
ISCO: A Practical Language for Logic-Based Construction

of Heterogeneous Information Systems

Salvador Abreu
spa@di.uevora.pt

Departamento de Informática

Universidade de Évora
PORTUGAL

October 3, 2001

Abstract

Universidade de Évora’s Integrated Information System
(SIIUE) aims at representing the entire universe of con-
cepts useful for the management and day-to-day opera-
tion of the Organization, as seen from the point of view
of several different classes of users. It relies on ISCO, a
logic programming language geared towards the devel-
opment and maintenance of organizational information
systems. ISCO is an evolution of our previous language
DL and is based on a Constraint Logic Programming
framework to define the schema, represent data, access
heterogeneous data sources and perform arbitrary com-
putations. This article presents the ISCO language and
illustrates with a few examples how it may be applied
to real-world situations stemming from diversified back-
grounds. We claim that this approach pays off from
a software project management point of view, and we
compare it to a few other such initiatives.

Keywords: Logic in Databases, Deductive Databases,
Knowledge Bases, Heterogenous Database Appli-
cation Development.

1 Introduction

The relationship between Logic Programming and
Databases has long been recognized as a very fruitful
area of research, witness for example [13, 15, 21]. Ac-
cessing large amounts of loosely related information is
one of the issues in data warehousing; some approaches
taken to tackle this problem are discussed in [7, 8, 14].
A general approach consists in interposing a media-
tor [27] between the user and the data sources. The me-
diator is often formalized and implemented in a variant
of a Logic Programming language such as Prolog. Many
issues involved in using Logic to integrate different in-
formation repositories or to support schema evolution
are discussed in the survey [12].

Universidade de Évora has developed and is currently
deploying a general-purpose information system [1, 2],
geared initially towards interacting with faculty mem-
bers and staff but which aims to gradually fulfill the
whole of the organization’s internal information needs.

The approach chosen for SIIUE [1] can be summed
up in the following design principles:

1. “Choose the right tool for each task”. This is a
very generic design principle, nevertheless it should
be observed whenever constructing a new program
development tool: if an adequate tool is already
available, an attempt should be made to use it.

2. Use a Logic Programming basis for defining struc-
ture, data and procedures (declaratively). The LP
dialect used for this purpose is called the Informa-
tion System COnstrution language (ISCO), which
is introduced in this article and is an evolution of
the language DL presented in [1].

3. Structure the information in an object-oriented,
single inheritance scheme. This approach allows
for a good re-use of information and is quite intu-
itive in specifying complex class hierarchies as is
inevitable in the case of the wide range of applica-
tion domains for SIIUE.

4. Specify integrity constraints in the Logic language.
Especially when associated with a form of Con-
straint Programming (such as constraints over fi-
nite domains), Logic Programming can be a very
effective tool to specify a problem declaratively.

5. Ensure that all application-level interaction with
the system is performed exclusively via the ISCO
interface. Among other benefits, this enables using
the ISCO language to specify access control mech-
anisms.

These choice has proven to be quite successful in solv-
ing a problem which is underspecified and of arguably

mailto:spa@di.uevora.pt

large scope, while having to endure severe restraints on
the human resources available for its design and imple-
mentation. As the application had to be pushed into
production state very early on, it is vital that the tools
– particularly the language – incorporate mechanisms
to support its evolution.

The development of a practical general-purpose tool
that is able to access several heterogeneous information
sources in a unified way, whilst uniformly representing
both data and methods seems a very promising line of
research: such is the challenge we are trying to meet in
designing and implementing ISCO.

An initially unexpected goal in the design of ISCO
and its environment, was to make it relatively easy for
novice Prolog programmers to start using the language
to construct useful applications.

Aside from the previously mentioned aspect of mak-
ing a more uniform process of the definition and ac-
cess to data, the tool introduced herein enables the
construction of even more sophisticated mechanisms to
deal with acknowledged software engineering issues oc-
curring in real-world applications such as schema evo-
lution [12] or access control : these and others may be
undertaken entirely within the ISCO framework, partly
by virtue of its building on top of Contextual Logic
Programming [22] (see Section 8). In the case of access
control, rules may be defined which may resort to the
full expressiveness of Logic programs thereby subsum-
ing in a major way the different situations that may
occur, related to this issue.

