
Using a Logic Programming Language with
Persistence and Contexts

Salvador Abreu and Vitor Nogueira

Universidade de Évora and CENTRIA FCT/UNL, Portugal
{spa,vbn}@di.uevora.pt

Abstract. This article merges two approaches: one dealing with persis-
tence for logic programs, as provided by a relational database back-end
and another which addresses the issues of logic program structuring, by
way of the parametric context. We claim that these two can be effectively
combined to obtain a language which offers significant gains in expres-
siveness over previous work. This claim is experimentally backed by the
applications that have been developed using these tools.

1 Introduction

Contexts: The idea of Contextual Logic Programming (CxLP) was in-
troduced in the late 1980s by Monteiro and Porto [7] and is related to
similar efforts such as that by Miller described in [6]. The purpose of CxLP
was initially to deal with Prolog’s traditionally flat predicate namespace,
which seriously hindered its usability in larger scale projects. The impact
of these extensions has mostly failed to make it back into the mainstream
language, as the most widely distributed implementations only provide a
simple, SICStus-like module mechanism, if any.

A more recent proposal [3] rehabilitates the ideas of Contextual Logic
Programming by viewing contexts not only as shorthands for a modular
theory but also as the means of providing dynamic attributes which affect
that theory: we are referring to unit arguments, as described in Abreu
and Diaz’s work. It is particularly relevant for our purposes to stress the
context-as-an-implicit-computation aspect of CxLP, which views a context
as a first-class Prolog entity – a term, behaving similarly to an object in
OOP languages.

Persistence: having persistence in a Logic Programming language is a re-
quired feature if one is to use it to construct actual information systems;
this could conceivably be provided by Prolog’s internal database but is
best accounted for by software designed to handle large quantities of fac-
tual information efficiently, as is the case in relational database manage-
ment systems. The semantic proximity between relational database query



languages and logic programming languages have made the former priv-
ileged candidates to provide Prolog with persistence, and this has long
been recognized.

ISCO [2] is a proposal for Prolog persistence which includes support
for multiple heterogeneous databases and which access to technology be-
yond relational databases, such as LDAP directory services or DNS. ISCO
has been successfully used in a variety of real-world situations, rang-
ing from the development of a university information system to text re-
trievalor business intelligence analysis tools.

ISCO’s approach for interfacing to DBMSs involves providing Prolog
declarations for the database relations, which are equivalent to defin-
ing a corresponding predicate, which is then used as if it were originally
defined as a set of Prolog facts. While this approach is convenient, its
main weakness resides in its present inability to relate distinct database
goals, effectively performing joins at the Prolog level. While this may
be perceived as a performance-impairing feature, in practice it’s not the
show-stopper it would seem to be because the instantiations made by the
early database goals turn out as restrictions on subsequent goals, thereby
avoiding the filter-over-cartesian-product syndrome.

Contexts and persistence: considering that it is useful to retain the reg-
ular Prolog notation for persistent relations which is an ISCO character-
istic, we would like to explore the ways in which contexts can be taken
advantage of, when layered on top of the persistence mechanisms pro-
vided by ISCO. In particular we shall be interested in the aspects of
common database operations which would benefit from the increase in
expressiveness that results from combining Prolog’s declarativeness and
the program-structuring mechanisms of Contextual Logic Programming.

We shall illustrate the usefulness of this approach to Contextual Logic
Programming by providing examples taken from a large scale applica-
tion, written in GNU Prolog/CX, our implementation of a Contextual
Constraint Logic Programming language. More synthetic situations are
presented where the constructs associated with a renewed specification of
Contextual Logic Programming are brought forward to solve a variety of
programming problems, namely those which address compatibility issues
with other Prolog program-structuring approches, such as existing module
systems. We also claim that the proposed language and implementation
mechanisms can form the basis of a reasonably efficient development and
production system.



The remainder of this article is structured as follows: section 2 re-
capitulates on ISCO, while section 3 presents our revised specification
of Contextual Logic Programming, stressing the relevance of unit argu-
ments. In section 4 we show some uses for a unified language, which uses
both persistence and contexts. Finally, section 5 draws some conclusions
and attempts to point at unsolved issues, for further research.

2 Persistence with ISCO

Is is not the purpose of this article to introduce the ISCO language, but
a short review of its main features is useful for the discussion ahead.

ISCO has been described in [2] and comes as an evolution of the Logic
description language presented in [1]. It is a mediator language in that
an ISCO program may transparently access data from several distinct
sources in a uniform way: all behave as regular Prolog predicates. Some
relevant advantages ISCO holds over competing approaches are its ability
to concurrently interface to several legacy systems, its high performance
by virtue of being derived from GNU-Prolog and its simplicity.

