Modelling Credulity and Skepticism through
Plausibility Measures

Berilhes Borges Garcia and Gabriel Pereira Lopes
Departamento de Informadtica, Universidade Nova de Lisboa

Abstract

In this paper we show how recently observed facts and plausible ex-
planations for them can be accommodated or not in the mental state of
an agent. This depends on whether the epistemic surprise degree associ-
ated with them is below or above a surprise limit that the agent is willing
to accept. This limit is related to the credulity or skepticism degree the
agent exhibits. The proposed approach also is sensitive to context known
by the agent (its mental state), so that it allows for a given agent to refuse
(or accept) a new evidence in a specific context, while it accepts (or re-
fuses) the same belief in a different context. This approach is completely
innovative as agents become more flexible in their interaction with the
external world.

Keywords: Cognitive Modelling, Nonmonotonic Reasoning, Autonomous
Agents.

1 Introduction

The Webster dictionary defines skepticism as being: ‘1 : an attitude of doubt
or a disposition to incredulity either in general or toward a particular object
2 a : the doctrine that true knowledge or knowledge in a particular area is
uncertain b : the method of suspended judgement, systematic doubt, or criticism
characteristic of skeptics 3 : doubt concerning basic religious principles (as
immortality, providence, and revelation)’. Thus skepticism implies unwillingness
to believe without conclusive evidence, requiring compelling evidence before
we believe. The opposite of the skeptical attitude is called everything from
credulity, a relatively kind term, to outright foolishness and self-delusion.
However one can easily observe that the list of behaviours an individual
can present cover the whole spectrum from the purest ingenuousness to the
most ingrained skepticism. In spite of this apparent consensus, concerning the
diversity of an intelligent agent’s possible behaviours, practically every research
results (Quaresma’s [9] exception) on autonomous agents assume an extremely
naive posture (credulous); i.e. the agent accepts every beliel proposed by the
external environment or by any other existing agents, with which it interacts.



This extremely naive posture weakens the agent’s rational behaviour. It
drives it to non-natural behaviours and into a lot of non-coherent situations.
Allowing the modelling the two extreme poles of the spectrum of possible
behaviours, i.e. pure ingenuousness and ingrained skepticism, the work of
Quaresma and Lopes [10] constitutes a progress in relation the previous ap-
proaches. However it is characterized by being highly rigid, leading the agent
to behave always in the same manner in every context and does not allow the
modelling intermediate behaviours between the two extremes. Thus, in the ap-
proach Quaresma and Lopes, a naive agent always accepts to modify its beliefs
in function of the new evidence, while a skeptical agent never accepts to modify
them.

The main goal of this paper is to propose a new framework which allows to
model the whole range of an agent’s possible behaviours, and at the same time
has into account the context known by the agent. It also allows for a given agent
to refuse (or accept) a proposed belief in a specific context, while it accepts (or
refuses) the same belief in a different context, possibly due to the evolution of
the previous context by adding some new evidence.

In this paper will take as central the notion of plausibility degree presented by
Garcia and Lopes [5], and on top of that we will define what does it mean to say
that a certain agent is very credulous, or any other gradation with relation to the
agent credulity, or skepticism. Intuitively we will say, for example, that an agent
is very credulous when it accepts to modify its beliefs in order to accommodate
a new observation despite the fact that the most plausible explanation for the
observation is very surprising, or in other words it has very little plausibility.

Previous paragraph highlights another basic aspect of our proposal the no-
tion of explanation for the newly observed fact. According to our proposal,
when an agent observes a new fact ¢, it should look for an explanation for this
fact, before changing its beliefs. If it is possible to find an explanation « for
the newly observed fact, it should additionally determine the plausibility degree
for this explanation. If this plausibility degree is above a threshold the agent
is willing to accept, it should then change its beliefs. This change is done such
way that both ¢ and « are incorporated in agent’s belief set as well as the logic
consequences of the new fact and of its explanation.

