
Modeling Role-Based Access Control in ISCO

Salvador Abreu(∗)

(∗) Departamento de Inforḿatica, Universidade déEvora and CENTRIA (FCT/UNL)
Portugal

spa@di.uevora.pt

Abstract

In this article we describe the mechanisms offered by the
ISCO [2, 1] language for defining and implementing access
control and homologation, within the scope of a large-scale in-
formation system. ISCO is a Logic-based system which inte-
grates multiple heterogenous information sources such as clas-
sical relational databases or LDAP directories.

The rule-basedaccess control mechanisms present in ISCO
can be used to implement a wide variety of access control poli-
cies, ranging from simple owner/group/other permissions to
role-based access control with capabilities which extend fur-
ther, such as content filtering, as we shall demonstrate.

We claim that the access control mechanisms that can be imple-
mented using ISCO subsume existing ones in expressiveness.
An example of usage within a real-world application is also
provided.

Keywords: Information Systems, Logic Programming,
Access-Control Mechanisms, Deductive Databases, Web
Interfaces.

1 Introduction

The relationship between Logic Programming and Databases
has long been recognized as a very fruitful area of research,
witness for example [12, 14, 17]. Accessing large amounts of
loosely related information is one of the issues in data ware-
housing; some approaches taken to tackle this problem are dis-
cussed in [6, 7, 13]. A general approach consists in interpos-
ing amediator[21, 22] between the user and the data sources.
The mediator is often formalized and implemented in a variant
of a Logic Programming language such as Prolog. Many is-
sues involved in using Logic to integrate different information
repositories or to support schema evolution are discussed in the
survey [11].

Universidade déEvora has developed and is currently deploy-
ing a general-purpose information system framework [1, 3],
geared initially towards interacting with faculty members and
staff but which aims to gradually fulfill the whole of the or-
ganization’s internal information needs. This system is being
developed around ISCO, a language based on Prolog which re-
lies on external data sources/sinks to store and retrieve Datalog
information.

Systems such as Infomaster [13] have been designed and im-
plemented which allow access to multiple heterogenous infor-
mation sources, unified with a Logic Programming framework.

ISCO [2, 1, 3] goes beyond what such systems propose, in that
it not only allows for uniformly accessing an existing set of
information sources, but also proposes a framework where the
information structure may evolve and be extended.

An initially unexpected goal in the design of ISCO and its envi-
ronment, was to make it relatively easy for novice Prolog pro-
grammers to start using the language to construct useful ap-
plications. This came as a result of the declarations in ISCO,
which can largely correspond to an object-relational data model
but which can be incrementally extended to encompass compu-
tations, treating these with a uniform syntax and semantics.

Aside from the previously mentioned aspect of making a more
uniform process of the definition and access to data, the tools
introduced in ISCO enable the construction of even more so-
phisticated mechanisms to deal with acknowledged software
engineering issues occurring in real-world applications such
asschema evolution[11] or access control: these and others
may be undertaken entirely within the ISCO framework, partly
by virtue of its building on top of Contextual Logic Program-
ming [18], which greatly eases software development by struc-
turing the Prolog namespace for predicates.

In the case of access control, rules may be defined which may
resort to the expressiveness of Logic programs thereby unifying
and enhancing in major ways the different offerings related to
permissions and access control.

The purpose of this article is twofold: (1) to describe the
mechanisms within ISCO which specify and enforce different
forms of access control, and (2) To report on the usage of the
supplied programming mechanisms to specify and implement
an application-related feature: information validation and ho-
mologation.

The remainder of this article is structured as follows: the most
salient features of the language as well as the architecture of
ISCO applications such as SIIUE are succinctly outlined in
section 2. Section 3 addresses the issues of identifying and
authenticating an agent. Section 4 discusses how access con-
trol policies may be described and programmed within ISCO.
In section 5 the implementation of ISCO rules and the integra-
tion of access control are discussed. Section 6 describes a form
whereby the concepts of information validation, homologation
and delegation may be implemented. Finally, in section 7 we
compare our approach with others from the literature, comment
on the current state of the implementation and point at direc-
tions for future work.

2 Application Development with ISCO

A information system application built with ISCO can be de-
scribed as being made up of the following components:

• A web interface layer, which may be simply accessed by
direct users of the system. Applications in this layer are
mostly developed using a mix of HTML and PHP. Ideally,
this layer should provide only minimal content, as most
HTML or XML can be conveniently generated below.

