syntactic properties of
the words in the sentences. For that the interpreter is connected with a rela-
tional database (Polaris) which has syntactic (and semantic) information about
Portuguese words. This integration is possible through ISCO because this tool
already knows the Polaris database structure and can access it through ODBC.

This module will produce an output that consists in a list with all possible
syntactic representations of the sentence placed by the user.

As an example, if the user placed the following sentence as input to the
system:

"Paulo lecciona Arquitectura?"

("Does Paulo teachs Architecture?")

With this question the user intends to know if Paulo is the responsible for
the Architecture course.

The syntax module will return a list with the sentences’ syntactic parse

phrase([np([n(’Paulo’,s+m+_)]1), vp(v(’teach’,1+s+_)),
args_v([np([name(’Architecture’,s+m+_)]1)1)1).

Semantic Interpretation The syntactic parsing output will be sent to the se-
mantic module. This module will get the syntactic structure and rewrite it in a
First-Order Logic. The technique used for this parsing is based on DRS’s (Dis-
course Representation Structures)[7].

This technique identifies triggering syntactic configurations on the global
sentence structure, which activates some rewriting rules:

Proper Nouns - When a proper noun syntactic structure is found, a new
discourse referent is added replacing the proper noun syntactic configuration.

Pronouns - When a pronoun syntactic structure is found, a new discourse
referent (A4) is added as a condition A=B in which (B) is a suitable discourse
referent that already exists. The syntactic configuration is replaced by the new
referent.

Verbs - When a verb (verb) is found with its arguments already rewritten
(A and B), the condition verb(4A,B) is created and replaces the syntactic config-
uration that activated this rule.

This module returns two lists, one with the new sentence rewritten and the
other with information about the referents that were created in this analysis.

For instance, if this module receives the syntax module output presented in
the previous sections it will return the semantic representation of the sentence:

name(A, "Paulo’), name(B, ’Architecture’), teaches(A,B)

and a list with information about the discourse referents:

[ref(A,s+m+)ref(B;s+{+)]

5 Pragmatics Interpretation

The pragmatics module receives the sentence rewritten (into a First Order Logic
form) and tries to interpret it in the context of the dialogue and in the context
of the user model.

In order to achieve this behavior it is necessary to recognize the speech act
associated with the sentence (in this domain it can be an inform, a request,
or a askif speech act), to model the user attitudes (intentions and beliefs),
and to represent and to make inferences over the dialogue domain. After having
interpreted the sentence, the pragmatic module establishes the connection with
the databases to fetch data which will be used to give a coherent answer to the
user.

As a first step, it was necessary to represent the knowledge conveyed by the
database schemas as logic programming rules. Using the ability that ISCO has
to describe external relational databases, it was possible to generate these rules
according to the existent relations (classes) and its attributes. This process was
described in detail in [11] and, in this paper, we will present only one example:

teaches(A,B) <- (4)
all_ids(si_teacher,A),
all_ids(si_course,B),
abduct (si_teaches(course = B, lecturer = A)).

The verb teaches receives a teacher (A) and a course (B). It checks both of
them against the database information and abducts all possible relations between
teachers and courses lectured. The all_ids returns variable A and B restricted

to all known teachers and courses identifiers. This is implemented using FD
constraints.

After having defined these domain representation rules it is necessary to
pragmatically interpret the sentence. In order to achieve this goal the system
needs to model the speech acts, the user attitudes (intentions and beliefs) and
the connection between attitudes and actions. This task is also achieved through
the use of logic programming framework rules and the LUPS language (see [10,
9] for a more detailed description of these rules).

For instance, the rules which describe the effect of an inform, a request, and
a ask-if speech act from the point of view of the receptor are:

always bel(A,bel(B,P)) when inform(B,A,P)

always bel(A,int(B,Action)) when request(B,A,Action)

always bel(A,int(B,inform-if(A,B,P))) when ask-if(B,A,P)

In order to represent collaborative behavior it is necessary to model how
information is transferred between the different agents:

always bel(A,P) when bel(A,bel(B,P))

always int(A,Action) when bel(A,int(B,Action))

These two rules allow beliefs and intentions to be transferred between agents
if they are not inconsistent with their previous mental state.

There is also the need for rules that link the system intentions and the ac-
cesses to the databases:

always yes(P) « query(P), one-sol(P) when int(A, inform-if(A, B, P))

always no(P) <+ query(P), no-sol(P) when int(A, inform-if(A, B, P))

always clarif(P) < query(P), n-sol(P) when int(A, inform-if(A, B, P))

These three rules update the system’s mental state with the result of accessing
the databases: yes, if there is only one solution; no, if there are no solutions;
and clarification, if there are many solutions (the predicates that determine the
cardinality of the solution are not presented here due to space problems, but
there implementation is quite simple).

After accessing the databases, the system should answer the user:

always confirm (A ,B,P) when yes, int(A, inform-if(A, B, P))

always not int(A, inform-if(A,B,P)) when yes, int(A, inform-if(A, B, P))

always reject(A,B,P) when no, int(A, inform-if(A, B, P))

always not int (A, inform-if(A,B,P)) when yes, int(A, inform-if(A, B, P))

always ask-select(A,B,C) « cluster(P,C) when clarif(P), int(A, inform-

if(A, B, P))

The first two rules define that, after a unique solution query, the system con-
firms the answer and terminates the intention to answer the user. The next two
rules define that, after a no solution query, the system rejects the question and
terminates the intention to answer the user. The last two rules define that, after
a multiple solution query, the system starts a clarification answer, asking the
user to select one of the possible solutions. In order to collaborate with the user
we have defined a cluster predicate that tries to aggregate the solutions into
coherent sets, but its definition is outside the scope of this paper.