On the other hand, if the agent can not determine an explanation, its beliefs
remain unaltered; this means that the agent assumes a cautious position. Of
course this can be changed, but the agent could assume an inquisitive posture
(similar to ELISA [11]) asking its interlocutor for some kind of explanation. But
this will be worked in future work. This scenario is equivalent to the situation
where the agent prefers the information in background to the newly observed
fact.

This paper is structured in the following way: next section introduces a mo-
tivational example and the formalism used to describe our domain. Section 3
presents concisely our proposal for incorporating new evidence in an agents’s
knowledge base. This proposal is based on the semi-qualitative notion of plau-
sibility and in the abductive explanation for the newly observed fact. Section
4 demonstrates how can the framework previously presented be used for mod-



elling several types of behaviour an agent can show. In the final section we draw
the main conclusions and directions for further research.

2 Domain Descriptions

Technically, we start describing the specific knowledge an agent possesses about
a certain context. This knowledge 7' will be represented by a pair (Kp, F),
where K p represents the background knowledge about the domain the agent
has, i.e. the generic knowledge about the domain the agent possesses. F repre-
sents the contingential knowledge, i.e. the knowledge that is likely to vary from
case to case and along the time axis. We also refer to the pair T'= (Kp, F) as
the known context of the agent or its knowledge base.

Let £ be a set of arbitrary ground literals (an atom @ or its explicit negation,
—a ). By a schema A\(X), where X is a tuple with {ree variables and sometimes
constants, we mean the set of all ground instances A(a) presents in £, where
a is a tuple of ground terms, so that every free variable in X is substitued by
a ground term.. The background knowledge K p will be represented by means
of a set of default clauses': a; ~+ §;. Each default a; ~ 3, is interpreted as
a defeasible rule, which can be understood, as stating: “If ; then normally /
typically 3; holds”. Where 3, is a schema or its negation. And «; is a formula
constructed from a set of schemas and from the connectives V, A and —. ~~»
is a meta-connective, meaning normally / typically. The additional symbol L
represents logical falsity.

Example 1 Take an agent A, having the following specific knowledge, regarding
a certain domain:

dy : es(X) ~ —int( X, Ip)
dg : es(X) ~ —int(X, lin)
ds : int(X, ai) ~ int(X, Ip)

(X
Kp = ¢ dy:int(X,ai) ~ —int(X, lin) (1)
ds : int(X, ai) ~ cs(X)
dg : int(X,pr_cl) ~ int(X, lin)
d7 it (X, pr_cl) ~ int(X, ai)

Rules d; represent the following facts: (di) A believes that computer science
(cs) students are normally neither interested in learning logic programming (Ip),
(d2) nor linguistics (lin), (d3) students interested in artificial intelligence (ai)
are normally interested on learning logic programming, (di) but typically are
not interested in learning linguistics, (ds) students interested in artificial intel-
ligence are normally students from computer science, (dg) students interested in
doing their final course project on computational linguistics (pr_cl) are typically
interested on learning linguistics and (dy) are normally interested in artificial
intelligence.

L For simplicity reasons and space in this paper we only consider domains described exclu-
sively by default rules.



Assume now that the agent A also knows that b is a computer science student,
which can be represented by the contingential knowledge: F = {cs(b)}.

If after a while A gets evidence in favor of the fact that b is interested in
studying linguistics, which is represented by the formula ¢,

¢ = int(b, lin) (2)

Should A change its beliefs in order to incorporate this new evidence ¢? In
a general way all the approaches for modelling autonomous agents assume that
the answer to this question is positive, regardless of the behaviour characteristics
of the agent (that is if the agent is skeptical, not very naive, etc.) and of the
context known by the agent. However we conjecture in this work that an agent
prefers to maintain his beliefs in background and question the validity of the new
evidence, when the most plausible explanation for this new evidence is above
the plausibility limit that the agent is willing to accept.