• A computational layer, in which information from the
database layer is unified and where processes and compu-
tations may take place. The programming language used
here is ISCO. Offline applications may be developed at
this level.

Interface procedures that are intended to be re-used fre-
quently should be designed in this layer, as they may make
use of the PiLLoW [5] library to conveniently generate
HTML or XML from within the ISCO program.

• A heterogeneous storage layer, usually implemented by
relational databases, which provides persistency.

The ISCO language described in [2] builds on the basis of Pro-
log, adding data description features which may be used to
access persistent storage such as that provided by RDBMSs.
ISCO descriptions may be programmed from scratch or be gen-
erated from the schema of an existing database.

The foremost example of an ISCO application is Universidade
de Évora’s Integrated Information System (SIIUE), which is
being actively used to provide a uniform interface to on-campus
information. SIIUE aims at dealing with every aspect of aca-
demic life, ranging from registrations and student grades to on-
line information on research projects and publications or de-
tailed course information. Earlier versions of some parts of
SIIUE have been described in [1, 3].

One benefit of ISCO is the relative ease with which the struc-
ture of an information system may be inspected: a good
demonstration is the natural language query interface which is
being developed for SIIUE, described in [20].

3 Identification and Authentication

The ISCO architecture can be summarized by figure 1: the
different layers correspond to actual physically different net-
works, interfacing each pair of layers which have contact.

Figure 1: Layers in ISCO

The
phys-
ical
sepa-
ration
is
pro-
vided
to
en-
sure
that
ac-
cess
to
higher-numbered layers is exclusively performed by hosts on
the layer immediately below.

There is the requirement that, since all validation and autho-
rization is performed by the ISCO layer, the layers above only
access any application data via ISCO.

Beyond the aforementioned security issues, there is another
practical reason for this layout, having to do with the main
ISCO application (SIIUE, see [1]) and the form in which it is
implemented: a lot of code had to be rewritten when ISCO be-
came available. Insulating the Web server/PHP layer (1) from
the database layer (3) helped ensure that no old code –direct
database accesses in particular– would execute unwittingly.

• User agents are found in layer 0 and communicate exclu-
sively with the HTTP servers (in layer 1) and the LDAP
directory servers, which may be thought of as lying simul-
taneously in layers 1 and 3.

• The web servers in layer 1 only do very basic operations,
such as verifying the identity of the user and ensuring a
secure channel through to layer 0 over which the session
may take place. They mey perform cosmetic work such as
embedding the output of the layer 2 servers in uniform-
looking pages. These are implemented as an Apache
server with PHP, supplemented with a module for com-
municating with a Prolog engine.

• Layer 2 are the ISCO processors proper: these run Prolog
images which implement a front-end appropriate for com-
municating with the PHP/Prolog interface [9] developed
at Universidade déEvora. The Prolog (ISCO, actually)
programs running in layer 2 have the physical possibility
of accessing the multiple information sources that make
up the information system, which lie in layer 3. Databases
in layer 3 may be accessed either through an ODBC inter-
face1 or, in the case of PostgreSQL, directly via a native
interface. LDAP directories are also accessed transpar-
ently as these get mapped to ISCO classes, similarly to
what happens with relational databases. The mechanisms
used to access LDAP directories are described in [19].

1This was also the object of a development effort a Universidade deÉvora:
an UnixODBC interface for GNU Prolog.

Based on this organization, the process for a regular interaction
with any ISCO application goes on as follows:

1. The user (layer 0) establishes a secure session (SSL or
TLS) to the service through a web browser.

2. The interface (in layer 1) cooperates with the browser and
an LDAP server to identify and authenticate the user. This
information is subsequently made available for the dura-
tion of the session.

3. The application in layers 1 and 2 starts executing. It is
made up of HTML, PHP and ISCO components. The last
two components may use the information pertaining to the
session, in particular the user’s identity.

4 Access Control Rules

One of the objectives in defining and implementing a language
such as ISCO was to equalize the various back-ends’ capabil-
ities with respect to access controls: for instance, PostgreSQL
databases provide quite different protection mechanisms from
those supplied in Oracle or, even more so, from non-RDBMS
systems such as LDAP. Some of these back-ends provide no
access control mechanisms whatsoever. Having to implement
an access control policy for a large heterogeneous database ap-
plication may prove very hard if not for the availability of a
unifying higher-level specification mechanism.

