
Objective: in Minimum Context

Salvador Abreu1 and Daniel Diaz2

1 Universidade de Évora and CENTRIA, Portugal
spa@di.uevora.pt

2 Université de Paris I and INRIA, France
Daniel.Diaz@univ-paris1.fr

Abstract. The current proposals for the inclusion of modules in the ISO Prolog standard
are not very consensual. Since a program-structuring feature is required for a production
programming language, several alternatives have been explored over the years.
In this article we recall and expand on the concepts of Contextual Logic Programming, a
powerful and simple mechanism which addresses the general issue of modularity in Logic
Programs. We claim that unit arguments are an essential addition to this programming
model and draw parallels with Object-Oriented programming.
We argue that Contextual Logic Programming is an interesting and effective tool for the de-
velopment of large-scale programs built upon the Contextual Logic Programming paradigm
and argue that contexts with arguments actually provide a powerful, expressive and very
convenient means of structuring large applications upon a Prolog basis. We substantiate our
claims with examples taken mostly from a “real world” application, Universidade de Évora’s
Academic Information System, which is currently being developed using the prototype im-
plementation described in this article.
We sketch the most relevant aspects of a new implementation of Contextual Logic Program-
ming, GNU Prolog/CX, focusing on the impact on performance of the features which were
added to a regular Prolog system, highlighting the low overhead which is incurred in case
these extensions are not used.

Categories: D.2.2–Modules and interfaces, D.1.6–Logic Programming, D.1.5–Object-oriented
Programming.

General Terms: Contextual Logic Programming.

1 Introduction and Motivation

The issue of modularity in Logic Programming has long been recognized as an important and
significant challenge, having spurred a large number of different proposals, for example Cabeza and
Hermenegildo’s proposal for Ciao Prolog[6] or, albeit with a cast towards the interaction with meta-
programming issues, Hill and Lloyd’s Gödel [9]. An extensive and still largely applicable overview
of the issue was made by Bugliesi et al. in [5,4]. One problem mentioned in this decade-old work
which hasn’t yet been satisfactorily resolved is the adoption of a consensual model for a program-
structuring mechanism applicable to Prolog, which simultaneously satisfies the requirements of
large-scale application development while retaining Prolog’s succinctness and expressivity: the
proposals which impose a module system based on the hitherto-developed approaches stemming
from particular implementations invariably bump into details which fail to be consensual such as:
whether it should be atom or predicate-based, how the declarations fit into the general scheme of
a Prolog program, what knowledge is required on the part of the programmer to effectively use
the module system, just to name a few.

This issue is very present in the vendor and developer community, which is still in search of an
adequate response to the modularity problem: although most implementations of Prolog provide a
module system, these are sometimes subtly dissimilar, a situation which hinders the use of Prolog
as a portable application implementation language, for lack of a standard covering this issue.

Some proposals which relate OO and Logic Programming depart significantly from the simple
addition of predicate scoping control mechanisms, such is the case for instance in McCabe’s Logic

and Objects [11] or Moura’s LogTalk language [15,14]. One aspect that can be pointed out about
these languages, particularly the latter two, is that they require a significant amount of annotations,
w.r.t. classical Prolog programs, in order to take advantage of the features they provide.

An approach which takes on the problem of modularity in a simple, close to the spirit of Prolog
and yet very powerful way is Contextual Logic Programming(CxLP) [13], for which an early WAM-
based implementation design was presented in [10]. Later work by Omicini et al. [16] proposed
a more sophisticated approach, called CSM, based on the SICStus Prolog (version 2.1) module
system, which tried hard to address the run-time efficiency aspects in a satisfactory way, although
with an impact on the language itself. Not being bundled with a “vendor implementation”, CxLP
never attained a very significant user base.

In this article we present a new implementation of Contextual Logic Programming, for which
a prototype was built: GNU Prolog/CX, based on GNU Prolog [8]. A central contribution of this
work is the systematic use of unit arguments. Take a simple example: consider the issue of keeping
a dictionary, represented as an incomplete Prolog term, common to a lot of predicates. A regular
Prolog program would require all calls to the dictionary predicates to include the dictionary term
as one of the arguments. In Contextual Logic Programming a similar effect can be achieved by
designating that data structure to be an argument to a unit present in the context, for example:

:- unit(dict(ST)).

dict(ST).

lookup(KEY, VALUE) :- ST=[KEY=VALUE|_].
lookup(KEY, VALUE) :- ST=[_|STx], dict(STx) :> lookup(KEY, VALUE).

Unit dict(ST) can subsequently be included in a context, allowing for dictionary operations
to simply omit the dictionary argument, thereby overcoming one of Prolog’s most irritating fea-
tures, which can arguably be considered an obstacle to the language becoming more popular: the
proliferation of predicate arguments in anything other than “toy problems,” as well as the lack of
a language feature tying various clauses or predicates together.

GNU Prolog/CX is presently being used at Universidade de Évora to construct its second-
generation integrated information system, a project which was spurred by the University’s decision
to simultaneously reformulate and adapt to “the Bologna principles” its 42 undergraduate study
programmes, all at once, for the academic year 2003/04. This system’s regular user base consists
of about 8000 students, 600 faculty and 300 staff members. It is undergoing intensive development
by a team of three full-time programmers and, at the time of this writing, is actually ahead of
schedule and is already proving invaluable in assisting with the timeliness and coherence of the
academic restructuring process.

