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Abstract

This paper discusses some basic ideas about the implementation of GC, a con-
straint propagation system, with three different implementations of finite variables
domains. As it has been our wish to develop a system that uses the OO approach,
it is implemented in Java, although other application frameworks are also available
for C++.

The constraint propagation and variables domains are explained at the applica-
tion and implementation level and some examples from the litterature are presented
in order to clarify the construction of applications with GC.

1 Introduction

Many real life problems (scheduling, planning, etc) found in constraint pro-
gramming, and particularly in constraint logic programming, a very conve-
nient formulation. This is due to the expressiveness of this paradigm and its
suitability to efficiently handle highly combinatorial problems.

Combining a programming methodology with a particular existing lan-
guage, can be helpful because the result will inherit the host language’s quali-
ties but, in the case of CLP, one of Prolog’s most significant handicaps is also
passed on to the final programming language: it’s lack of widespread diffu-
sion. This aspect severely limits the ease with which a technology which is
known to be useful (CLP) may be demonstrated and actually put to use in
non-specialized environments.

The Java language is touted as having absolute machine-independence,
thereby providing an appealing platform for the development of applications.
This has been slightly hindered by the efficiency of the available Java im-
plementations, but this situation is changing with the emergence of better
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run-time support systems, for instance by way of the “just-in-time compil-
ers”, such as TYA.

The inefficiency of the implementations of JVM, the Java virtual machine,
may may seem to be a deterrent to using it to implement other programming
paradigms, especially ones which focus on (relative) efficiency. However, in the
case of CLP, the appeal of having a widespread binary-compatible platform
seems to address the difficulty that such systems have and was previously
mentioned: scarcity of a widely used (and easy to install) implementation.
Just consider that most Web browsers have a built-in Java runtime system,
regardless of the hardware/software platform they run under.

This situation has been recognized and dealt with, albeit with a different
language (C++), through the constraint programming package Ilog:Solver [6].
Our goal is to take this approach one step further and construct a similar but
improved system in Java. At this stage raw efficiency (as per benchmark re-
sults) is not our purpose, we’d rather design and implement a clean framework
for CLP in a Java embedding.

Another feature of the Java language which is paramount to the possibility
of success of this choice is its inclusion of advanced graphical toolkits which
share the language’s most hailed benefit: portability. These toolkits, especially
the Java Foundation Classes or Swing, will enable us to build sophisticated
programming environments and extend our research in the direction of Visual
Programming Languages.

This article outlines the GC in section 2. In section 3 we discuss different
representations for variables. Section 4 presents the way in which GC im-
plements constraints and section 5 discusses the mechanisms for constraint
propagation. Section 6 describes iterators, which are used to artificially re-
duce some variable’s domain. In section 7 we present a few examples from the
literature and finally, in section 8 we discuss some of our short- and long-term
plans for GC.

2 The GC

In order to obtain a dialect for an OO language that allows constraint program-
ming methodology, there are two independent, but parallel, class hierarchies:
the Variable and Constraint classes. Communication and synchronization be-
tween both is obtained by reference relations. Constraints contain Variables
(in the environment class attribute) and Variables refer the set of constraints
they occur in (by dependencies class attribute).

Figure 1 shows a summarized class hierarchy for GC.

For instance, if we have three variables X, Y and Z and the constraints
C1 and C2, given by:
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Fig. 1. Class hierarchy for GC

C1 : X + Y = Z

C2 : X 6= Y

The environment of C1 will contain variables X, Y and Z and the envi-
ronment of C2, will contain X and Y . On the other hand, variable X will
have the following dependencies: (C1, Y ), (C1, Z), (C2, Y ) and Y will have
(C1, X), (C1, Z), (C2, X).

Applications will have instances of subclasses of Variable, Constraint and
Iterator (to impose single value solutions). The architecture of GC, comprises
three levels: the Kernel level, Constraints level and Application level. At the
Kernel level, all the basic framework for constraints and variable domains is
implemented. The Constraints level implements specific domains (e.g. FD,
Booleans etc) and basic constraints over these domains (<,≤, =, 6=, etc). Fi-
nally the Application level, which uses the previous two and may specify new
constraint classes, specific to the problem in hand.

3 Domain Variables

These represent the values associated with the variables and contain a set of
constraints in which this variable occurs. At the present moment we have
implemented three domain Variable classes, which represent variables over
finite domains. FD variables, which assume that the values for the variable are
represented by a unique interval of positive integers, so its representation relies
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on minimum and maximum values. FDD variables are FD variables in which a
bitmap is added to represent the values in the domain and FDIU variables, also
FD variables, in which domains are represented by a disjoint union of intervals.