Assumes that an agent A is a credulous agent and that the explanation most
plausible for ¢ = int(b,lin) is o = {int(b,pr_cl)}. This explanation is very
surprising (the definition of epistemic surprise and the mechanism to measure
it are presented in section 3, however greater details can be found in [5] and [4])
given the context known by agent. In this case we conjecture that the agent’s
new belief set should incorporate not only the logic consequences of the new
fact but also the logic consequences of its explanation. So that the belief set of
A is equal to:

BSy = {cs(b),int(b, lin),int(b, ai),int(b,pr_cl)} (3)

Assume now that an agent A’ is a bit less credulous than A. It has also
the same background knowledge (1) and the same contingential knowledge F =
{cs(b)} as A. What will be the epistemic state of A’ after it observed the
new evidence ¢ = int(b,lin)? Given that the context 7" known by two agents
is identical we are lead to conclude that the more plausible explanation a =
{int(b,pr_cl)} to A is also the more plausible explanation to A'. Furthermore
suppose that the degree of epistemic surprise of a = {int(b, at)} is above of the
surprise threshold that A s willing to accept. Therefore we believe that the
belief set of A" is:

cs(b), mnt(b, lp), mnt(d,lin), ~ini(b, ai),
352:{ (8), =int (b, 1p) int (b, lin) <)} "

goal (A’ Jknow if (int (b,pr_cl)))

Where goal(A/,know_if(b,int(b,pr_cl))) represents the fact that A" has
the goal of finding out if b is interested in doing his final project course in
computational linguistics. In this way the belief set of A" after the observation
of ¢ differs from the set of beliefs it possessed before, given that it has now
adopted the goal for obtaining additional information in order to clarify the



situation. We can understand this state of beliefs as being an unstable and
transitory state, in which the agent sets up a new goal for getting confirmation
for the most plausible explanation for ¢, in order to enable it to incorporate (or
reject) new evidence ¢.

The examples shown above demonstrate that the epistemic state of an agent
after the observation of a new evidence ¢ depends on its behavioural tendency,
that is if it is very credulous, credulous, etc. However this does not tell the whole
story. Another essential aspect is the context known by the agent, that is its
background knowledge and its contingential knowledge. The previous example
also stresses the central role played by the most plausible explanation for a new
fact.

3 Plausibility Degree and Abductive Explana-
tions

From the description of the background knowledge Kp of an agent A we use
the specificity relations among the default conditionals to establish preference
relations between the interpretations that the agent foresees as possible. The
determination of the specificity relations is made using system Z [7]; where the
set Kp is partitioned into mutually exclusive subsets Kpo, Kp1, ..., Kpn. Two
rules belonging to a subset Kp; are equally specific. If they belong different
subsets they have different specificities. For space reasons we will not detail the
partitioning process, thus readers should consult [7], [6] for more details.

Example 2 The partition of Kp of example (1) is: Kpo = {dy, do}; Kpi =
{ds,dy,ds}; Kpa={ds,dr}

The the specificity of the default d,,,; written Z (d,), is ¢ iff d,, € Kp;. In the
previous example we have Z (d1) = Z (d3) =0, Z(d3) =Z(d4) = Z(ds) =1e¢
Z (dg) = Z (d7) = 2.

Now, it can be established a relationship between the default ranking func-
tion Z(.) and a function k(.) that ascribes to each interpretation w of Kp an
ordinal representing the normality of this interpretation. Where an interpreta-
tion is a truth assignment to the elements of £ present in Kp U FE.