The purpose of this article is to describe the tool cen-
tral to the development of SIIUE: the ISCO language
and its implementation, as well as the options and ex-
perimental observations which led to some of the design
decisions that shaped the language. The architecture of
the SIIUE application is also introduced and compared
with other approaches to similar problems.

The article is structured as follows: after a brief in-
troducion, the architecture of ISCO applications such
as SIIUE is described in Section 2, in Section 3 the
ISCO language is introduced and its features are dis-
cussed. Integrity constraints in ISCO are presented in
Section 4, Section 5 deals with access control mecha-
nisms and how they may be used to implement poli-
cies, in Section 6 the ISCO front-ends and back-ends
are discussed, in Section 7 some comparisons are made
with other work and finally Section 8 draws some con-
clusions and points to ongoing or future work on this
software platform.

2 Architecture

The ISCO architecture is as follows: the primary in-
terface to ISCO applications being the Web, there is a
pool of web servers which run PHP [24] under Apache:
this is designated as the web layer. A PHP module

then allows the Apache processes to establish connec-
tions to Prolog processes, this layer is one of the ISCO
front-ends (see Section 6). The Prolog processes form
the ISCO layer proper and processes in this layer may,
in turn, access several data sources which are desig-
nated as the database layer and is made up of ISCO
back-ends.

The ISCO source program is compiled into the fol-
lowing forms:

1. A GNU Prolog executable with the native-code ex-
ecutable version of all ISCO predicates. This pro-
gram implements the ISCO layer in an application.

2. A document describing the class hierarchy, with
comments on every class’ usage, on the attributes
that are used as external keys, etc. This is es-
pecially useful in describing the actual system to
non-technical persons. The format of the docu-
mentation can be either of HTML or LATEX, the
latter being used to produce high-quality cross-
referenced PDF files.

The dialect of Prolog being used is planned to include
a modularity extension enhancement: we are presently
implementing a mechanism similar to that of Contex-
tual Logic Programming [22], as it provides an elegant
and effective framework in which to structure computa-
tions while retaining the simplicity of Prolog. In partic-
ular contextual definitions will allow for much cleaner
(when compared to regular Prolog) means of:

• Defining higher-level procedures.

• Promoting code re-use.

• Supporting schema evolution.

The Prolog implementation being used, GNU Pro-
log [11], as an evolution of CLP(FD) also provides the
constraint logic programming paradigm, which is a very
useful extension to the traditional Prolog programming
style in that it allows for problems to be solved by pro-
viding a-priori search-space pruning, through the con-
straint propagation mechanism. ISCO fully takes ad-
vantage of this feature.

3 ISCO: Language and Concepts

In an application, in order to describe classes and their
behavior, a modeling language could have been used.
Instead of resorting to an existing and evolving lan-
guage such as UML [3] and its independent constraint
specification language OCL [17], we opted for the design
and implementation of a language –ISCO– based on
well-understood concepts such as Constraint Logic Pro-
gramming, a first-order logic description of classes and
inheritance, class attributes, the values used to popu-
late the classes and algorithms. The basis for ISCO

being Prolog, some issues in software engineering had
to be addressed to make up for deficiencies of this lan-
guage, when applied to typical information-system do-
mains. The result is a revised logic programming lan-
guage more suited to the reality of common database
applications.

We feel that this approach provides more flexibility
and dependability than would be feasible with more
traditional tools, based on different formalisms.

An ISCO program is a regular Prolog program aug-
mented with a syntax for describing classes, ISCO pred-
icates and goals, sequences, integrity constraints and
access control rules.

3.1 ISCO Predicates (Classes)

An ISCO predicate is similar to a Prolog predicate.
However, its actual implementation may differ because
some predicates may rely upon an external storage
mechanism such as that provided by an RDBMS, which
provides persistency for facts and the ability to effi-
ciently process some queries. Syntactically, ISCO pred-
icates (classes) are different from regular predicates in
that:

• Arguments are explicitly named and typed.

• There may be constraints that specific arguments
are automatically required to satisfy.

• Classes are organized hierarchically, forming an in-
heritance relation so that whatever is true for a
member of a given class, will also be true for any
member of any of its subclasses.

• There’s a built-in notion of update for ISCO pred-
icates, which may take on several forms (see Sec-
tion 3.2).