The remainder of this article is structured as follows: section 2 presents our revised specification
of Contextual Logic Programming. In section 3 the issue of likening Contexts and Objects is
explored in some detail, while section 4 discusses some implementation issues, the options we
made and their performance impact. Finally, section 5 draws some conclusions and attempts to
point at unsolved issues, for further research.

2 Unit Arguments in Contextual Logic Programming

The fundamental contribution w.r.t. the previous proposals dealing with Contextual Logic Pro-
gramming by Miller [12], Natali, Omicini, Porto and others [5,7,13] is the extensive use of unit
arguments or parameters as a central feature of contexts. This construct implies looking at the
unit specification as a compound term, ie. one with a main functor and subterms. The subterms
are restricted to be named variables, in the unit declaration directive.

Although present in some of the early formalizations of the concept of “units as sets of clauses”,
parameters haven’t been systematically explored in the setting of Contextual Logic Programming;

we purport to do so in this article. A unit argument can be thought of as a sort of “unit global”
variable, ie. one which is shared by all clauses defined in the unit, thereby aiming to solve one of
Prolog’s traditionally most annoying features: the inevitable proliferation of predicate arguments,
whenever a global structure is to be passed around. This sort of feature is already present in
other approaches to the integration of the LP and OO paradigms, such as McCabe’s Logic and
Objects[11].

Consider a clause C = H ← B, where H is the clause head and B the body, being defined as:

λ−→v .∃−→w .H ← B (1)

Where −→v is the set of variables which occur in the clause head H. −→w is the set all remaining
variables which occur in the clause. We will subsequently omit the explicit existential quantification
over −→w when presenting clauses: this is just notational convenience as it should remain, although
implicitly.

Clause C is part of predicate p where p is the main functor of H. Predicate p is made up of
the (ordered) set of clauses which have p as their head’s main functor.

2.1 Unit and Unit Arguments

Arguments (parameters) for a unit u can be thought of as a unit-global substitution σ, which
implicitly applies to all clauses in u.

Similarly, a unit u with parameter variables −→p can be described as a set of clauses, for which
all variables in −→p are implicitly existentially quantified in all clauses in the unit. Taking this into
consideration, equation (1) may now be presented as:

u ≡ λ−→p .{λ−→vi .Hi ← Bi} (2)

In other words, all clauses are augmented with variables shared with the unit identifier. During
execution, these will be implicitly bound to the subterms of the head of the current context
corresponding to these variables.

2.2 Context traversal

When reducing a goal whose main functor is pred/arity, a Contextual Logic Programming engine
will traverse the current context looking for the first unit which includes a definition for this
predicate. This process is detailed below, in section 2.4, equation (5).

The predicate under consideration will then have its body execute in a new context, that is the
suffix of the original current context which starts with the unit which contains the first definition
for the predicate being invoked. This amounts to the “eager” resolution method initially mentioned
in the work of Lamma et al. [10]: the new context becomes the current context for the selected
clause and the initial current context is now designated by the calling context.

2.3 Context Operators

Consider that: U is a unit descriptor, ie. a term whose main functor designates a unit name; C is
a context, ie. a list of unit descriptors; G is a Prolog goal.

There are two sets of context operators. The first three, which we’ll refer to as the basic set
consists of those which are fundamental to the specification and low-level implementation of GNU
Prolog/CX. They are:

– C :< G, the context switch operation, which attempts to reduce goal G in context C, ie. totally
bypassing the current context.

– :> C, the current context enquiry operation, which unifies C with the current context.
– :< C, the calling context enquiry operation, which unifies C with the calling context.

A further set of operations involving contexts are useful in a number of situations, some of which
will be addressed later in this article. These operations may be defined using the fundamental set,
as follows:

– U :> G, the context extension operation, which extends the current context with unit U before
attempting to reduce goal G, for which see equation (9). This operator is defined as if by the
Prolog clause:

U :> G :- :> C, [U|C] :< G.

– :^ G, the supercontext operation, where the suffix of the current context obtained by dropping
the topmost unit is used to evaluate G. This behaves as if defined by the Prolog clause:

:^ G :- :> [_|C], C :< G.

– :# G, the lazy call operation, essentially the same as introduced in Lamma et al. [10], which
behaves as if defined by the Prolog clause:

:# G :- :< C, C :< G.

– U :: G, the guided context traversal operation, which behaves as if defined by the Prolog
clauses:

U :: G :- :> C, GC=[U|_], suffixchk(GC, C), GC :< G.

Where suffixchk/2 is a deterministic predicate where suffixchk(SUFFIX, LIST) succeeds
if SUFFIX is a suffix of LIST.

One operation that is left out by design is that provided by the eager call operator, as per Lamma
et al. [10], as it is implicitly used in all goals.

2.4 Operational Semantics

A GNU Prolog/CX computation is denoted by the evaluation of a goal in a context. Before stating
how this process is carried out, a few definitions for a Contextual Logic Program are in order. Let:

– u denote a unit, ie. a term which designates a set of predicates. A unit is said to be:
• simple in which case the term is an atom.
• qualified when the term is compound, ie. has subterms.