Access controls mechanisms may assume many forms, but es-
sentially may be reduced to checking whether anagentmay
perform anoperationon aclassor aclass instance. This gen-
eral approach enables the definition of many different access
control policies such as simple Unix-like user classifications,
or more sophisticated ones such as role-based access control as
in [15, 16]. Moreover, operations may be made to depend on
the data itself, rather than just the class.

Access Control Rules (ACRs) constitute the basic mecha-
nism for specifying authorization in ISCO. These come in two
flavours: class and instance-based. The rationale behind such
a distinction is probably what distinguishes ISCO from, say,
what is possible with regular RDBMSs: the ability to allow or
disallow an operation on the basis of the data it would operate
on itself, rather than simply what relations it involves.

ACRs are expressed as Prolog clauses, which complement the
regular integrity constraints already present within the ISCO
language. The reader may wish to read [2] for a discussion on
integrity constraints in ISCO.

4.1 Structure of ACRs

Access Control Rules need to specify three things:

1. A subject(or agent). The subject is transported in the
environment, and may be referred to via the predicate
agent/1, which unifies its argument with the identity of
the agent wanting to perform the operation. ACR clauses

may refer to the agent via the implicit variableAGENT,
which is available in the entire ACR (head and body).

2. An operation. The operation is a designator for ISCO op-
erations on class predicates: class access (empty),read,
insert, modify anddelete.

3. Anobject. The object of an ISCO class operation is a class
name, for an instance operation it’s the instance itself.
The distinction between class and instance Access Con-
trol Rules is made through theoperation, as previously
described: only the class access operation does without
an instance.

ACRs must immediately follow the class declaration which
they will apply to. Should a class have no direct successful2

applicable ACR, it will inherit the applicable rules from its su-
perclass. A root class with no ACRs behaves as if it had a single
ACR allowing all operations, indiscriminately.

4.2 Class-Based ACRs

A class ACR is the simplest form of access control rule found in
ISCO. It basically states that a given agent is allowed to enquire
about the metadata associated with a given class. Satisfaction
of the class ACR is a prerequisite to the execution of any goal
pertaining to that class, ie. class ACRs are always evaluated,
prior to instance ACRs.

The syntax for class ACRs is as follows:

access :- BODY

WhereBODY is an ISCO Prolog goal, which may make use of
the implicit variableAGENT to identify the subject performing
the inquiry.

abstract class confidential.

access :- is_member(id=AGENT, unit=management).
access :- is_privileged(AGENT).

Figure 2: Example of a Class-Based ACR

For example, consider the ISCO class definition of figure 2:
in this case, an empty abstract class “confidential” is being
defined, likely with the goal of using it as a superclass when-
ever convenient. As a consequence of this declaration, all sub-
classes ofconfidential that do not explicitly introduce
their own class access control rules, will only be visible and ac-
cessible for agents which satisfy the goal “access ” when ap-
plied toconfidential . In this example, this means that the
AGENT is either privileged or a member of themanagement
unit.

2By “successful” it is meant that it should have a clause that succeeds. If
that ACR is to be definitive –i.e. override its inherited behavior– it should dis-
card all potential alternatives, with a cut.

In order for a specific action to be performed on a class, the
agent must first pass the class access control rules for that par-
ticular class. Note that inheritance is applicable, allowing for
class access specifications to be written simply for the topmost
relevant classes.

4.3 Instance-Based ACRs

Similarly to what happens in class ACRs, instance-based ac-
cess control rules are attached to individual class definitions but
their goal is to allow or disallow the completion of instance-
specific operations, namely theread, insert, modify and
delete actions.

Opposite to class ACRs, however, is that instance-based access
control rules will apply to individual tuples: the outcome of the
rule evaluation can be thought of as a post-condition whereas
the class ACR would be a pre-condition for the application of
the intended action.

The syntax for instance ACRs is:MODE access :- BODY

whereMODE indicates the intended operation and may be one
of:

• read – this instance ACR will apply to the ISCO goal

RELATION(ARGlist) and stands for regular read-only
queries to the information system. The semantics is simi-
lar to that of a Prolog goal call.