The syntax for an ISCO program will be outlined with
a few examples. A program is a sequence of ISCO def-
initions, interspersed with regular Prolog code (either
clauses or directives).

An simple introductory example is given by the code
fragment of figure 1, in which relations from two exter-
nal databases (identified by the names emp and ac re-
spectively) are used to construct a third relation, called
person, which represents either students or employees.

This example illustrates a few features of the ISCO
system, namely:

• The ability to integrate different data sources (emp
could be stored in an Oracle database while ac
could use a PostgreSQL database).

• The definition of computed classes, which can be
seen as logic-based views.

Other features of ISCO will be described throughout
the remainder of this article.

external(emp) class employee.

id: sequence.

name: text.

external(ac) class student.

number: sequence.

name: text.

computed class person.

id.

name: text.

rule :- employee(id=EID, name=NAME), ID=e(EID).

rule :- student(number=SID, name=NAME), ID=s(SID).

Figure 1: Simple ISCO Example

3.1.1 Programs and Definitions

An ISCO program is a sequence of definitions, clauses
and directives. A definition may be one of:

• An external declaration which provides ISCO with
the necessary information to access an external
data source or sink, such as an ODBC-accessed
database or an LDAP directory.

• A class definition, which is further discussed in
Section 3.1.2.

• A data definition, in which specific values for a
class may be provided.

• A sequence definition, which can be used to imple-
ment global counters in an application, which is
described in Section 3.1.3.

Additionally, ISCO definitions may be interspersed
with regular Prolog clauses and directives which are in-
terpreted in the usual fashion, with the exception that
goals are subject to the processing mentioned in Sec-
tion 3.2.

3.1.2 Class definitions

A class definition is made up of three parts: the head,
the argument list and the body. A class is introduced by
its HEAD. It may be tagged with an optional sequence
of class attributes which characterizes the class being
defined. This is a sequence of comma-separated terms

Argument list: The argument list in a class declara-
tion is is made up of a (possibly empty) sequence of ar-
gument definitions. The body of a class may be empty,
in which case it will have no arguments (if it is a base
class) or the arguments already present in its superclass
(if it inherits from another class). An argument name is
a Prolog “identifier” atom which uniquely identifies the
argument being declared, within the scope of its class
and all of its superclasses.

Argument declarations: Each argument declara-
tion can come in one of two forms:

1. The first form is for regular arguments, which are
explicitly typed at the time they are declared.
Valid argument types are discussed in Section 3.4.

2. The second form is for arguments which are implic-
itly typed by constraining them to take values only
in the set of values specified by some argument in
another class. In this case the type is inferred to
be the same as that of the target argument.

The attributes of an argument are a possibly empty se-
quence of Prolog terms. These describe attributes spe-
cific to the argument which immediately precedes them
and generally represent constraints that the argument
in question must satisfy for a tuple to be acceptable for
the class.

Remainder of a class declaration: Classes may be
suffixed with attributes similar to those which can ap-
pear as left arguments to the class keyword. This fea-
ture is simply an alternate syntax and does not change
the semantics of a declaration.

Because their contents is fixed, static classes must
have their declaration followed by their tuples. This
form of declaration translates to Prolog “database”
predicates, in which clauses have an empty body.

computed classes are expected to contain one or more
rules, which come after the body of the class. These
rules are regular Prolog clauses, with the following dif-
ferences:

• The clause head is always “rule :-”, with no ar-
guments. There may be more than one rule for any
given class.

• The clause body may access the implicit head vari-
ables, which are named after the arguments in the
class definition, rewritten to be all in upper-case
in order to comply with the Prolog notation for
variables.

• ISCO predicate calls are subject to the preprocess-
ing discussed in 3.2, namely the non-positional ar-
gument syntax is automatically translated to reg-
ular Prolog calls.

3.1.3 Sequence declaration

One of the SQL features that is most useful in build-
ing applications is the sequence construction. ISCO
incorporates this concept with minimal impact on the
language structure, and in two forms:

1. Sequences may be declared in a syntactic form sim-
ilar to that of regular classes and accessed through

a pair of predicates which perform the sequence op-
erations (fetch or set next value and inquire about
the current value.)

The explicit sequence syntax is not recommended
and only exists in order to better support existing
databases.