– u denote the set of predicate symbols that are defined in unit u.
– γ ≡ u1.u2 · · ·un is called a context, and is constructed as a list of units. We shall use the

letters γ and δ to denote contexts. In the conditions for some rule, we may specify a context
as γ = u.γ′.

– γ/δ is the pair formed by the current context and the calling context.
– A goal γ/δ ` G is read G in context γ with calling context δ.
– The empty context, denoted [] represents the set of predicates accessible from a regular Prolog

program. Such predicates will be assumed to be defined in the special unit [] and will have
precedence over predicates of the same name defined in other units.1 These may resort to
ISO-Prolog style module qualifiers.

Equipped with these definitions, we may now enumerate the Contextual Logic Programming rules
which specify computations and apply to GNU Prolog/CX.

1 This is a small concession to efficiency, in that regular Prolog programs should incur little or no overhead
because of the CxLP engine.

Prolog Goal Expansion
When a particular goal has matching clauses in any the special [] unit, the Prolog goal
expansion rule applies:

γ/δ ` (G1, G2 · · ·Gn)θ
γ/δ ` G

G ∈ []
H ← G1, G2 · · ·Gn ∈ []
θ = mgu(G, H)

(3)

This rule is similar to goal expansion rule (4) but for one aspect: a candidate clause for the
goal was found in the empty context, ie. in the set of regular Prolog clauses. The effect of
applying this rule is that the goal gets replaced by the body of the clause, but without the
current context being affected at all.
Whenever applicable, this rule takes precedence over rule (4).
The inclusion of a rule such as this one allows for GNU Prolog/CX to easily build upon a regular
Prolog implementation, preserving the semantics of all library predicates and, in particular,
of meta-predicates such as setof/3.

Goal Expansion
When a goal has a definition in the topmost unit in the context, it will be replaced by the
body of the matching clause, after unification:

γ/δ ` (G1, G2 · · ·Gn)θ
γ/δ ` G


γ = [u, ...]
G ∈ u
H ← G1, G2 · · ·Gn ∈ u
θ = mgu(G, H)

(4)

This rule implies that a goal G invoked in a context γ will be replaced by the body of a clause
for that predicate, only if the unit u on top of the current context defines the predicate of G.
The context for each of the subgoals in the body of the clause is identical to that of the calling
goal, after head unification has been performed.
Note that whenever this rule applies, the calling context δ is preserved and passed on unchanged
to the clause body.

Context Traversal
When neither the Prolog Goal Expansion (3) nor the Goal Expansion rule (4) apply, the
context will be traversed by re-evaluating the goal in the supercontext, ie. by dropping the
top unit.

γ′/γ ` G

γ/δ ` G


γ = [u1, u2, ...un, ...]
γ′ = [un, un+1, ...]
∀i ∈ {1 · · ·n− 1}, G 6∈ ui

G ∈ un

(5)

This process locates the first unit un which defines the goal’s predicate. It then specifies that
goal G is to be evaluated using, as current context, γ′ which is the longest suffix of γ which
starts with unit un and, as calling context, the original current context γ. The previous calling
context, δ is ignored.

Context Enquiry
In order to make the context switch operation (8) useful, there needs to be an operation which
fetches the current context:

θ

γ/δ ` :> X

θ = mgu(X, γ)
(6)

This rule recovers the current context γ as a Prolog term and unifies it with term X, so that
it may be used elsewhere in the program.

Calling Context Enquiry
This rule recovers the calling context as a Prolog term, to be used elsewhere in the program.

θ

γ/δ ` :< X

θ = mgu(X, δ)
(7)

This is similar to the context enquiry rule (6), except that X is unified with the current clause’s
calling context δ instead of the current context.

Context Switch
The purpose of this rule is to allow execution of a goal in an arbitrary context, independently
of the current context.

γ′/γ′ ` G

γ/δ ` γ′ :< G
(8)

This rule causes goal G to be executed in context γ′ (both current and calling.)

Moreover, we shall present rules for the Context Extension, Super Call, the Lazy Call and Guided
Context Traversal operations, even though these may be defined using the previously introduced
set. We feel that these are sufficiently important in actual use that they warrant a separate
discussion.

Context Extension
This rule simply prepends a single qualified unit to the current context before attempting to
execute a goal.

γ′/γ′ ` G

γ/δ ` u :> G

γ′ = [u|γ]
(9)

Goal G will be evaluated in the new context γ′, in the roles both of calling context and current
context.

Super Call
The context traversal rule (5) stops as soon as the goal expansion rule (4) applies, thereby
preventing units lower in the context to be candidates for the goal expansion. Sometimes it
may be interesting to programatically allow a goal to be evaluated further down in the context,
even though there is already a matching unit for the concerned predicate.

γ′/γ′ ` G

γ/δ ` :^ G

γ = [u1, u2 · · ·un]
γ′ = [u2 · · ·un] (10)

This rule evaluates G in the supercontext γ′ (ie. the context obtained from the current context
γ by dropping the topmost unit). The calling context for G is set identically.

Lazy Call
The lazy call operator is intended to behave like a regular goal expansion / context traversal
(rules (4) and (5)), except that it starts with the calling context instead of the current context.