The link between these two functions is made considering the normality of an
interpretation as being equal to the of the higher order default that it violates®
added with one. Thus, the ranking of an interpretation w in which a student b of
computer science, ¢s(b), is interested on learning logic programming , int(b, Ip),
is k(w) = 1, since the ranking of the higher order default violated by this
interpretation is O (this interpretation violates the default cs(X) ~» —int(X, Ip),
whose ranking is zero). However it should be stressed that we are interested in
measuring how much surprised an agent would be by finding an interpretation
that would satisfy ? given that its mental state already satisfied ¢. This degree

2 A default o ~» 3 is verified in an interpretation if both a and 8 are satisfied, and it is
violated in an interpretation if a is satisfied but 3 is not.



of surprise may be defined as being k(¢/¢) [7], and it equals the difference
between k(¥ A ¢) and k(¢), or written otherwise:

k(¥/¢) = k(¥ A ¢) — k(9) (5)

It is assumed that the degree of plausibility of a formula v since the agent
already knows ¢, Pl(¥/¢), is ‘inversely’ proportional to the degree of surprise
of ¥, k(¥/¢), i.e. given two propositions & and 3 we will say that « is at least
as plausible as (3 given the contingential knowledge F, PI(3/F) < Pl(a/E), iff
k(a/B) < k(3/E).

From plausibility degree Garcia and Lopes [5] define a (-translation of the
agent’s knowledge base T'= (K p, F) into an extended logic program, with two
types of negation: explicit negation and negation by default. This translation
plays two roles. In first place it provides a efficient method for computing the
logical consequences of the agent’s known context. Furthermore, it also allows,
on a meta-logic level, to measure the degree de plausibility of a formula. For
more details see [5] and [4]. The semantics of this program is given by the Well
Founded Semantics eXplicit negation (WFSX) [1].

An extended logic program P is a set of rules of the following kind:

Lo—ILiN...NLypy Anot Lyyiq A ... Anot Ly, (6)

Where 0 < m < nand 0 < i < n Each L; is an objective literal. An objective
literal is an atom A or its explicit negation —=A. The symbol not represents
negation-as-failure and not L; is a default literal. Literals are objective literals
or default literals and ——A = A.

Example 3 For example one considers the background knowledge Kp defined
by (1). The (-translation of this knowledge is equal to the following program



PD.'

—int(X,lp) «— cs(X) Anot int(X,Ip) A not abo.
—int(X,lin) «— ex(X)Anot int(X,lin) A not abo.
ab0 — int(X,ad).
int(X,lp) «— int(X,ai) Anot —int(X,1p) Anot abl.
—int(X,lin) «— int(X,ai) Anot int(X,lin) Anot abl.
cs(X) «— int(X,ai) Anot —cs(X) Anot abl. (7
abl — nt(X,pr_cl).
int(X,lin) «— nt(X,pr_cl) Anot —int(X, lin) A not ab2.
int(X,ai) «— int(X,pr_cl) Anot —int(X, ai) Anot ab2.
lev0 <« mnot —lev0 A not levl A not lev2 A not lev3.
levl «—  es(X) Anot —int(X,Ip) Anot —levl A not lev2 A not lev3.
levl «— es(X) Anot —int(X,lin) Anot —levl A not lev2 Anot lev3.
lev2 «— nt(X,ai) Anot int(X,1lp) Anot —lev2 Anot lev3.
lev2 «— nt(X,ai) Anot —int(X,lin) A not —lev2 A not lev3.
lev2 «— int(X,ai) Anot cs(X) Anot —lev2 A not lev3.
levd «— nt(X,pr_cl) Anot int(X,lin) A not —lev3
lev3d «— nt(X,pr_cl) Anot int(X,ai) A not —lev3

Where the literal lev; represents the normality degree, so that the higher the
index 1, the lower a model’s normality will be.

We will refer the Well Founded Model (W FM) of extended logic program
Pp obtained by means of (-translation of T'= (Kp, E) by WF Mg, g . It takes
into account the implicit specificity relations in agent’s knowledge base and it
is a maximally normal model, i.e. minimally surprising, which satisfies F.

The obtained logic program can be enlarged so that to allow the agent de-
termine the possible explanations for the new evidence, according to [3] and [8§].
For more details see [5].

Once the agent has determined a possible explanation « for a new fact
¢, it is able to evaluate the plausibility degree associated to this fact ¢ and
its explanation a. All it need to do is to evaluate the difference between the
normality of WFMg, g and the normality of WM that results from the
assimilation of a and ¢, WFMgk , guaug, in other words k(W F Mgk, puaug) —
E(WFMp, g). This can be done in a simple way through the difference that
exists between the indexes of the literals lev;’s present in WF Mg, puaug and
WEFMg, E.