• insert – this instance ACR will apply to the ISCO goal

RELATION := (ARGlist) and stands for the insertion of
new tuples into a relation. This operation has a semantics
close to Prolog’sassertz/3 .

• modify – this ACR applies to the ISCO goal

RELATION(ARGlist) := (ARGlist) and stands for
the modification of existing tuples in a relation.

• delete – this instance ACR applies to the ISCO goal

RELATION(ARGlist) : \ and stands for the removal of

tuples from a relation. The semantics of this operation is
close to Prolog’sretract/1 .

BODY is an ISCO Prolog goal. As is also the case in class
ACRs, the body may make use of the implicit variableAGENT
to identify the agent performing the query.

The instance-based ACRs are what really puts ISCO apart from
other approaches, in that they provide a mechanism whereby
access to information may be controlled on the basis of the
information itself, not simply its classification (ie. its class).

Consider the simplified example of figure 3, inspired from the
application being developed for the Academic Services, which
involves the ability of a particular student to enroll in a spe-
cific course, for a given semester. First, a few comments which
should help in specifying the problem:

• The ability to enroll can be thought of as the ability to
insert, modify or delete tuples from theenrolled class.

• A student should only be able to enroll himself, not an-
other student.

• Any professor or T.A. should be able to find out which
students are enrolled in any course they teach – but not to
alter any of these.

mutable class enrolled.
student: student.id. % variable STUDENT
course: course.id. % variable COURSE
year: int. % variable YEAR
semester: [1, 2]. % variable SEMESTER

read access :-
teaches(AGENT, COURSE, YEAR, SEMESTER), !.

_ANY access :- AGENT = STUDENT.

Figure 3: Example of an Instance-Based ACR

Notice that, also for the example of figure 3, rules pertaining
to the eligibility of a student to enroll in a specific instance of
a given course areleft out. Examples of such rules include
the maximum total number of credits per semester, whether
the prerequisites of the course have been met by the student,
whether the course is permissible for the graduation program
the student is registered for, etc.

The issue here is that the enforcement of such constraints can
be guaranteed through the use of another ISCO language fea-
ture: global integrity constraints. Figure 4 shows a possible
implementation using global integrity constraints. In this ex-

% -- restrict maximum credits per semester ------------
% -- triggered on changes to ‘enrolled’ and ‘course’ --
false :-

bagof(CR, CˆYˆSˆ
(enrolled(ST, C, Y, S),

course(id=C, credits=CR)), CRs),
sum_list(CRs, TOTAL_CREDITS),
TOTAL_CREDITS > 20.

% -- restrict on course prerequisites -----------------
% -- triggered on changes to ‘enrolled’ ---------------
false :-

enrolled(STUDENT, C, YEAR, SEMESTER),
\+ can_enroll(STUDENT, C, YEAR, SEMESTER).

Figure 4: Gloabl Integrity Constraints for Figure 3

ample, it is assumed that a computed relationcan enroll/4 has
been defined, which includes only those tuples for which it is
true that a given student may enroll in a specific course.

It is also possible to replace some of the functionality of global
integrity constraints with judiciously designed access control
rules. Continuing with the previous example, and considering

that students may never alter their enrollment status, the ACRs
could be rewritten as per figure 5. Notice, in this figure, the

read access :- teaches(AGENT, COURSE,
YEAR, SEMESTER), !.

read access :- AGENT = STUDENT.

insert access :-
AGENT = STUDENT,
!,
course(id=COURSE, credits=CREDITS),
total_credits(STUDENT, YEAR,

SEMESTER, TOTAL),
NEW_TOTAL is TOTAL+CREDITS,
NEW_TOTAL <= 20.

modify access :- !, fail.
delete access :- !, fail.

Figure 5: Replacing Integrity Constraints with Instance ACRs

ACRs for modify anddelete access which are set to always
fail: this in effect captures the notion that this relation may
only be modified monotonically. In fact, these two rules could
have been entirely omitted if the class had not been declared
mutable (see figure 3): in that situation, the predicates that
implement the update and delete operators would simply not
have been generated, thereby preventing the operations from
taking place at all.

Besides the fact that integrity constraints require a transaction
in order to operate, there are other efficiency advantages to us-
ing instance ACRs to implement integrity constraints, as their
scope is more limited and their implementation (see the next
section) has a lower computational overhead.