6 A Practical Example

For a better comprehension and to give a generic view of the system implemen-
tation we will present a complete example starting from the user input:

"Does Paulo teachs Architecture?"

After the syntax and semantic module analyses we will have:

name(A, 'Paulo’), name(B, ’Arquitecture’), teaches(A,B)

and a list with information about the discourse referents:
[ref(A,sin+masc+) ref(B,sin+masc+)]

The semantic/pragmatic interpretation will give rise to following expression:
si_teach(lecturer=A,course=B),

with A a variable constrained to values of all the database identifiers that
are named Paulo; and B a variable constrained to the values of the identifiers
that are courses with the word Architecture in their name.

After having the sentence re-written into its semantic representation form,
the speech act is recognized and we’ll have:

ask-if(user, system, [si_teaches(lecture=A,course=B)]).

Using the "ask-if" and the transference of intentions LUPS rules we’ll have:

int(system,inf-if(system, user, [si_ teaches(lecture=A,course=B)])).

Now, using the rules presented in the previous section, the system accesses the
databases (using the ISCO modules). Suppose there are two possible solutions
(one having Paulo Quaresma as the lecturer and the other having Paulo Santos
as the lecturer). We’ll have:

int(system,inf-if(system, user, [si_teaches(lecture=A,course=B)])).

clarif([si_ teaches(lecture=A course=B)]).

with variable A constrained to the set 100, 120 and name(100,’ PauloQuaresma'),
name(120," PauloSantos').

The cluster (P, C) rule will obtain two possible selections and the correspon-
dent ask-selection speech act will be performed:

ask-select(system,user,[(name(A, "Paulo Quaresma’) ; name(A, 'Paulo San-

tos”)]).

"Ts the lecturer Paulo Quaresma or Paulo Santos?"

Now, suppose the user answers:

"Paulo Quaresma."

inform (user, system, [lecturer(A), name(A, "Paulo Quaresma’)]).

Using the inform and the transference rules, the system is able to start a new
belief and to add it to the constraints of the current question:

bel(system, [name(A, 'Paulo Quaresma’)]).
int(system,inf-if(system, user, [si teaches(lecture=A course=B)])).
A is constraint to the identifier of Paulo Quaresma.

With this new constraint the query will have only one solution (yes, for
instance) and the system will perform a confirm speech act.

7 Conclusions and Future Work

The dialogue system described in this paper is still in an experimental stage, but
we intend to make it available to all users using the University’s internal web
interface, via Universidade de Evora’s web page (http://www.uevora.pt/)in a
short period of time.

Clearly, and due to its complexity, all modules have aspects that may be
improved:

— The syntactical coverage of the Portuguese grammar

— The coverage of the semantic analyzer (plurals, quantifiers, ...)

— The capability of the pragmatic module to take into account previous inter-
actions and the user models

However, we believe that probably the major positive aspect of the described
system is its modularity and the integration of several AI techniques under a
logic programming paradigm.

References

1. Php hypertext processor - http://www.php3.org.

2. Salvador Abreu. Isco: A practical language for heterogeneous information system
construction. In Proceedings of INAP’01, Tokyo, Japan, October 2001. INAP.

3. Salvador Pinto Abreu. A Logic-based Information System. In Enrico Pontelli and
Vitor Santos-Costa, editors, 2°¢ International Workshop on Practical Aspects of
Declarative Languages (PADL’2000), volume 1753 of Lecture Notes in Computer
Science, pages 141-153, Boston, MA, USA| January 2000. Springer-Verlag.

4. J. J. Alferes, L. M. Pereira, H. Przymusinska, T. C. Przymusinski, and
P. Quaresma. Preliminary exploration on actions as updates. In M. C. Meo and
M. Vilares-Ferro, editors, Procs. of the 1999 Joint Conference on Declarative Pro-
gramming (AGP’99), pages 259-271, L’Aquila, Italy, September 1999.

5. D. Diaz. http://www.gnu.org/software/prolog, 1999.

6. Gerald Gazdar and Chris Mellish. Natural Language Processing in PROLOG.
Addison-Wesley, 1989.

7. H. Kamp and U. Reyle. From Discourse to Logic. Kluwer, Dordrecht, 1993.

8. J. Lopes, N. Marques, and V. Rocio. Polaris, a portuguese lexicon acquisition and
retrieval interactive system, 1994.

9. P. Quaresma and J. G. Lopes. Unified logic programming approach to the ab-
duction of plans and intentions in information-seeking dialogues. Journal of Logic
Programming, 54, 1995.

10. Paulo Quaresma and Irene Rodrigues. Using logic programming to model multi-
agent web legal systems — an application report. In Proceedings of the ICAIL’01 -
International Conference on Artificial Intelligence and Law, St. Louis, USA, May
2001. ACM. 10 pages.

11. Luis Quintano, Irene Rodrigues, and Salvador Abreu. Relational information re-
trieval through natural lanaguage analysis. In Proceedings of INAP’01, Tokyo,
Japan, October 2001. INAP.