2. The declaration of and accesses to a sequence may
be altogether omitted, by introducing a class argu-
ment of type serial, in which case a uniquely named
sequence is implicitly declared. In this case, the
class argument in question also gets a default value
which automatically increments the counter when
inserting values into the class.

For example, the directive at the end of Figure 2 could
first insert the tuple1 (id=1, name=’Universidade de
Évora’) into the organizational unit class, and then in-
sert the tuple (id=2, name=’Informatics Department’,
parent=1) into the same class. Since variable PID is

class entity.
id: serial. key.
name: text.

class organizational_unit: entity.
parent: entity.id.

:- organizational_unit :=
(id=PID, name = ’University of Évora’),

organizational_unit :=
(name = ’Informatics Department’,
parent=PID).

Figure 2: sequence/serial example

unbound at the time of the first subgoal, it will be-
come instantiated with the value which actually gets
used when inserting the tuple: the next value for the
automatic sequence associated with the id argument
specified in the entity class.

3.2 Goal syntax

A program is made up of class and predicate definitions.
Goals which occur in clause bodies can be categorized
as regular Prolog goals or ISCO goals. The latter are
intended to map to queries to the underlying database
or other back-end engine and may be classified in the
following categories:

• Simple queries. These correspond to interroga-
tions and conform to the syntax:

NAMErel (TUPLEquery)

1See Section 3.3 for a definition of “tuple”.

Where NAMErel is the name of an ISCO class.
TUPLEquery is a constrained query-tuple (see Sec-
tion 3.3 for details.) For example, the query:

20 #< P, P #< 30,
organizational_unit(parent=P, name=N)

This query is equivalent to the conjunction of con-
straints and goals:

20 #< P, P #< 30,
organizational_unit(_, N, P)

but does not require knowledge of the argument
positions.2 Its meaning could be “what are the
names of the organizational units whose parent
identifier lies in the interval 21..29?”

Simple queries behave like regular Prolog goals,
in that their arguments are either bound, free or
constrained on input, and become all-ground on
completion of the query. Simple queries are non-
deterministic and may therefore produce several
solutions upon backtracking.

Arguments may be suffixed with an ordering oper-
ator, which indicates whether and how the corre-
sponding argument is to be ordered when produc-
ing solutions.

• Insertion update queries. Queries which add
tuples to the relation use the syntax:

NAMErel := (TUPLEnew)

Arguments which are omitted from the tuple are
assigned the default value, should it exist. For ex-
ample:

:- organizational_unit :=
(name=’Computing Services’)

Insertion queries are deterministic and require all
arguments to be either ground or omitted. It is an
error to omit an argument for which there is no
default.

For arguments of evaluable types (see Sec-
tion 3.4.2), their value is evaluated before being
inserted.

• Modification update queries. These queries re-
place existing tuples with new values. The syntax
is:

NAMErel (TUPLEquery) := (TUPLEnew)

An update query includes two tuples, which are
interpreted respectively as the selection and the
modified values. For example:

2In fact, the non-positional query is compiled into the regular
Prolog goal syntax.

organizational_unit(
name=’Academic Services’) :=
(parent=12)

would cause the organizational unit whose
name is Academic Services to change its parent
unit identifier to 12.

Modification queries are non-deterministic and, as
opposed to an SQL update query, alter tuples one-
at-a-time. In order to change all tuples that satisfy
the selection constraints, the modification update
query must have its search space exhausted, ie. it
must be made to backtrack over all solutions. This
approach has a reading more consistent with the
usual Prolog operational semantics and allows for
certain useful programming dialects to be used.

Similarly to insertion update arguments, argu-
ments of evaluable types occurring in the modified
tuple are evaluated before being inserted.

• Removal queries. These queries remove existing
tuples from a relation and may be expressed with
the syntax:

NAMErel (TUPLEquery) :\

For example, the query:

ID #> 1000, entity(id=ID) :\

Removes all tuples for the entity class (and all its
subclasses) for which the id argument takes values
greater than 10000.

Removal queries are non-deterministic in the same
way as modification update queries: the tuples are
deleted one-at-a-time.