To summarize, global integrity constraints should only be used
in situations where operations that perform updates to more
than one relation are involved: in that case, only one integrity
constraint needs to be specified while, with instance ACRs,
several cases would have to be described.

5 ISCO Clauses and ACR Implementation

Access Control Rules are implemented by the ISCO compiler,
integrated with the generation for the various access modes to
class predicates. Briefly, the compiler produces between one
and four distinct predicates3, one for each of the allowed access
modes. The actual number of predicates depends on the class
attributes: astatic class will only have theread predicates,
a regular class will have both theread and insert predicates
whereas amutable class will have all four predicates defined.

These predicates are made up of regular Prolog clauses with
positional arguments and a name which hashes both the class
name and the operation. The actual number of arguments is
given by:

3In fact, there are more than four, but these suffice for the purpose of dis-
cussing the ACR implementation.

• the number of arguments in the class (local and inherited),

• internal arguments that describe the back-end connection
and actual argument usage masks (this is done in order to
manage the database back-end more efficiently) and

• possibly another set of arguments that reflect the new tu-
ple, for themodify operation.

5.1 ISCO Goals and Clauses

Before describing how ACRs are actually incorportated into the
compiled form of ISCO access clauses, a brief description of
the structure of these clauses is useful. Consider the case of the
modify code, i.e. the clause that would support the execution
of an ISCO goal such as that shown in figure 6, which would

enrolled(year=2001, course=20, student=S) :=
(semester=2)

Figure 6: Example formodify operations

set course number20 in schoolyear 2001/02 to occur in the
second semester, for every studentS. This goal will behave
nondeterministically, in that it will bind successive values ofS,
one for each student satisfying the selection criteria.

Assuming that relationenrolled is being mapped to an
SQL4 back-end, the supporting clause will have the structure
shown in figure 7. A brief analysis of the structure of this clause

isco_modify_enrolled(CONN,
S,C,Y,M,
SS,CC,YY,MM, MASK) :-

..., % (1) generate SQL select, returning OID

..., % (2) invoke SQL select (nondeterminate)

..., % (3) generate SQL update, using OID

.... % (4) invoke SQL update.

Figure 7: Prolog code for ISCOmodify operation

is as follows:

• The clause head carries extra information which includes
a reference to the back-end connection (theCONNar-
gument) and a mask describing what arguments are ac-
tually being used by the calling goal (theMASKargu-
ment). Moreover, there are two clause head arguments
for each class argument: one for the selection part and
one for the modification part; these are theS,C,Y,M and
SS,CC,YY,MM arguments respectively.

• Part (1) of the generated Prolog code creates an SQL
select query which, in this case, will look something
like “select oid, student from enrolled

4The compiler has knowledge about different RDBMS back-ends, and is
able to generate differentiated SQL code for each of them: most notable is
the ability of certain DBMSs to handle inheritance, such is the case with Post-
greSQL.

where year=2001 and semester=2 ”. The pur-
pose of this section of the clause is to uniquely identify
the tuple which matched the conditions specified by the
bindings of the selection variables (theSELARGShead
variables): in order for a selection variable to be included
in thewhere SQL clause, it will have either to be ground
or be a constrained variable, in the sense of CLP(FD).

The SQL output variables in theselect statement al-
ways include theoid as well as any variables that have
been specified in the output mask (the last head argument).

Note that the exact SQL statement being built varies with
the state of the selection variables and the output mask.

• Part (2) of the clause executes the SQL statement and
fetches the relevant output variables. In this case, head
variableS and local clause variableOID are bound. This
part is nondeterminate, i.e. it may backtrack to produce
more solutions.

Note: should Prolog execution remove the choice point
in any way other than by exhaustion of the alternatives,
for example by executing a cut, a special “choicepoint de-
structor” function is invoked which releases all external
resources allocated within the choice point. This ensures
that there will be no memory leaks due to the nondeter-
minate interface to, for instance, SQL back-ends, while
avoiding the transfer of the entire set of solutions.

• Parts (3) and (4) use the values returned by part
(2) in order to construct and execute an SQL statement
of the form “update enrolled set semester=2
where oid=OID ”. The execution of this statement is
determinate, as there is only one tuple withoid=OID .

Notice that this SQL statement cannot be generated ahead
of time, as it may alter variables which get bound as a
result of executing parts(1) and(2) of the clause body.