In the hierarchy of domain variables the generic work is done in gc.variable.
It implements the work related to the dependencies and lets the work specific
of the domain to be done in subclasses. These must respond to messages like:
whether a domain is ground, empty, copy variables and clone them with no
dependencies, give the first element in the domain, give the next value given
the previous one and set a single range.

3.1 Working with FD Variables

They are implemented in gc.fd.Variable and are a subclass of gc.Variable.
Since we assume that the possible range for the variable is a compact domain,
FD variables work fine. Dealing with this kind of variables implies the handling
of domain extremes only. Constraints over these variables are restricted to
evaluate the maximum and minimum values of the domain and to update

them conveniently.

3.2 Working with FDD Variables

As we frequently have holes in the domain, this representation seems to work
out better. It’s a subclass of gc.fd.Variable, to which a bitmap is added
to represent the values in the domain. Commonly we use clear and put

methods, to add and remove values from the domain and constraints over
these variables make large use of these methods.

3.3 Working with FDIU Variables

¿From the discussed so far, it’s clear that when we have a large, but compact
domain, we must use FD variables and when we have to affect values in the
middle of the domain, we use FDD variables. So, what about large domains
with many/few holes?

Using a bitmap to represent the domain values could be very inappropriate,
when we have large domains or a variable that is initialized from 0..∞. A
condensed form for representing series of contiguous integers is of course an
interval, since we only need to store the minimum and the maximum values.
Unions of intervals are the natural way to represent, in a condensed form,
large and sparse sets of values. FDIU variables use this representation. The
package gc.fdiu.domain defines a domain as a list of intervals and exports
methods to add and remove intervals from a domain. Some basic operations
for intervals (and domains) such as, disjunction, union, sum, difference, etc,
are also available.
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4 Constraints over Variables

No doubt constraints and the propagation mechanism, are the core of GC.
Constraints are relations between variables and/or entities external to the
constraint propagation system (e.g. constants). The addition of a constraint
to the store will create the dependencies between the variables involved in it.
The imposition of a constraint will frequently narrow the variable’s domain.
Once that happens all the dependent variables’ domains will be analyzed and
updated too, if necessary.

Constraints classes follow an inheritance hierarchy. New constraints sub-
classes could be added with the definition of appropriate localUpdate(n),
method. localUpdate is responsible for the actualization of the nth variable
domain for that constraint and it’s called by update method (see section 5),
so at this level no propagation takes place and there’s no need to check for any
kind of changes. The definition of a constraint becomes simple and the single
work to do, is to fit the constraint into the proper place into the hierarchy and
to define the method for updating all variables’ domains of the constraint.

5 Constraint Propagation

The root of constraint class hierarchy defines the update(n) method, which is
responsible for the propagation mechanism and is triggered by the installation
of the constraint. It’s main responsibility is the updating of the nth variable
of the constraint. If there’s a change in the corresponding domain, all the
constraints involving that variable will be re-evaluated, until a fixpoint is
reached.

6 Iterators

The purpose of Iterators is to restrict a specified set of variables so that these
may become a singleton . The variables that will be iterated on, are the ones
added to the iterator. The initialization of the iterator is required, in order to
prepare it for the first solution. Next solutions in sequence are obtained by,
iterating through all possible values (and thereby triggering the propagation
mechanism). This is achieved by sending a message to the Iterator instance.

Domain classes must provide methods to select the first value in a domain
and the next value, given the previous one, since they are domain-dependent.

The search strategy used is a prolog-like depth-first, left-to-right, but oth-
ers may be implemented (breath-first, first-fail, etc) as subclasses of Iterator.
Since iterators backtrack, a trail data structure is used. This is done with
dependency-free variables which store the previous domain value.
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6.1 Example

If we define Xin[2..4] ∪ [6..20] and Y in[1..7] and the constraint X < Y , we’ll
have Xin[2..4] ∪ {6}, Y in[3..7]. The following table shows the results of iter-
ating over the different variables.

Iterate Number All

Over Solutions Solutions

X 4 [X = 2, Y = [3..7]] [X = 3, Y = [4..7]] [X =
4, Y = [5..7]] [X = 6, Y = {7}]

Y 5 [X = {2}, Y = 3] [X = [2..3], Y = 4] [X =
[2..4], Y = 5] [X = [2..4], Y = 6] [X = [2..4] ∪
{6}, Y = 7]

X,Y 13 [X = 2, Y = 3] [X = 2, Y = 4] [X = 2, Y =
5] [X = 2, Y = 6] [X = 2, Y = 7] [X = 3, Y =
4] [X = 3, Y = 5] [X = 3, Y = 6] [X = 3, Y =
7] [X = 4, Y = 5] [X = 4, Y = 6] [X = 4, Y =
7] [X = 6, Y = 7]

7 Examples

We present three well known examples and the approach used to solve them,
in order to clarify some issues about constructing an application with GC. The
implementation of these solutions is mostly taken from [2].