3.3 Tuples

An ISCO tuple is the collection of arguments passed to
an ISCO predicate used to form an ISCO goal. The
arguments to the query may come in two forms:

1. Prolog form: it must have exactly the same num-
ber of arguments as those in the class declaration.
This is also referred to as the positional argument
syntax.

2. Non-positional form: arguments are specified as
a sequence of terms of the form:

NAMEarg = TERM

Where NAMEarg is the name of an argument as
declared in the relation and TERM is the term as-
sociated with that argument.

There are two sorts of terms: constraint/query terms
and new value terms. The former is used to specify con-
straints on an argument or to retrieve its value, while
the latter is used exclusively to specify a new (ground)
value for an argument.

Constraint/query terms may be:

• Unbound, in which case the variable will become
bound to the resulting value, after the query is
performed.

• Ground, in which case the corresponding value will
be used as a constraint for the query.

• Not ground but subject to FD constraints, in which
case the constraints involving the term will be
compiled into a form acceptable to the back-end.
There are implementation-defined restrictions on
the kinds of constraints that may be used in this
case: in the present version, only constraints in-
volving the variable and a constant are permissi-
ble.

New value terms may be:

• Ground, in which case the term’s value (after be-
ing evaluated) will be used for the corresponding
argument.

• Unbound : the corresponding argument’s default
value will be used.

3.4 Data Types

Data types in ISCO can be classified in two categories:

1. Simple types that map to the back-end types.
These include integer numbers, floating point num-
bers, booleans, text,3, date/time4 and serial. For
the RDBMS back-ends, the serial type results in
a unique sequence being created. It is possible to
reference an existing serial class argument in order
to share the counter.

2. Compound types which constitute a re-use of class
definitions as a data type. At present, this is sim-
ply a convenience feature as there is no type ref-
erence operator: compound types may be thought
of simply as macros.

3.4.1 Example

In order to illustrate compound types and sequences, an
example may be helpful. Suppose we want to represent
a hierarchy of locations as well as a temperature value,
expressed in either K, C or F degrees; the following
declarations could be used:

3The “text” ISCO data type corresponds, in terms of RDBMS
back-ends, to all variations of the “character” type. Prolog-wise,
the values are atoms.

4The ISCO “date” type is able to represent dates and times
as a compound term and maps to the appropriate back-end type.

abstract class temperature.
value: float.
degrees: [k, c, f].

This definition for temperature could subsequently be
used in other places. One example could be:

abstract class location.
id: serial.
latitude: float.
longitude: float.

class city: location.
name: text.
minimum_temperature: temperature.
maximum_temperature: temperature.

This example highlights two features of ISCO: the use
of declared classes as data types and the automatic se-
quence creation. The id: serial. declaration states
that class location (and all its subclasses) have an ar-
gument called id which, when omitted in an insertion
operation (see Section 3.2), gets a default value which
results from incrementing the associated counter.

3.4.2 Evaluable types

For some types, and in the new-tuple situation, argu-
ment values are evaluated before being passed on to the
back-end: this is the situation with all numeric types.

For instance, the following modification update query
based on the previous examples illustrates the issue:

class classroom: location.
building: location.id.
capacity: int.

:- classroom(building=123, capacity=C) :=
(capacity=C+10).

Executing this query would increase the capacity of all
classrooms in building 123 by 10 seats.

4 Integrity Constraints

One aspect of ISCO that is essential to its use as a prac-
tical tool is the ability to specify flexible integrity con-
straints. The approach we took consists in associating
integrity constraints with class arguments or individual
classes as well as cater for global constraints, within the
scope of the entire application.

Global integrity constraints are specified as queries
that must either be always true or always false, and
which involve one or more ISCO predicates.

Informally, an integrity constraint is a goal which
is evaluated whenever any of its dependencies change:
this may come as a result of a change to a relation
occurring directly in the goal, or indirectly, for in-
stance if the constraint invokes a computed relation.

Integrity constraints look like clauses for the true/0
and false/0 predicates. For example the global in-
tegrity constraint:

false :-
setof(COURSE,

enrolled(_STUDENT, COURSE, _YEAR),
COURSES),

length(COURSES, L), L > 8.

states that no student may be enrolled in more than 8
courses in any given year.