Predicate declarations: predicates that are to be associated with an ex-
ternal representation must be declared. This is necessary because DBMSs
need to have table fields named and typed and none of this information
is derivable from a regular Prolog predicate.

Example 1 (ISCO class teacher).

class teacher.
name: text.
department: text.
degree: text.

A class teacher can be declared in ISCO as in example 1. This defines
predicate teacher/3, which behaves as a database predicate but relies on
an external system (e.g. an RDBMS) to provide the actual facts.

Class declarations in ISCO may reflect inheritance, although that isn’t
shown in the previous example. Several features of SQL have been mapped
into ISCO: keys and indexes, foreign keys and sequences to name a few.

Operations: classes in ISCO stand for persistent predicate declarations.
The way these may be used is similar to what is done in Prolog for
“database” predicates:



– non-deterministic sequential access to all clauses,
– insertion of new facts (ala assertz/1),
– removal of specific facts (ala retract/1)

The use of relational database back-ends spurred the adoption of an
“update-like” operation in ISCO, which has no traditional Prolog coun-
terpart.

These operations may specify constraints on their arguments to limit
the tuples they apply to. These may be actual CLP(FD) constraints or
more specific syntactic constructs, designed to provide a minimal yet use-
ful set of features to tap into the potential efficiency provided by the
RDBMS: for example, there are notations to specify solution ordering or
substring matching.

Outlook: ISCO-based logic programs access the RDBMS-resident rela-
tions one-at-a-time, i.e. each predicate maps directly to queries onto the
corresponding table. This results in joins being performed at the Prolog
level, which may impair efficiency in some cases. This cannot be easily
dealt with, as calls to class predicates may be mixed with regular Prolog
goals, so that it’s hard to determine beforehand what compound SQL
query could be generated to effect a proper database-side join. Using
Draxler’s Prolog-to-SQL compiler[4] could improve this situation some-
what, but it has yet to be done.

3 Overview of Contextual (Constraint) Logic
Programming

Contextual Logic Programming (CxLP) [7] is a simple yet powerful lan-
guage that extends logic programming with mechanisms for modularity.
In CxLP a finite set of Horn clauses with a given name is designated by
unit. In [3] we presented a new specification for CxLP, which emphasizes
the OOP aspects by means of a stateful model, allowed by the introduc-
tion of unit arguments. Using the syntax of GNU Prolog/CX, consider a
unit named teacher to represent some basic facts about the teaching at
a University:

Example 2 (CxLP unit teacher).

:-unit(teacher).

name(N) :- teacher(N, _, _).
department(D) :- teacher(_, D, _).



degree(D) :- teacher(_, _, D).

teacher(john, cs, phd).
teacher(bill, cs, msc).

The only difference between the code of example 2 and a regular logic
program is the first line that declares the unit name. Consider also another
unit to represent information about courses, in example 3:

Example 3 (CxLP unit course).

:-unit(course).

teacher(N) :- course(N, _).
course(C) :- course(_, C).

course(john, ai).
course(bill, lp).

A set of units is designated as a contextual logic program. With the units
above we can build a program P = {teacher, course}. If we consider
that teacher and course designate sets of clauses, then the resulting
program is given by the union of these sets.

For a given CxLP program, we can impose an order on its units,
leading to the notion of context. Contexts are implemented as lists of unit
designators and each computation has a notion of its current context. The
program denoted by a particular context is the union of the predicates
that are defined in each unit. We resort to the override semantics to deal
with multiple occurrences of a given predicate: only the topmost definition
is visible.

To construct contexts, we have the context extension operation given
by the operator :> . The goal U :> G extends the current context with
unit U and resolves goal G in the new context. For instance, to find out
about the academic qualification of the person who taught the Logic
Programming course (lp), we could ask:

teacher :> course :> (course(N, lp), teacher(N, , DEG))

In this goal, we start by extending the initially empty ([]) context with
unit teacher, obtaining context [teacher]. This context is again ex-
tended with unit course, yielding the context [course, teacher], and it
is in the latter context that goal course(N, lp), teacher(N, , DEG)
is derived.



3.1 Units with arguments

In [3] we add units arguments as a significant part of the CxLP pro-
gramming model: a unit argument can be interpreted as a “unit global”
variable, i.e. one which is shared by all clauses defined in the unit. Unit
arguments help avoid the annoying proliferation of predicate arguments,
which occur whenever a global structure needs to be passed around. For
instance, the teacher unit could be rewritten as in example 4:

Example 4 (CxLP unit teacher with arguments).