δ/δ ` G

γ/δ ` :# G
(11)

This rule evaluates G using the current clause’s calling context δ both as the current and the
calling contexts.

Guided Context Traversal
Sometimes it is interesting to search the context for a specific unit, and trigger goal expansion
in the suffix of the context that starts at that point. Such is the purpose of the rule:

γ′/γ′ ` Gθ

γ/δ ` u :: G


γ = [u1, ...un, ...]
γ′ = [un, un+1, ...]
∀i ∈ {1 · · ·n− 1}, 6 ∃ σ = mgu(u, ui)
θ = mgu(u, un)

(12)

The guided context traversal process locates the first unit un in the current context γ which
unifies with u. It then specifies that goal G is to be evaluated using, both as current context
and as calling context, γ′ which is the longest suffix of γ which starts with unit un, after u has
unified with un. The previous current and calling contexts are ignored. If u doesn’t unify with
any unit in the context, this rule fails.
A slightly abusive but convenient reading of this rule will treat parameter u specially, so that
it either:
– Unifies with un, in which case this rule behaves exactly as stated.
– Is the main functor of un: in this situation, u is not required to unify with un, only to

match its functor.
This rule will be especially useful for succinctly specifying particular subcontexts, as will be
seen in section 3.2. Note that this rule does not search for which unit defines a predicate for
G: this task is still left to the regular context traversal rule (5), which ought to be applicable
to the resulting state.

3 Using Contexts as Objects

The integration of the Object-Oriented and Logic Programming paradigms has long been an
active research area since the late 1980’s; take for example McCabe’s work [11]. The similarities
between Contextual Logic Programming and Object-Oriented Programming have been focused
several times in the literature; see for instance the work by Monteiro and Porto [13] or Bugliesi [3].

Other than the implementation-centered reports, previous work on Contextual Logic Program-
ming focuses largely on issues such as the policy for context traversal, what the context becomes
once a unit satisfying the calling goal is found, what to do when multiple units provide clauses for
the same predicate, how to automatically tie several units together or how to provide encapsulation
and concealment mechanisms.

To the best of our knowledge, no published work builds on the notion of context arguments
and their widespread use, although Miller’s initial work [12] mentions the possibility of using
module variables. This feature was present as a “hack” in the first C-Prolog based implementation
of Contextual Logic Programming but was a little let down, possibly for lack of an adequate
formalization and the nonexistence of convincing examples. We propose to alter this situation, by
addressing these issues directly.

Instead of viewing a context as an opaque execution attribute, as happens in CSM [16] for
instance, we choose to regard it as a first-class entity, ie. as a Prolog term. Not only is the context
accessible from the program, but it is intended that it be explicitly manipulated in the course of a
program’s regular computation. The performance impact of this option will be succinctly analyzed
in section 4: at this point we shall concentrate on the possibilities it allows from an expressiveness
point of view.

3.1 Terminology

OO CxLP
Class Context skeleton
Object Instance Context
Instance Variable Unit argument
Class member Unit
Method Predicate
Message Goal

Table 1. CxLP vs. OO paradigms

Table 1 establishes some parallels between Contextual
Logic Programming (CxLP) and regular OO terminology.
The most notable difference between the CxLP and OO
paradigms has to do with the concept of inheritance: in-
stead of being statically defined, it is completely dynamic
for each context (ie. an “object”) defines its own structure
and, implicitly, its behaviour wrt. messages.

A “context skeleton” is a list whose elements are unit
designators, ie. terms of the form FUNCTOR/ARITY where
FUNCTOR is an atom and ARITY is an integer. It can be
thought of as designating the structure of a specific context.

3.2 Access Methods

One fundamental feature of OO languages is that object elements are only manipulated via accessor
methods, take for example the approach taken in Smalltalk, where instance variables are not visible
outside the body of instance methods. Similarly and as in our approach the role of instance variable
is carried out by unit parameters – which are variables of the underlying Logic Programming
system, ie. they can be either regular or constrained Logic Variables – a programming dialect has
been devised which fulfills the same purpose. Consider for example the units:

:- unit(person(ID, NAME, BIRTH_DATE)). :- unit(room(ID, NAME, CAPACITY)).

person(ID, NAME, BIRTH_DATE). room(ID, NAME, CAPACITY).

id(ID). id(ID).
name(NAME). name(NAME).
birth_date(BIRTH_DATE). capacity(CAPACITY).

Unit person/3 implicitly defines “access” predicates2 id/1, name/1 and birth date/1. In practice
this allows for such a goal to be evaluated in a context which includes person(...), with the effect
that its argument will be unified with the corresponding parameter in the context. The whole of
the unit and its actual parameters may be accessed via the person/3 predicate, which unifies its
arguments with the unit parameters, in an actual context. Unit room/3 is structured similarly.

Should the context include another unit which specifies arguments (and therefore access pred-
icates) with the same name, as in the context C = [person(...), room(...), ...], it would
seem complicated to get to unit room/3’s definition of id/1, as one would have to contract the
context in order to bypass the definition provided by unit person/3. Such is the purpose for which
the Guided Context Traversal rule (12) was introduced: we can simply evaluate the goal C :<
room :: id(RID) in order to unify RID with the first argument of the first occurrence of room/3
in context C, i.e. the room’s id.