This particular constraint would be evaluated when-
ever a change to the enrolled/3 relation5 occurs.
Should the constraint become true – meaning that it
had been violated – the update goal that triggered the
situation would be canceled. There is presently no pro-
vision for other forms of knowledge base consistency
maintenance, such as forms of database revisions.

5 Access Control

One of the objectives in defining and implementing a
language such as ISCO was to equalize the various back-
ends’ capabilities with respect to access controls: for
instance, PostgreSQL databases provide quite different
protection mechanisms from those supplied in Oracle
or, even more so, from non-RDBMS systems such as
LDAP. Some of these back-ends provide no access con-
trol mechanisms whatsoever. Having to implement an
access control policy for a large heterogeneous database
application may prove very hard if not for the availabil-
ity of a unifying higher-level specification mechanism.

Access controls mechanisms may assume many
forms, but essentially may be reduced to checking
whether an agent may perform an operation on a class
or class instance. This general approach enables the
definition of many different access control policies such
as simple Unix-like user classifications, or more so-
phisticated ones such as role-based access control as
in [19, 20]. Moreover, operations may be made to de-
pend on the data itself, rather than just the class.

Syntactically, access control rules appear in the epi-
logue of a class definition (see Section 3.1.2) and look
like Prolog clauses whose success or failure indicates the
permissibility of the operations the rule refers to.

As is the case for computed class rules, access control
rules may implicitly use the declared class arguments as
all-uppercase variants of the argument names. Another
parameter is required to implement access controls: the
performing agent, which has the special variable name
AGENT and may occur in the body of the access control
rule.

Access control rules come in two flavors: class and
instance rules. The former dictates what operations

5Or any dependency thereof, should it be a computed relation.

may be initiated on an ISCO predicate, while the lat-
ter acts as a filter on the data which determines whether
the intended operation is permissible for any given tu-
ple. These rules may be thought of as pre- and post-
conditions on the query, as they are checked, respec-
tively, before and after the data access is performed.

Access control rules behave hierachically, following
the inheritance relation of the class declarations: access
to a subclass is, by default, subject to the same rules
as its superclass.

6 Back-Ends and Front-Ends

Several services are amenable to being integrated into
the ISCO framework: these include not only relational
databases (directly or via ODBC) but also directory
services such as LDAP, as well as other network services
such as SNMP or DNS. At present the following stores
have been implemented:

• ODBC data sources, through the UnixODBC in-
terface.

• Direct PostgreSQL data sources. These may also
be accessed via ODBC, but a more efficient inter-
face was deemed useful.

• LDAP directories.

At the time of this writing, ISCO provides two different
front-ends:

• A “stand-alone” Prolog front-end which may be
used as a regular Prolog top-level augmented with
the ISCO language features.

• A PHP front-end which is used to construct web-
based applications. This interacts with the ISCO
process pool following a straightforward protocol,
which accounts for control and pure data (HTML)
connections. The PHP front-end includes a version
of the PiLLoW [6] library which may be used to
easily generate HTML or XML, from within the
ISCO application.

7 Related Work

On the applications side, another system whose devel-
opment was prompted by motivations similar to those
underlying SIIUE – and therefore the ISCO language –
is SIFEUP[9, 26], the general-purpose information sys-
tem built at Universidade do Porto’s Engineering Fac-
ulty. The tools used in SIFEUP are more traditional,
and do not rely on a Logic Programming core.

Several systems integrate a Logic Programming lan-
guage with Relational Databases, a prominent one be-
ing Infomaster [14] which caters to some of the issues
addressed by ISCO, and relies on an extended Logic

Programming engine, fitted with an abduction mech-
anism, to access heterogeneous databases. ISCO pro-
vides a different approach in that it targets other types
of information sources such as networked directory ser-
vices and its intended use is also distinct.

8 Conclusions and Future Work

SIIUE [1, 2] has already proven useful by permitting
a number of practical applications to be developed on
relatively short notice and with restricted human re-
sources. The combination of an RDBMS with a Logic
Programming core was confirmed to be useful in that
it allows for complex computations to be performed on
the information contained in the database.

While this article doesn’t present a finished system,
it does introduce a line of work which is currently be-
ing pursued at Universidade de Évora which builds
upon the experience gained while developing the SI-
IUE framework and its first applications. Various other
on-going research and development projects at Univer-
sidade de Évora are related to this work, these include:

• Natural language interface.