5.2 Incorporating ACRs into ISCO Clauses

The inclusion of access control rules into ISCO clauses is rather
straightforward. Consider the clauses for each of the ISCO op-
erations; adding ACRs will, after performing some bookkeep-
ing tasks, cause the sequence of actions to look like the follow-
ing:

1. Evaluate the class access control rule. Should this test fail,
the entire operation will fail. In a sense, the class ACR be-
haves as a precondition for the operation to be performed.

2. Perform the non-modifying part of the intended operation.
This part is only empty in theinsert case and corresponds
to parts(1) and(2) of figure 7.

3. Evaluate the instance access control rule, as applied to the
tuple returned by step 2.

Should the instance ACR be of the formAGENT = ARG,
whereARGis a class member name, it will be evaluated
before step 2, leading to a more optimized query in the

sense that it will only produce solutions which satisfy the
ACR.

This approach is similar to the Andorra Principle [4],
also known as “sidetracking”, which consists in reorder-
ing goals so as to evaluate the determinate ones first.

4. Should there be a second tuple specified in the operation,
as is the case for themodify operation, the instance ACR
is evaluated again, before the modifying part of the clause,
this time with the values from the new tuple.

5. If the instance access control rule(s) succeeded, the mod-
ifying part of the intended operation is performed. This
part is empty forread operations.

When compared with ISCO code generation without access
control rules, this process has three extra steps (1, 3 and 4),
which are fairly straightforward to insert into the generated
clause bodies.

6 Homologation and Delegation

From the point of view of an organization’s administration,
it is not sufficient to express validity of the information
found in a database simply as “Joe is a salesman of
Foo-type widgets ”: other questions arise, such as “Says
who?” or “ On what authority?”

Whoever is ultimately responsible for the information con-
tained in the information system (the company’s CIO, for in-
stance) needs to be able to rely on the accuracy and timeliness
of the data, as well as to delegate on others the ability to input,
alter or validate information. Furthermore, it is also important
to pinpoint the process that led to some piece of information
being present.

6.0.1 Definitions

The reliability of this process can be ensured with two con-
cepts,HomologationandDelegation, which are defined by the
Collaborative International Dictionary of English, version 0.44
of May 2001, as:

Homologation: “Confirmation or ratification (as of something
otherwise null and void), by a court or a grantor.”

Delegation: “The act or process of authorizing subordinates to
make certain decisions.”

6.0.2 Implementation

These concepts need not be afeatureof the ISCO language:
they seem to be useful for the construction of a wide range of
applications –namely all which have to model workflow– but
the inclusion at the language level is not necessary. We now
proceed to illustrate how to use the ACR mechanism and other
ISCO language features, in order to effectively implement ho-
mologation and delegation.

6.0.3 Validity Status

A piece of information may have avalidity status, which can
be represented via the ISCO class declaration of figure 8. The

mutable class validity.
id: serial. % the unique sequence number
object: homologated.id. indexed. % refers to?
valid: bool. % is it valid?
reason: validity_state.id. % why (in)valid?
when: datetime. % when?
who: entity.id. % who says so?
note: text. % a comment.

Figure 8: Validity Status class definition

purpose of most arguments is self-explanatory. There may be
more than onevalidity entry for each object, but only the
highest-numbered (as per theid argument) is considered.

6.0.4 Using Validity Information in ACRs

Access control rules for classes subject to the homologation
process may be implemented with an empty common super-
class,homologated , for which an instance ACR (recall sec-
tion 4.3) may be specified that will ensure:

• That agents with the statutory right to modify the informa-
tion are granted modification access (insert, modify and
delete).

• That read access is only granted in case the information
is valid or the agent has explicit access to it.

Figure 9 illustrates a possible implementation. The first in-

abstract class homologated.
id: serial.

access. % class ACR
_ access :- owner(CLASS, ID, AGENT), !.

read access :- validity(object=ID, valid=V,
id=_ <@) -> V=true.

Figure 9: ACRs to Enforce Homologation

stance ACR grants all forms of access to the owner of the da-
tum. The second instance ACR, which only specifiesread
access, succeeds if the most recentvalidity entry for the
intended object has avalid value oftrue . Note the<@op-
erator applied to theid argument, which ensures that solutions
are sorted in by decreasingid : the first solution will there-
fore be the one with the highest value forid . Effectively, this
rule shields information which is in an intermediate state from
being accessed at all, by unauthorized agents.