3.3 Semi-static Inheritance

Sometimes it is important to ensure that one specific unit (say, u1) specializes the behaviour
specified by another (we’ll call it u2). This goal can be achieved “manually” by ensuring that
contexts being built adhere to the desired structure, ie. [u1, u2, ...]. Besides being awkward
to enforce, this assumption will easily fail if we extend some context just with u1 before launching
a goal.

Previous work by, namely that by Natali and Omicini [16] addressed the issue by including new
directives in the unit declaration, which would enforce an explicit inheritance relation, by means
of an inherits or is a operator or the requires directive.
2 These “access predicates” can be automatically generated by a preprocessor: take for instance the ISCO

compiler, which can produce units for each defined class using this approach.

It is our feeling that these approaches are at odds with the nature of the Prolog language, in
that they foster abundant annotations which are, essentially, alien to this programming language.
To address the issue in a minimalistic way, we propose the following coding conventions, which do
not rely on any mechanism other than those which have already been presented.

Consider that, for proper operation, unit registration requires units student and course to
sit immediately below it in the context, registration can be coded as follows:

:- unit(registration(A, B)).

context([U, student(B), course(A) | CX]) :- :> [U | CX].

Subsequently, code wanting to use unit registration should ensure that the context is prop-
erly constructed: this is the purpose of the predicate context/1 in unit registration. Notice
that it uses the :> operator to extract the current context but also the unit arguments, in order
to unify its argument with a new term which is the desired context.

Predicate context/1 should then be used as shown in this goal:

registration(a, X) :> context(CX), CX :< GOAL.

The point is that, with this approach, a unit may specify what other units should be in the context
for it to operate properly. It does so with minimal term reconstruction as the final context which
the goal is applied to can share much with that provided to the context/1 goal. For this to become
a standard dialect of GNU Prolog/CX it is sufficient to define the following operator:

U :>> GOAL :- U :> context(CX), CX :< GOAL.

Thus, U :>> G effectively becomes a variation on the standard context-extension goal U :> G, one
which enforces the semi-static inheritance specified by the unit we’re extending the context with.

Nothing prevents context/1 from being nondeterministic, thereby allowing for flexible multiple
inheritance behaviors to be implemented.

3.4 Creating and Using Contexts

Consider an example loosely inspired by LDAP: objects (“records”) are structured as belonging
to classes in a casuistic basis, a single “key value” may be searched for, returning several instances
which may be classified as belonging to distinct classes. Consider that we have an account, which
inherits from person but also from other “classes”: the context will define the structure of the
complete instance and can be constructed like this:

person(1, ’Dan’, 1970-01-01) :>
login(diaz, foo123) :>
email(’diaz@paris.fr’) :> :> C.

After the completion of this goal, variable C will be bound to a context that is able to provide
successful answer substitutions to whatever predicates are defined in the person/3, login/2 and
email/1 units: this includes all access predicates, as previously introduced, as well as any other
predicates defined in these units.

The term to which C is then bound can later be supplied as the context argument to a context
switch operation in which the goal may be one of the access predicates. Thus, we can have the
goal:

C :< (login(ID, _), person::name(WHO)).

which will succeed, binding variable ID to diaz and variable WHO to ’Dan’.
If this coding style is used in a language which provides a mechanism for persistent storage such

as ISCO [2] – which presently relies on Contextual Logic Programming both for its specification
and its implementation – the binding for C may be stored, retrieved and later re-used. We are
presently using this approach as a means of implementing sessions in SIIUE’s user interface, a
very early version of which is described in [1].

3.5 “Virtual Methods”

A useful mechanism provided by OO languages is that of virtual methods: this allows for common
behaviour to be coded once and for all in a “superclass,” while allowing for subclass-specific
methods to influence the outcome of the common (ie. defined in the superclass) code.

GNU Prolog/CX retains the lazy call mechanism to directly address this issue, as was the case
in Natali et. al’s work, see for example [16]. An alternative form is achieved through a careful
organization of contexts in which the pertinent calling context is included as an argument to a
particular unit. Note that this approach creates circular structures, but this should not constitute
a problem.

3.6 Contexts as Implicit Computations

In a setting related to the ISTO3 language, consider a unit person(ID, NAME, BIRTH DATE) which
defines the following predicates:

– item/0 which returns, through backtracking, all instances of the person/3 database relation
by instantiating unit arguments,

– delete/0 which nondeterministically removes instances of the person/3 database relation, as
restricted by the unit arguments,

– insert/0 which inserts new instances into the person/3 database relation, taking the values
from the unit argument.

Accessing an “object” specified by a context is always done via one of these predicates, which are
to be evaluated in a context which specifies the relation (in this case person/3). Assume that
there are also predicates with the same name and one argument, which represents the relevant
unit with bound arguments, ie. item/1, delete/1 and insert/1. An actual implementation of
these predicates could rely on the standard Prolog built-ins clause/1, retract/1 and assertz/1
or access an external database, as is done in the ISCO compiler [2].

Consider also that we have the following general-purpose units:

:- unit(delete). :- unit(insert).
item :- delete. item :- insert.
item(X) :- delete(X). item(X) :- insert(X).