To summarize so far, we are able to determine the degree of plausibility
resulting from the assimilation of a fact ¢ and its explanation a. However, our
objective is to determine the degree of plausibility of a new fact ¢. How can this
be done? The simple answer to this question is to assume the most plausible
explanation for «, i.e. minimally surprising.



Definition 4 (¢’s plausibility degree) Let |[T'A¢|| = {a,a2,...,an} be a
set of explanations for ¢ inT , thusk(¢/E) = min  k(WFMgk, poa,us)—

ai € |Tag]
k(WFMg, ).

4 Modelling Behaviours

In the previous section we briefly presented a framework that allows an agent
A to evaluate the plausibility degree of a new information ¢, given that it
already knows a context (mental state) T' = (Kp, F). Next step establishes
the connection between this plausibility measure and the types of behaviour an
agent may exhibit. Initially take two agents, A and AI, that possess the same
background knowledge Kp. Suppose also that both have the same evidential
context F, that is, both know the same context T'= (Kp, E).

Assume now that both obtain simultaneously a new evidence ¢, which is
inconsistent with the beliefs presently retained by them. If agent A modifies its
beliefs, in order to incorporate the new evidence and its most plausible expla-
nation «, and if A prefers to engage in an investigation process to guarantee
more plausibility for the most plausible explanation a for ¢. Observe that we
can state that the most plausible explanation a found by A will also be the
most plausible explanation found by A/, given that both agents know the same
context T'. Taking into account what has been said in section 3 we can conclude
that both agents have the same degree of epistemic surprise in relation to the
new evidence ¢.

Being so, how can we justify that both agents show differentiated behaviours?
A possible answer, advocated by us in this paper, is that both agents possess
different limits of tolerance to epistemic surprise. And that an agent only accepts
a new evidence ¢ if the degree of surprise associated to this new evidence is
situated below the limit of epistemic surprise that it is willing to accept. Thus,
the greater the limit of epistemic surprise an agent has, the higher its capability
for accepting a new evidence ¢ will be, that is the more credulous the agent
is, and consequently smaller the level of skepticism it will have. The main
justification for this assertion is that the observation of ¢ has an informative
value that should not be dismissed by the agent.

Proposition 5 (Acceptance of new evidence ¢) A new evidence ¢ is only
accepted by an agent A in a context T = (Kp, E) iff k (¢/E) is below the surprise
limit it is willing to accept.

Example 6 Assume that two agents A e A’ have the same background knowl-
edge Kp defined by (1). Given that the contingential knowledge the agents know
is 2= {cs(b)} suppose that the new evidence ¢ = {int(b,lin)} is observed. The
abductive framework P4 obtained, according to [5], for both agents, in this sil-
uation is equal to:

Pp Ucs(b) «—1},{cs(b),int(b,ar),nt(b,pr cl)},
PA:<{ v {}J_<{—7§01)f mt((b,zz'n))} (el > ®



Where Pp is the extended logic program showed in (7), {cs(b), int(b, ai), int(b,pr_cl)}
is the abductive literals set and { L« not int(b,lin)} denotes the integrity con-
straints set. In this case the abductive answer is {int(b,pr_cl)}. And the plau-
sibility, or better, its epistemic surprise, is respectively k(int(b,pr_cl)/E) = 2,
para both agents. Assuming that the surprise threshold of A is 2, we would
conclude that the new context known for A is equal to:

T8 = {Kp, EU ¢ Uint(b,pr_cl)} (9)

We can see that the conjunction of Pp (the {-translation of Kp) with
{es(b) — ,int(b,pr_cl) «— ,int(b,lin) «— } derives the following belief set:

cs(b),int (b, lin), int(b, ai), }

int(b,pr_cl), ab0, abl, lev2 (10)