One of the most challenging issues when construct-
ing large database applications in general and deci-
sion support systems in particular, is the ability to
automatically generate useful queries from a spec-
ification created by a non-technical user. Even for
a technically savvy person, it is sometimes useful
to be able to query the system in natural language.

We are currently working towards an application
which will provide support for queries specified in a
simplified natural language (initially we will be tar-
geting Portuguese, obviously), with concepts and
vocabulary appropriate for the information con-
tained within SIIUE.

• Use of Contextual Logic Programming.

The case for Contextual Logic Programming [22, 5]
(CxLP for short) has already been made from sev-
eral points of view, see for example [4, 10, 16, 18].
It is our belief that using CxLP as a basic feature
in ISCO should bring about tangible benefits to
the language, from a practical application develop-
ment point of view. Furthermore, features such as
schema evolution may be expressed very naturally
in CxLP. Work towards a CxLP implementation
for GNU Prolog has started, and shall be reported
on.

• Visual Programming language for ISCO.

With grounds similar to those that motivate a nat-
ural language interface, to which we can add the
desire to ease the definition process for the con-
cepts which underlie SIIUE (eg. the class hierar-
chy), SIIUE may prove a fertile ground on which

to experiment with visual programming. Work is
presently underway to explore this line of research,
namely through a Java/Prolog interface which will,
among other things, provide the necessary graphi-
cal operations.

• Georeferenced Information.

If the description of the locations in a module of
an application such as SIIUE is combined with ge-
ographically referenced information, several of the
tasks performed by the system can benefit from
an enhanced user interface. This is especially true
if we add to that the Natural Language interface
already mentioned.

Acknowledgements

The authors would like to thank Lúıs Arriaga da
Cunha, Vitor Nogueira, Lúıs Quintano and Gonçalo
Marrafa for various discussions pertaining to the work
described herein. An acknowledgement is also due to
the administration of Universidade de Évora for its sup-
port in the development of the SIIUE project, in which
the present work is integrated.

References

[1] Salvador Pinto Abreu. A Logic-based Information Sys-
tem. In Pontelli and Santos-Costa [25]. 1, 2, 8

[2] Salvador Pinto Abreu and Joaquim Godinho. Logic-
based Network Configuration and Management. In
The 7th International Congress of European University
Information Systems, Berlin, March 2001. Humboldt
University. 1, 8

[3] Grady Booch, Jim Rumbaugh, and Ivar Jacobson. Uni-
fied Modeling Language User Guide. Addison Wesley,
December 1997. ISBN: 0-201-57168-4. 3

[4] M. Bugliesi. A declarative view of inheritance in logic
programming. In Krzysztof Apt, editor, Proceedings of
the Joint International Conference and Symposium on
Logic Programming, pages 113–127, Washington, USA,
1992. The MIT Press. 8

[5] Michele Bugliesi, Evelina Lamma, and Paola Mello.
Modularity in logic programming. The Journal of Logic
Programming, 19 & 20:443–502, May 1994. 8

[6] D. Cabeza, M. Hermenegildo, and S. Varma. The
PiLLoW/CIAO Library for INTERNET/WWW Pro-
gramming. In P. Tarau, A. Davison, K. De Bosschere,
and M. Hermenegildo, editors, Proceedings Of the 1st
Workshop on Logic Programming Tools for Internet
Applications, JICSLP-96, pages 43–62, 1996. 6

[7] Surajit Chaudhuri and Umeshwar Dayal. Data ware-
housing and olap for decision support (tutorial). In
Peckham [23], pages 507–508. 1

[8] Surajit Chaudhuri and Umeshwar Dayal. An overview
of data warehousing and olap technology. SIGMOD
Record, 26(1):65–74, 1997. 1

[9] Gabriel David and Ĺıgia Ribeiro. Impact of the Infor-
mation System on the Pedagogical Process. In The 7th

International Congress of European University Infor-
mation Systems, Berlin, March 2001. Humboldt Uni-
versity. 7

[10] E. Denti, A. Natali, A. Omicini, and F. Zanichelli.
Robot control systems as contextual logic programs. In
C. Beierle and L. Plümer, editors, Logic Programming:
Formal Methods and Practical Applications, Studies
in Computer Science and Artificial Intelligence, chap-
ter 12, pages 343–379. Elsevier, 1995. 8