An ACR such as this one implements the management rule
“ rather show no information at all than incorrect one.”

As soon as the homologation process carries on to create a new
validity record for the same object, with thevalid argument
set to true , read queries to subclasses ofhomologated
will succeed, regardless of who the agent is. This is true be-
cause the new record’sid argument will have a higher numeric
value and will therefore come first in the specified solution sort
order.

The homologation classes and procedures may be enriched in
several ways, namely to cover workflow-related issues, such as
deadlines or completion notification.

6.0.5 Delegation

Implementing delegation is really quite straightforward: all
that needs to be done is to supplement the instance ACRs of fig-
ure 9 with a clause that translates to the concept “whoever has
the right to perform an operation may delegate it onto someone
else”. A possible realization of a simple “delegate all rights”
policy can be achieved by replacing the clause first instance
ACR by those of figure 10. Note that for this particular imple-

_ access :- owner(CLASS, ID, AGENT), !.
_ access :- owner(CLASS, ID, O),

delegation(CLASS, O, AGENT), !.

Figure 10: Delegation ACRs

mentation to work, there must be a classdelegation which
indicates the active delegations. Note also that the delegations
themselves may be subject to homologation.

7 Conclusions and Further Work

The proposed mechanism suits the needs it aimed to fulfill quite
nicely. As this work is part of a larger effort, namely the design
and implementation of Universidade deÉvora’s Integrated In-
formation System (SIIUE), and most directions of future devel-
opment –both for ISCO and in particular for the Access Control
mechanisms– will be guided by the experience we gain from
actual usage.

Our experience in porting the existing DL [1] code base to the
new framework is proceeding well, notwithstanding the unex-
pected issue with some of the developers being somewhat aver-
sive of programming in Prolog.

When compared with RDBMS-centered systems, ISCO clearly
provides a much more flexible and powerful mechanism for ac-
cess control. In terms of the development process, the inheri-
tance mechanism allows for a relatively high rate of code reuse,
including the case of access control. Other efforts such as Yang
and Kifer’s FLORA [23] focus more on the ability of the sys-
tem to provide a more general Logic Programming language.

The developments which we plan to work on next include:

• Better SQL code generation, possibly by delaying the ex-
ecution of database query goals, which should allow for a

closer to optimal construction of queries. At present, SQL
back-end queries are treated individually.

• Further integration of the CLP aspects of GNU Prolog [10,
8]. This could include the addition of suitable constraint
domains, such as strings.

• Re-implementation of some aspects both of the tools
(namely the ISCO compiler) and the resulting applications
to make use of the Contextual Logic Programming imple-
mentation which is becoming usable in GNU Prolog.

Acknowledgements

The author would like to thank Luı́s Arriaga da Cunha, Vitor
Nogueira, Lúıs Quintano and Gonçalo Marrafa for many fruit-
ful discussions pertaining to the work described herein. An
acknowledgement is also due to the administration of Univer-
sidade déEvora for the continued support provided for the de-
velopment of the SIIUE project, in which the present work is
integrated.

References

[1] Salvador Abreu. A Logic-based Information System. In
Enrico Pontelli and Vitor Santos-Costa, editors,2nd In-
ternational Workshop on Practical Aspects of Declarative
Languages (PADL’2000), volume 1753 ofLecture Notes
in Computer Science, pages 141–153, Boston, MA, USA,
January 2000. Springer-Verlag.

[2] Salvador Abreu. Isco: A practical language for heteroge-
neous information system construction. InProceedings
of INAP’01, Tokyo, Japan, October 2001. INAP.

[3] Salvador Abreu and Joaquim Godinho. Logic-based Net-
work Configuration and Management. In Jan Knop, edi-
tor, The Changing Universities - The Role of Technology
– The 7th International Conference of European Univer-
sity Information Systems, Lecture Notes in Informatics,
Berlin, March 2001. German Informatics Society (GI).
ISBN 3-88579-339-3.

[4] Salvador Abreu, Lúıs Moniz Pereira, and Philippe
Codognet. Improving backward execution in the andorra
family of languages. InProceedings of the International
Joint Conference and Symposium on Logic Programming.
MIT Press, 1992.