:- unit(teacher(NAME, DEPARTMENT, QUALIFICATIONS)).

name(NAME).
department(DEPARTMENT).
qualifications(QUALIFICATIONS).

teacher(john, cs, phd).
teacher(bill, cs, msc).

item :- teacher(NAME, DEPARTMENT, QUALIFICATIONS).

In this modified version, we have three unit argument NAME, DEPARTMENT
and QUALIFICATIONS, along with three unary predicates to access these
arguments. There is a new predicate item/0 that instantiates all unit
arguments using facts from the database.

To answer the same question as before, and considering a similar
change was done to unit course we could say:

course(N, lp) :> item, teacher(N, , DEG) :> item.
The way in which this query works is substantially different, though,

because we are now instantiating variables which occur in the units, not
in the goals. In fact, the goals are now bare.

3.2 Contextual Constraint Logic Programming

It was a natural thing to try to combine contextual and constraint logic
programming, yielding what we call Contextual Constraint Logic Pro-
gramming or CCxLP. This paradigm subsumes CLP [5] and enriches
CxLP, by allowing unit arguments and contexts to be constrained vari-
ables.

Considering again the GNU Prolog/CX implementation, where the
CLP scheme is particularized to Finite Domains (CLP(FD)) and reified



Booleans (CLP(B)), we can define the unit of example 5 to represent the
24–Hour timekeeping system:

Example 5 (CxLP unit time).

:- unit(time(HOUR, MINUTE, SECOND)).

args :- fd_domain(HOUR, 0, 23),
fd_domain(MINUTE, 0, 59),
fd_domain(SECOND, 0, 59).

hour(HOUR).
minute(MINUTE).
second(SECOND).

Using unit time to express the 9-to-5 working hours, we can simply do:
time(T) :> (args, hour(H), H #>= 9, H # =< 17).

which will result in variable T having variable subterms which are con-
strained variables which correspond to the time period in question. This
sort of situation is explored in more depth in [8].

4 Contexts in ISCO

The University of Evora’s Integrated Information System, SIIUE, is im-
plemented in GNU Prolog/CX [3] and ISCO [2]. It relies on a relational
database management system – PostgreSQL in the occurrence – for which
an efficient, although very low-level, interface has been provided. We se-
lected this approach rather than, for instance, resorting to the Draxler
Prolog-to-SQL query generator [4] because the database is totally gener-
ated from within Prolog, both schema and data.

One “selling point” on ISCO is that modeling and implementation
of information systems and related applications should be performed di-
rectly at the Logic Programming level, so we also want to hide the fact
that there is an underlying relational database at all: it’s only being used
as a persistence provider.

Following an “extreme-contextual” approach, it was decided by design
that every predicate which represents a problem-domain relation would
also have an associated unit, of the same name and arity according to
the number of arguments in the relation. This would hold whether the
predicate is implemented as a set of facts backed by the persistency mech-
anism, or as a regular predicacte with non-fact clauses, as would be the
case for a computed relation.



Taking up the definition of example 1 (page 3), class teacher should
now compile to code like that of example 6:

Example 6 (CxLP & ISCO unit teacher with arguments).

:- unit(teacher(NAME, DEPARTMENT, QUALIFICATIONS)).

name(NAME).
department(DEPARTMENT).
qualifications(QUALIFICATIONS).

item :- teacher(NAME, DEPARTMENT, QUALIFICATIONS).

teacher(A, B, C) :- <<SQL ACCESS CODE>>

The point is that all the code in this unit is generated by the ISCO
compiler, which will include yet a few more predicates, in particular those
required to deal with insertion, removal and tuple updates.

Following the CxLP approach, constrained queries to persistent rela-
tions are specified by constructing a context that constitutes a complete
specification of the query: this context can be viewed as an implicict
computation, in which the goal item will activate the intended query.

Example 7 (CxLP & ISCO constraing unit).

:- unit(where(CONDITION)).
item :- CONDITION, :^ item.

Example 7 shows how a context component – a unit – may be used to
impact the meaning of the item goal: it retains the semantics provided
by the remainder of the context, after being put in a conjunction with
an arbitrary goal, specified as a unit argument to unit where/1. The :^
operator is analogous to the super keyword in OO languages. An example
of using this approach:

teacher(N,D,Q) :> where(member(Q, [bsc, msc]))
:> :< TAs,

TAs :< item

The first goal binds variable TAs to a context which will generate all teach-
ers which don’t hold a PhD. degree. This is achieved with the solutions
for the item predicate.

The :< unary operator unifies its argument with the current context
while the similarly named binary operator effects a context switch.