[11] Daniel Diaz and Philippe Codognet. GNU Prolog: Be-
yond Compiling to C. In Pontelli and Santos-Costa
[25]. 2

[12] Yannis Dimopoulos and Antonis Kakas. Information
Integration and Computational Logic. CoRR arXiv:
cs. AI/ 0106025, June 2001. 1, 1

[13] H. Gallaire and J. Minker, editors. Logic and
Databases. Plenum, New York, 1978. 1

[14] Michael R. Genesereth, Arthur M. Keller, and
Oliver M. Duschka. Infomaster: An information in-
tegration system. In Peckham [23], pages 539–542. 1,
7

[15] J. Grant and J. Minker. The Impact of Logic Pro-
gramming on Databases. Communications of the ACM,
35(3):66–81, 1992. 1

[16] Jean-Marie Jacquet and Lúıs Monteiro. Communicat-
ing clauses: Towards synchronous communication in
contextual logic programming. In Krzysztof Apt, edi-
tor, Proceedings of the Joint International Conference
and Symposium on Logic Programming (JICSLP-92),
pages 98–112, Cambridge, November 9–13 1992. MIT
Press. 8

[17] Anneke Kleppe, Jos Warmer, and Steve Cook. Infor-
mal formality? the Object Constraint Language and its
application in the UML metamodel. In Jean Bézivin
and Pierre-Alain Muller, editors, The Unified Modeling
Language, UML’98 - Beyond the Notation. First In-
ternational Workshop, Mulhouse, France, June 1998,
pages 127–136, 1998. 3

[18] E. Lamma and P. Mello. Processing abductive reason-
ing via contextual logic programming. Lecture Notes
in Computer Science, 567:336–??, 1991. 8

[19] B. Lerner and A. Habermann. Beyond schema evolu-
tion to database reorganisation. ACM SIGPLAN No-
tices, 25(10):67–76, 1990. 5

[20] L. Liu. Maintaining Database consistency in the Pres-
ence of Schema Evolution. In Robert Meersman and
Leo Mark, editors, Proceedings of the Sixth IFIP TC-2
Working Conference on Data Semantics (DS-6), Stone
Mountain, Atlanta, May-June 1995. Chapman & Hall,
London. 5

[21] Jack Minker, editor. Foundations of Deductive
Databases and Logic Programming. Morgan Kaufmann,
Los Altos, 1988. 1

[22] Lúıs Monteiro and António Porto. A Language for
Contextual Logic Programming. In K.R. Apt, J.W.

de Bakker, and J.J.M.M. Rutten, editors, Logic Pro-
gramming Languages: Constraints, Functions and Ob-
jects, pages 115–147. MIT Press, 1993. 1, 2, 8

[23] Joan Peckham, editor. SIGMOD 1997, Proceedings
ACM SIGMOD International Conference on Manage-
ment of Data, May 13-15, 1997, Tucson, Arizona,
USA. ACM Press, 1997. 7, 14

[24] The PHP Hypertext Processor. http://www.php.net/.
2

[25] Enrico Pontelli and Vitor Santos-Costa, editors. 2nd

International Workshop on Practical Aspects of Declar-
ative Languages (PADL’2000), number 1753 in Lecture
Notes in Computer Science, Boston, MA, USA, Jan-
uary 2000. Springer-Verlag. 1, 11

[26] L. Ribeiro, G. David, A. Azevedo, and J.C. Marques
dos Santos. Developing an Information System at the
Engineering Faculty of Porto University. In Proceed-
ings of the European Coorperation in Higher Education
Information Systems – EUNIS97, Grenoble, France,
September 1997. 7

[27] G. Wiederhold. Mediation to deal with heterogeneous
data sources. Lecture Notes in Computer Science,
1580:1–??, 1999. 1

http://www.php.net/

	Introduction
	Architecture
	ISCO: The Language
	Predicate syntax
	Programs and Definitions
	Class definitions
	Argument list
	Argument declarations
	Remainder of a class declaration
	Sequence declaration

	Goal syntax
	Tuples
	Data Types
	Example
	Evaluable types

	Integrity Constraints
	Access Control
	Back-Ends and Front-Ends
	Related Work
	Conclusions and Future Work