These units can be prepended to the context mentioned above to signify that accessing the item/0
(or item/1) relation will map to one of the other functions: the operation which is to be applied
(e.g. query, insert, delete) will then be an integral part of the context, for example:

person(ID, NAME, BIRTH) :> (
read(ID),
item -> (

read(NNAME), read(NBIRTH),
delete :> item,
person(ID, NNAME, NBIRTH) :> insert :> item))

This code reads a person’s ID and, if it already exists, proceeds by reading and replacing the name
and birth date in the corresponding tuple.

The purpose of using this stylized approach is to present the context as a complete specification
for an intended (“latent”) computation, leaving it up to the programmer to initiate the process
by invoking the item/0 goal.
3 ISTO is a development of ISCO [2], a Prolog-based mediator language which can transparently access

several kinds of information sources, namely relational databases. ISTO relies on GNU Prolog/CX as its
compiler’s target language.

3.7 Behaviour Extension

Consider the situation where a predicate p/a defined by a context C is to be partly redefined
in a unit which requires additional goals to be satisfied. For example, suppose that modifica-
tions to relation person/3 are to be logged as tuples for a new dynamic relation log(TIME,
ACTION) which is to be built when new tuples for the person/3 relation are inserted or ex-
isting ones removed. Since all actions (query, insert, delete) are performed in an identical way,
it is sufficient to prefix the context with a unit which redefines the “action” goal (item/1)
for the insert and delete units in the intended way. A possible implementation for log is:

:- unit(log).
item(X) :- time(T),

LC = [insert, log(T, L)],
(delete :: item(X) -> L=delete(X), LC :< item
; insert :: item(X) -> L=insert(X), LC :< item
; :^ item(X)).

The guided traversal goals will only succeed in case there’s a delete or insert unit in the context.
Note the explicit construction of the LC context. For example, in order to remove a tuple X, for
which the ID is less than 10, from the person/3 relation, we can write:

ID #< 10, person(ID, _, _) :> delete :> log :> item(_).

The inclusion of the log unit in the context has the effect that the removal of each tuple X is
accompanied by the insertion of the term log(T, X) into the log/2 relation.

As another example, should we purport to act upon all tuples (eg. as in set programming), it
is sufficient to define a new unit all/0 as follows:

:- unit(all).
item(X) :- findall(I, :^ item(I), X).

Which could then be used to, say, clean up someone’s financial past:

ID #< 10, debt(ID, _, _) :> delete :> log :> all :> item(_).

4 Overview of the Prototype Implementation

In order to experiment programming with contexts we have developed a first prototype inside
GNU Prolog [8]. Our main goal was to have a light implementation modifying the current system
as little as possible. Due to space restrictions we only give here an overview of this implementation
and focus on the most important points only.

4.1 Managing Contexts

A context is simply stored as a Prolog list. Each element being either an atom (unit without
arguments) or a compound term whose principal functor is the unit name and arguments are unit
arguments. The drawback of this simple approach could be a little overhead when a predicate is
called since the current context need to traversed (we can imagine a better data structure than
a Prolog list, as done by Omicini et al. [16]). On the other hand, there are several advantages
to this choice: the interface with the user code (needed by the context extension and the inquiry
operations) is very simple. Also the retrieval of unit arguments is very easy. Indeed, this comes
down to geting the first element of the the current context and, from this term, the associated
argument. Both operations can be achieved using the built-in predicate arg/3. In fact we have
enhanced the WAM with a new instruction cxt arg load which acts exactly as arg/3 but faster
since it does not include any error checking.

The WAM must also be extended with 2 new registers to maintain the calling context (CK)
and the current context (K). Initially, K and CK contain the empty context (ie. the atom []).
We decided to map these registers to 2 WAM temporaries: x(254) for CK and x(255) for K. This
simplifies the compiler, reduces the number of new WAM instructions (no new instruction is needed
to read/write these registers from/to WAM variables) and makes it possible to benefit from the
optimizations performed by the register allocator.

Finally, note that both K and CK should be saved in choice-points and in environments. However,
to avoid to penalize code which does not use contexts we do not reserve a cell in environments
automatically. Instead, if a context call is needed, the value of K is saved in a permanent variable
(y(...) variables in the WAM). For choice-points we also avoid to automatic allocation of an
additional cell. Instead, when K or CK must be modified, its current value is trailed (to be restored
when backtracking occurs). To avoid useless trailings (only one trailing is needed per choice-point)
a time-stamp is attached to K and CK and is compared to the time-stamp of the current choice-point
to detect whether the involved register has already been trailed. GNU Prolog already provides all
necessary mechanisms (time-stamp on choice-points and a value-trail) since they are needed for
its finite domain constraint solver.