7.1 The Five Houses Puzzle

• The problem:
There are five persons who live side by side in the same street. They have

different nationalities, jobs, favourite drinks and favourite pets. Based on
the constraints given by the problem, find who’s who.

• The variables:
We have 25 variables, to know, the five names, the five nationalities, the

five jobs, the five drinks and the five pets. It’s better to group the names,
nationalities,. . . Let’s define an array of variables
N=[N0, N1, N2, N3, N4] for names,
C=[C0, C1, C2, C3, C4] for nationalities,
P=[P0, P1, P2, P3, P4] for jobs,
A=[A0, A1, A2, A3, A4] for pets and
D=[D0, D1, D2, D3, D4] for drinks.
All the variables take values from 1 to 5, so they must be created by a
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constructor of the type Variable X=new Variable(1,5).

• The constraints:
Constraints for Five Houses Puzzle, are in the following table.

2 Variables N5 = 1 ; D5 = 3 ; N1 = C2 ; N2 = A1

D5 = 3 ; N3 = P1 ; N4 = D3 ; P3 = D1

C1 = D4 ; P5 = A4 ; P2 = C3

3 Variables C1 = C5 + 1

Lists allDifferent(N);allDifferent(C) ;allDifferent(P);

allDifferent(A);llDifferent(D)

Disjunctive A3 = P4 + 1 ∨ A3 = P4 − 1

A5 = P2 + 1 ∨ A5 = P2 − 1

A5 = P2 + 1 ∨ A5 = P2 − 1

Constraints of the first line are installed by
new EQ(N5,new Variable(1)).tell() for the first constraint and
new EQ(P2,C3).tell() for the last one.
The 3 variables constraint is installed by
new XplusYeqZ(C5,new Variable(1),C1).tell()

Establishing that the variables in the arrays must be all different could be
done by the following two ways:

(i) Since n variables are all different if they are different two by two and 6=
is a basic constraint, we can make a method that install all the different
constraints.

...

for (int i=0;i<5;i++)

for (int j=i+1;j<5;j++)

new NE(X[i],X[j]).tell();

...

(ii) We can also make use of the allDifferent constraint for lists. This
constraint expects in the argument an array of domain variables and install
the non equal (NE) constraints for the pairs in the array. In fact, it uses
the same mechanism described above. In this case, we just make new

allDifferent(X).tell().

public class allDifferent extends gc.fdiu.List.Constraint{

public allDifferent (Variable List[]) {

super(List);

}

public void localUpdate (int n) {
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int l=env.length;

for (int i=0; i<l;i++){

if (i!=n && env[i].ground()){

env[n].clear (env[i].min);

env[n].updateMinMax();

}

}

}

}

The remaining constraints are the disjunctive ones.
This is not a basic constraint, so, we must implement it explicitly. As

we said before, the implementation of a constraint requires that we de-
fine a new class, in the proper place of the constraint hierarchy and define
the localUpadte method for that constraint. localUpadte must update
properly the constraint’s variable’s domains, depending of course on the
constraint we are dealing with.

In the EQ case for instance, and for FDIU variables, if both domains must
share the same values, we only need to compute their intersection. An
update of the minimum and maximum values of the variables’ domains is
required because FDIU variables are (a specialization of) FD variables.

To implement the disjunctive constraint plusOrMinus, it’s necessary to
define a subclass of gc.fdiu.VV.Constraint. This subclass defines a new
instance variable, value, used in localUpadte to create a singleton-valued
variable. localUpadte just updates the corresponding domain variable in
the following manner:

domain(X) = domain(X) ∩ [[domain(Y ) − {value}] ∪ [domain(Y ) +
{value}]
public class plusOrMinus extends gc.fdiu.VV.Constraint{

private int value;

public plusOrMinus (Variable VX, Variable VY, int V) {

super(VX, VY);

value=V;

}

public void localUpdate (int n) {

int m=1-n; // env[n]=env[m]-i V env[n]=env[m]+i

Domain Dn=env[n].domain;

Domain Dm=env[m].domain;

Domain Di=new Domain(value);

Domain Ddiff=Dm.diff(Di);

Domain Dsum=Dm.sum(Di);

env[n].domain=Dn.intercept(Ddiff.union(Dsum));

env[n].updateMinMax();
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}

}

7.2 N Queens

• The problem:
Lay down N queens on a N ×N chess-board so that there is no couple of

queens threatening each other.

• The variables:
We have N variables that take values from 1 to N. For instance, to N = 4,

the solution [3,1,4,2] means that, in row 1 the queen must be placed at
column 3, in row 2 the queen must be placed at column 1, and so on.