BS, = {
which corresponds to advocated intuition. Furthermore if we assume that the
surprise threshold of A is equal to 1, so thatl in accordance with the proposition
(5) the epistemic state of A’ does not include the new evidence ¢. However in
this work, we conjecture that agent A’ shall acquire a new goal for obtaining an
explicit confirmation for the most plausible explanation it has found for the newly
observed fact. The main justification for this position is that the observation of
¢ has an informative value that should not be dismissed by the agent. Therefore
we believe that the new context known for A s equal to:

1

TA = {KD,E U goal <A’, know_if (int (b,pr_cl)))} (11)

Again  we  can  see  that the  conjuction of Pp with
{cs(b) «— , goal <A/,know_if (int (b,pr_cl))) — } derives the following be-
lief set:

B, = { cs(b), ~int (b, lin), ~int(b, Ip), } (12

goal (A/,know_if (int (b,pr_ cl))) ,lev0

Therefore, we can model the various types of behaviour an agent may present
by fixing different values for its limit of epistemic surprise. The only restriction
to be imposed refers to the relation of order (rank), so that for any two agents
A and A/, if A has a higher threshold than A/, then A is more credulous than
A’. In other words, A is more credulous than A" iff thr (A) > thT(A/), where
thr (X) represents the limit of epistemic surprise acceptable by the agent X.
Another point to be stressed concerns the role played by the context in the
process of assimilation of new evidence. Consider again agent A" from the
previous example. Assume now that his evidential knowledge is equal to E =
{cs(b),int(b,ai)} and it obtains the same evidence ¢ = {int(b,lin)} as in the
previous example. Observe, however, that the plausibility degree of ¢ given E

is equal to 1, & <¢/E/) = 1. So, according to proposition (5) the new context
known by A s

’

T} = {KD,E' U¢Uint(b,pr_cz)} (13)



In this way, we can conclude that the contingential knowledge F held by an
agent before the observation of a new evidence ¢ is a determinant factor in the
epistemic state that results from this observation.

5 Conclusion

Along this paper we present a framework that is able to model various types of
behaviour an agent may exhibit. This framework relies on two basic notions:
the notion of abductive explanation for a fact recently observed and the concept
of degree of surprise associated to this new evidence. After, we introduce the
notion that a new evidence can only be accepted by the agent, without major
questioning, if the degree of surprise of this new evidence is below the limit
of epistemic surprise that the agent is willing to accept. Thus, through the
assignment of differentiated values to this limit, we can model various types of
behaviour.

This framework has two main characteristics. First, it can model various
types of behaviour an agent may exhibit. This characteristic, in our opinion, is
extremely important when we consider the possibility of a computational agent
interacting with other agents, who may convey intentionally or unintentionally
erroneous information. In any of these situations, the agent should possess auto-
protection mechanisms for its own beliefs. One possible mechanisms is to adopt
skeptical positions in relation to its interlocutors. However, we also expect the
agent to be sensitive to the context, so that the acceptance, or rejection, of
new evidence is conditioned by the context known by the agent (by its mental
state). In this way, the agent has a more flexible behaviour, and so it does
not necessarily accepts or rejects always a new evidence, but it evaluates the
convenience of the new information regarding the context already known. This
flexibility is the second main characteristic of our proposition.

Presently we are investigating how this proposition may be applied in the
context of advising dialogues, where the process of transmission of beliefs be-
tween the interlocutors is mediated by the framework we present here. And
when an autonomous agent receives a statement whose degree of plausibility
is below its acceptance level, it should try to engage itself in pro-active atti-
tudes in order to clarify the situation. However some questions remain open,
namely the ones related to the nature of the surprise limit and how this can be
determined.[12]

All the examples that were presented in this paper were experimented with
the latest version of the program REVISE [2], a programming system in ex-
tended logic for the revision of belief base. This program is based in top-down
derivation procedures for WFSX (Well Founded Semantics with eXplicit nega-
tion) [1].
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