[5] Daniel Cabeza and Manuel Hermenegildo. Dis-
tributed WWW programming using (Ciao-)Prolog and
the PiLLoW library. Theory and Practice of Logic Pro-
gramming, 1(3):251–282, May 2001.

[6] Surajit Chaudhuri and Umeshwar Dayal. Data ware-
housing and olap for decision support (tutorial). In Joan
Peckham, editor,SIGMOD 1997, Proceedings ACM SIG-
MOD International Conference on Management of Data,
May 13-15, 1997, Tucson, Arizona, USA, pages 507–508.
ACM Press, 1997.

[7] Surajit Chaudhuri and Umeshwar Dayal. An overview of
data warehousing and olap technology.SIGMOD Record,
26(1):65–74, 1997.

[8] Philippe Codognet and Daniel Diaz. Compiling Con-
straint in clp(FD) . Journal of Logic Programming,
27(3), June 1996.

[9] João Conceiç̃ao and Salvador Abreu. Interfacing Prolog
and PHP. Submitted for publication, July 2001.

[10] Daniel Diaz and Philippe Codognet. GNU Prolog:
Beyond Compiling to C. In2nd International Work-
shop on Practical Aspects of Declarative Languages
(PADL’2000).

[11] Yannis Dimopoulos and Antonis Kakas. Information In-
tegration and Computational Logic. CoRR arXiv: cs. AI/
0106025, June 2001.

[12] H. Gallaire and J. Minker, editors.Logic and Databases.
Plenum, New York, 1978.

[13] Michael R. Genesereth, Arthur M. Keller, and Oliver M.
Duschka. Infomaster: An information integration sys-
tem. In Joan Peckham, editor,SIGMOD 1997, Proceed-
ings ACM SIGMOD International Conference on Man-
agement of Data, May 13-15, 1997, Tucson, Arizona,
USA, pages 539–542. ACM Press, 1997.

[14] J. Grant and J. Minker. The Impact of Logic Pro-
gramming on Databases.Communications of the ACM,
35(3):66–81, 1992.

[15] B. Lerner and A. Habermann. Beyond schema evolu-
tion to database reorganisation.ACM SIGPLAN Notices,
25(10):67–76, 1990.

[16] L. Liu. Maintaining Database consistency in the Pres-
ence of Schema Evolution. In Robert Meersman and Leo
Mark, editors,Proceedings of the Sixth IFIP TC-2 Work-
ing Conference on Data Semantics (DS-6), Stone Moun-
tain, Atlanta, May-June 1995. Chapman & Hall, London.

[17] Jack Minker, editor.Foundations of Deductive Databases
and Logic Programming. Morgan Kaufmann, Los Altos,
1988.

[18] Luı́s Monteiro and Ant́onio Porto. A Language for Con-
textual Logic Programming. In K.R. Apt, J.W. de Bakker,
and J.J.M.M. Rutten, editors,Logic Programming Lan-
guages: Constraints, Functions and Objects, pages 115–
147. MIT Press, 1993.

[19] Pedro Patinho and Salvador Abreu. ProLDAP - Api em
Prolog para Direct́orios LDAP. InIV Confer̂encia de Re-
des de Computadores. FCCN, November 2001. (in Por-
tuguese).

[20] Luis Quintano, Irene Rodrigues, and Salvador Abreu. Re-
lational information retrieval through natural lanaguage
analysis. InProceedings of INAP’01, Tokyo, Japan, Oc-
tober 2001. INAP.

[21] G. Wiederhold. Mediators in the Architecture of Future
Information System.IEEE Computer, 25(3), 1992.

[22] G. Wiederhold. Mediation to deal with heterogeneous
data sources. Lecture Notes in Computer Science,
1580:1–??, 1999.

[23] Guizhen Yang and Michael Kifer. FLORA: Implement-
ing an Efficient DOOD System Using a Tabling Logic En-
gine. In John W. Lloyd, Veŕonica Dahl, Ulrich Furbach,
Manfred Kerber, Kung-Kiu Lau, Catuscia Palamidessi,
Luı́s Moniz Pereira, Yehoshua Sagiv, and Peter J. Stuckey,
editors,Computational Logic - CL 2000, First Interna-
tional Conference, London, UK, 24-28 July, 2000, Pro-
ceedings, volume 1861 ofLecture Notes in Computer Sci-
ence, pages 1078–1093. Springer, 2000.