• The constraints:
To avoid the queens from threatening each other we will implement a

constraint. If Ci and Cj are queens placed in columns i and j respectively,
to avoid them to attack each other we must have

∀j > i


Cj 6= Ci

Cj 6= Ci+(j−i)

Cj 6= Ci−(j−i)

The constraint NoAttack, for 2 variables, implements this restrictions.

public class NoAttack extends gc.fdiu.VV.Constraint{

private int c;

public NoAttack(Variable VX, Variable VY, int V) {

super(VX,VY);

c=V;

};

public void localUpdate(int n) {

int m=1-n;

if (env[m].ground ()) {

env[n].clear (env[m].min);

env[n].clear (env[m].min + c);

env[n].clear (env[m].min - c);

}

env[n].updateMinMax ();

}

}

Since this constraint is for two variables, a method to apply it at all
variables in the list of queens, is required.

static void safe (Variable queen[], int n) {

for (int i=0; i<n; ++i)
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for (int j=i+1; j<n; ++j)

new NoAttack(queen[i], queen[j], j-i).tell();

}

7.3 Send More Money

• The problem:
Find the digits corresponding to the letters, in order to validate the opera-

tion

S E N D

+ M O R E

M O N E Y

• The variables:
We have 8 variables, S, E, N, D, O, R and Y, they all take values from 0 to 9,

except M which varies over 1 to 9. All these variables must be different. We
need of course other variables, and their number depends on the approach
used to achieve the solution.

• The constraints:
There are two different approaches to building the solution of this prob-

lem:
(i) The solution can be found solving the equation:

1000S + 100E + 10N + D + 1000M + 100O + 10R + E =
10000M + 1000O + 100N + 10E + Y

To express this constraint, we can use the constraints XtimesYeqZ (X ×
Y = Z), XplusYeqZ (X + Y = Z) and auxiliary variables. It requires a
lot of variables, calls to constraints XtimesYeqZ and XplusYeqZ and a lot
of time too. It possible, but very inefficient.

(ii) It’s better to implement a constraint that makes the sum of three digits
and generate the result digit and the carry. It’s a constraint over five
variables, and it’s called FullAdder.The corresponding arguments are re-
spectively, the three digits, the result and the carry. With this constraint
it’s sufficient the following system of constraints to solve the problem:
new FullAdder(theVar(0),D,E,Y,C1);

new FullAdder(C1,N,R,E,C2);

new FullAdder(C2,E,O,N,C3);

new FullAdder(C3,S,M,O,C4);

new Eq(C4,M);

7.4 Experimental Evaluation

In the following table are the comparative running times (in milliseconds)
for these examples. The GC times are followed by the slowdown relative to

10



GNU-Prolog [3], shown in parentheses.

Program GPROLOG GC (FDIU) GC (FDD) GC(FD)

Five 51(1) 322(6.3) 473(9.3) 390(7.6)

Queens 4 50(1) 37(0.7) 33(0.7) 18(0.4)

Queens 8 53(1) 386(7.3) 316(6.0) 212(4.0)

Queens 16 762(1) 77957(102.3) 59492(78.1) 60949(80.0)

Send 50(1) 828(16.6) 854(17.1) 2297(45.9)

Average (26.6) (22.2) (27.6)

In program Send the second approach was used. The times for program
Queens, are taken when the first solution was found. Programs Five and Send
use the allDifferent constraint for lists. These times correspond to an AMD
K6/300 with Linux and standard JDK 1.1.7, i.e. no “just in time” compiler was
used. An option for Java, that disables assynchronous garbage collection was
used. Java run-time initialization times are significant and therefore they’re
being subtracted from the GC times, which explains the speedups obtained in
the Queens 4 benchmark.

The resulting times are similar for the three domains except in program
Queens. NoAttack is the only constraint that is implemented in the same
way for domain representations FDIU and FDIU. We are interested in removing
single values from the domain, so, no particular method to manipulate a FDIU

domain is used. Notice that none of the examples match the requirements
that motivated the implementation of FDIU variables, as all the variables of
the problems have very small-range domains. Defining constraints over FD

variables could only be done, in most cases, when the domains are ground.
The FD representation is not fit for cases where the domains are very large.

8 Future Work

New variable domains classes are being implemented. We are currently work-
ing on real numbers and intervals over these, because they constitute an ap-
propriate representation for 2D geometry.

We’ll also consider implementing FD variables whose domains are obtained
by querying a relational database, as this is essential to another work-in-
progress, the University of Évora’s integrated information system: GC will
provide the engine that will allow the implementation, in Java, of a Constraint
Logic Programming system.

We also plan on designing an application for modeling Information Systems
using this CLP system. This language will have a visual syntax.
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Along the way we shall work on improving GC’s overall efficiency, trying to
make use of whatever techniques may be appropriate; this includes resorting
to other Java compilers and run-time systems such as gcj.
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