4.2 The Context Call

The main change concerns a call to a given predicate. While such a call can be resolved statically
in a classical Prolog execution, a context call needs to explore the context to resolve the call.
Obviously, it is possible to consider all calls as context calls. However we introduced a little
optimization: calls to built-in predicates and calls to predicates defined in the same unit are
translated into classical WAM calls (which give rise to native jumps). We thus have introduced 2
new instructions: cxt call(P/N,V) and cxt execute(P/N,V) where P/N is the predicate to call
and V is a variable specifying the context to use. Both instructions first look for a definition for P/N
in the global predicate table (containing all built-in predicates and predicates not defined inside
a unit). If no global definition is found, the current context is scanned until a definition is found.
This process is summarized in figure 1.

trail value of K and CK if needed (testing their time-stamp)
K ← V

CK ← K

if there is a definition for P/N in the global table then
branch to this definition

while K is of the form [E|K’] do // ie. K is not empty
let T be the predicate table associated to <functor/arity> of E
if there is a definition for P/N in T then

branch to this definition
K ← K’

end
error: P/N is an undefined predicate

Fig. 1. Context search procedure

4.3 Example of Code Produced

Consider the following unit:

:- unit(u1(A,B)).

q :- r, a :> s, t.
p(X) :- X :> q(A,B).
v :- :< C, [a|C] :< w.

Here is the compilation of the first clause. Note how the permanent variable y(0) is used to save
K, and used to the context call of r/0 and of t/0. It is also used to extend the context with the
unit a for the call to s/0.

predicate(q/0,3,static,private,user,[
allocate(1), % environment with 1 cell to save K
get_variable(y(0),255), % y(1) = K (current context)
cxt_call(r/0,y(0)), % call r/0 with context K
put_list(0), % x(0) = [
unify_atom(a), % a|
unify_local_value(y(0)), % K]
cxt_call(s/0,x(0)), % call s/0 with context [a|K]
put_value(y(0),0), % x(0) = K
deallocate, % remove environment
cxt_execute(t/0,x(0))]). % call t/0 with context K

The second clause shows how unit arguments are handled. Recall that cxt arg load is equivalent
to arg/3. Note that this instruction is used to get the first element of the list (ie. the current unit)
and, from this term, all necessary unit arguments. Here is the WAM code produced:

predicate(p/1,5,static,private,user,[
get_variable(x(3),0), % x(3) = X
cxt_arg_load(1,x(255),x(1)), % x(1) = K (current context)
cxt_arg_load(1,x(1),x(0)), % x(0) = A (first unit argument)
cxt_arg_load(2,x(1),x(1)), % x(1) = B (second unit argument)
put_list(2), % x(2) = [
unify_local_value(x(3)), % X|
unify_local_value(x(255)), % K]
cxt_execute(q/2,x(2))]). % call q/2 with context [X|K]

Finally, the last clause recovers the calling context and uses it to create a new context to call w/0.
This gives rise to the following code:

predicate(v/0,7,static,private,user,[
put_list(0), % x(0) = [
unify_atom(a), % a|
unify_value(x(254)), % CK]
cxt_execute(w/0,x(0))]). % call w/0 with context [a|CK]

4.4 Evaluation of the Overhead

It this section we try to evaluate the overhead of our context implementation (ie. when no con-
textual programming facility is used).

Program gprolog contexts slowdown
× 10 iter. 1.2.18 no opt. factor
boyer 0.610 0.795 1.303
browse 0.744 1.024 1.376
cal 0.093 0.147 1.581
chat parser 0.161 0.231 1.435
ham 0.538 0.881 1.638
nrev 0.088 0.178 2.023
poly 10 0.043 0.063 1.465
queens 0.532 0.836 1.571
queensn 2.153 3.530 1.640
reducer 0.039 0.049 1.256
sendmore 0.053 0.067 1.264
tak 0.089 0.127 1.427
zebra 0.041 0.053 1.293

pl2wam 4.600 5.800 1.260
average slowdown factor 1.466

Table 2. Worst overhead evaluation

For this purpose we have compared the pro-
totype with GNU Prolog on a set of benchmarks.
However, since all benchmarks are on a single
source file no context calls would be generated,
due to the optimizations explained above and
thus no penalty could be constated. We have
then turned all optimizations off to force the
compiler to generate context calls for all calls.
This means that even recursive predicates (com-
mon in benchmarks) and built-in predicates give
rise to contextual (ie. indirect) calls. Table 2 ex-
hibits those results on a set of classical bench-
marks. We have also included the GNU Prolog
pl2wam sub-compiler as it is a more represen-
tative example (applied to pl2wam itself). For
each benchmark (including pl2wam), the execu-
tion time is the total time in seconds needed for
10 iterations. Times are measured on an Pen-
tium4 1.7 Ghz with 512 MBytes of memory run-
ning RedHat Linux 7.2. The average slowdown
factor is around 1.5 which is very encouraging
taking into account the simplicity of the implementation and the lack of optimization (since the
few ones implemented were turned off). Finally it is worth noticing that on a real-life application
like the pl2wam compiler the slowdown factor is limited to 1.25.

4.5 Evaluation of the Contextual Logic Programming Implementation

Time CSM
N (sec) perf. loss perf. loss
0 0.971 0.0% 0.0%
1 0.986 1.5% 10.3%
2 1.004 3.4% 20.6%
5 1.043 7.4% 51.6%
10 1.102 13.5% n/a
20 1.235 27.2% n/a
50 1.595 64.3% n/a
100 2.238 130.5% n/a

Table 3. Varying context depth

In order to evaluate the context implementation, we fol-
low a methodology similar to that of Denti et al. [7]: a goal
is evaluated in a context which is made up of a unit which
implements the goal predicate, below a variable number of
“dummy” units which serve to test the overhead introduced
by the context search. We use the exact same program as
in [7]; the goal being used is 100,000 executions of: list :>
{dummy :> } mem([a,b],[e,d,[f,g],h,[b,a]]), in which
there are N “dummy” units in the initial context, as per [7].
The results are shown in table 3: these stem from the arith-
metic mean of 10 runs on a 1GHz Pentium III running Linux.