In spite of its simplicity, this example is representative of the way
programs are coded in ISCO and GNU Prolog/CX, with contexts repre-
senting generators being built and saved in a variable in which the item
goal is subsequently evaluated: this can be thought of as the creation and
storage of an object, followed by sending of messages to that object.

An Application: a simple yet illustrative example is that of maintaining a
browser session. A session is a sequence of related web pages, pertaining to
a specific interaction, as identified by user input. Sessions are represented
by server-side information which persists across individual pages and is
referenced by a client-side (CGI) variable.

A system such as Universidade de Évora’s SIIUE [1] requires sessions.
In order to provide session support using ISCO and GNU Prolog/CX, we
resorted to a thin PHP layer, which collects all variables, be they provided
in the URL, in a POST, as cookies or as a server-side variable. These are
then supplied to the GNU Prolog/CX program as a unit, cgi/1, which
provides predicates to access and enumerate variables.

The sequence of web pages is represented and managed using a se-
quence of contexts, each representing what may be done at a particular
stage. The way a particular link which advances the session is represented
is quite simple, as it only requires that:

– the current context be available, as a session variable,
– the link specify the next context, possibly as an extension to the cur-

rent one,
– every such context should behave uniformly, allowing for the same

predicate to render the HTML code.

5 Conclusions and Directions for Future Work

ISCO and GNU Prolog/CX have proven to be a good match, as they both
provide useful extensions to Prolog, in particular if what we have in mind
is the construction of complex information systems. This is certainly the
case for SIIUE, which – at the time of this writing – total about 38000 lines
of GNU Prolog/CX code in over 400 units, the persistent database currntly
sports over 8 million tuples in 200 relations, a couple of which having over
1 million tuples. SIIUE is daily operated on by several thousand users.

This system has already been applied in a variety of situations, beyond
the one that spurred its development, SIIUE. Theq range of application
domains is incessantly growing. There are very promising developments



in the fields of business intelligence and information retrieval, for which
prototype systems have already been implemented.

One aspect which remains challenging is the development of a par-
ticular application with ISCO and GNU Prolog/CX, from scratch. We
are presently looking into ways of integrating Logic Programming-based
tools, such as ISCO and CxLP, into Content-Management Systems such
as Plone or Mambo. It is our belief that these CMS will benefit from
having plug-ins with the expressiveness of Prolog.

At present, ISCO joins are always performed on the Prolog side,
thereby throwing away good opportunities for query optimization on the
DBMS server side. We are presently working on this issue, and will pos-
sibly resort to Christoph Draxler’s [4] Prolog-to-SQL compiler, although
the task is made more difficult because ISCO allows for CLP(FD,B) con-
straints to apply to variables.

Another approach which we are presently exploring involves associat-
ing more than just GNU Prolog’s native FD constraints to query variables,
by making use of an attributed-variable extension to GNU Prolog.

References

1. Abreu, S., A Logic-based Information System, in: E. Pontelli and V. Santos-Costa,
editors, 2nd International Workshop on Practical Aspects of Declarative Languages
(PADL’2000), Lecture Notes in Computer Science 1753 (2000), pp. 141–153.

2. Abreu, S., Isco: A practical language for heterogeneous information system construc-
tion, in: Proceedings of INAP’01 (2001).

3. Abreu, S. and D. Diaz, Objective: in Minimum Context, in: C. Palamidessi, editor,
Logic Programming, 19th International Conference, ICLP 2003, Mumbai, India,
December 9-13, 2003, Proceedings, Lecture Notes in Computer Science 2916 (2003),
pp. 128–147, iSBN 3-540-20642-6.

4. Draxler, C., A Powerful Prolog to SQL Compiler, Technical Report 92–61, Centre for
Information and Language Processing, LudwigsMaximillians-Universität München
(1992).

5. Jaffar, J. and M. Maher, Constraint Logic Programming: a Survey, The Journal of
Logic Programming 19/20 (1994).

6. Miller, D., A logical analysis of modules in logic programming, The Journal of Logic
Programming 6 (1989), pp. 79–108.

7. Monteiro, L. and A. Porto, Contextual logic programming, in: G. Levi and
M. Martelli, editors, Proceedings of the Sixth International Conference on Logic
Programming (1989), pp. 284–299.

8. Nogueira, V., S. Abreu and G. David, Towards Temporal Reasoning in Constraint
Contextual Logic Programming, in: P. H. et al., editor, Proceedings of the 3rd In-
ternational Workshop on Multiparadigm Constraint Programming Languages Mul-
tiCPL’04, TU Berlin, 2004, pp. 119–131.