When compared to CSM, the observed relative perfor-
mance is much better in GNU Prolog/CX: even in CSM’s most
favorable situation (the modified WAM), there is a 50% performance hit as soon as there are 5
“dummy” units in the context. What this indicates is the effective ability to use deep contexts in
the present implementation, as the “50% performance degradation” threshold is only reached when
the context comprises about 40 dummy units. Incidentally, we observe that both implementations
exhibit a performance hit which is linear on the number of dummy units, as expected.

These are a very encouraging results, as GNU Prolog is an arguably more efficient implemen-
tation than SICStus Prolog 2.1, on which CSM is based, thereby exacerbating the impact of
performance-impairing extensions such as this one.

5 Conclusions and Directions for Future Work

We successfully developed a working prototype of a Contextual Logic Programming implemen-
tation on top of GNU Prolog which, while straightforward, has exhibited reasonable efficiency in

different benchmarks. One goal of this work was to experiment extensively with the mechanism
of unit arguments and explore its possibilities: the applications which have been developed sup-
port the claim that this construct is useful in the development of large projects with a Logic
Programming language.

Several lines of work are still open and will receive attention in the near future. These include
refinements to the language such as predicate concealment, implementation usability developments
such as dynamically loadable units and various kinds of optimizations, both in the compiler and
in the runtime support system.

References

1. Salvador Abreu. A Logic-based Information System. In Enrico Pontelli and Vitor Santos-Costa,
editors, 2nd International Workshop on Practical Aspects of Declarative Languages (PADL’2000),
volume 1753 of Lecture Notes in Computer Science, pages 141–153, Boston, MA, USA, January 2000.
Springer-Verlag.

2. Salvador Abreu. Isco: A practical language for heterogeneous information system construction. In
Proceedings of INAP’01, Tokyo, Japan, October 2001. INAP.

3. M. Bugliesi. A declarative view of inheritance in logic programming. In Krzysztof Apt, editor,
Proceedings of the Joint International Conference and Symposium on Logic Programming, pages 113–
127, Washington, USA, 1992. The MIT Press.

4. Michele Bugliesi, Anna Ciampolini, Evelina Lamma, and Paola Mello. Optimizing modular logic
languages. ACM Computing Surveys (CSUR), 30(3es):10, 1998.

5. Michele Bugliesi, Evelina Lamma, and Paola Mello. Modularity in Logic Programming. Journal of
Logic Programming, 19/20:443–502, 1994.

6. Daniel Cabeza and Manuel Hermenegildo. The ciao module system: A new module system for prolog.
In Inês Dutra and al., editors, Electronic Notes in Theoretical Computer Science, volume 30. Elsevier
Science Publishers, 2000.

7. Enrico Denti, Evelina Lamma, Paola Mello, Antonio Natali, and Andrea Omicini. Techniques for
implementing contexts in Logic Programming. In Evelina Lamma and Paola Mello, editors, Extensions
of Logic Programming, volume 660 of LNAI, pages 339–358. Springer-Verlag, 1993. 3rd International
Workshop (ELP’92), 26–28 February 1992, Bologna, Italy, Proceedings.

8. Daniel Diaz and Philippe Codognet. Design and implementation of the gnu prolog system. Journal
of Functional and Logic Programming, 2001(6), October 2001.

9. Patricia Hill and John Lloyd. The Goedel Programming Language. MIT Press, Cambridge, MA, 1994.
ISBN 0-262-08229-2.

10. E. Lamma, P. Mello, and A. Natali. The design of an abstract machine for efficient implementation
of contexts in logic programming. In Giorgio Levi and Maurizio Martelli, editors, Proceedings of the
Sixth International Conference on Logic Programming, pages 303–317, Lisbon, 1989. The MIT Press.

11. Francis G. McCabe. Logic and Objects. Prentice Hall, 1992.
12. Dale Miller. A logical analysis of modules in logic programming. The Journal of Logic Programming,

6(1 and 2):79–108, January/March 1989.
13. Lúıs Monteiro and António Porto. A Language for Contextual Logic Programming. In K.R. Apt, J.W.

de Bakker, and J.J.M.M. Rutten, editors, Logic Programming Languages: Constraints, Functions and
Objects, pages 115–147. MIT Press, 1993.

14. Paulo Moura. Logtalk web site. http://www.logtalk.org/.
15. Paulo Moura. Logtalk 2.6 Documentation. Technical Report DMI 2000/1, University of Beira Interior,

Portugal, 2000.
16. Antonio Natali and Andrea Omicini. Objects with State in Contextual Logic Programming. In

Maurice Bruynooghe and Jaan Penjam, editors, Programming Language Implementation and Logic
Programming, volume 714 of LNCS, pages 220–234. Springer-Verlag, 1993. 5th International Sympo-
sium (PLILP’93), 25–27 August 1993, Tallinn, Estonia, Proceedings.

http://www.logtalk.org/

	Objective: in Minimum Context

