
A Logic-Based Information System

Salvador Pinto Abreu

Departamento de Informática, Universidade de Évora and
CENTRIA (FCT/UNL)

Portugal
spa@di.uevora.pt

Abstract. In this article we present the University of Evora’s Integrated
Information System (SIIUE), which is meant to model most of the in-
formation necessary for the management and day-to-day operation of an
institution such as a public University. SIIUE is centered around a logic-
based representation of all intervenients and processes, which is used to
generate the more efficient and specific representations for the actual use.
This includes extended SQL, PHP3 and Java code generation. SIIUE also
interacts with an etherogenous set of partial information systems, both
to supply and collect information.

Keywords: Information Systems, Logic Programming, Object-Relational Data-
bases, Deductive Databases, Web Interfaces.

1 Introduction

With the increasing pervasiveness of networked computing resources, people
come to expect that a growing number of services be available on-line. This
applies to all sorts of usages from prospective and actual students, researchers,
faculty and staff.

The existing information repositories at our university were very scattered,
hiding many inconsistencies and redundancies. These problems were exacerbated
because of the lack of network-awareness of these systems. This situation be-
comes painfully obvious when, for instance, faculty members are asked by sev-
eral different sectors of the administration for the same piece information, albeit
with slight variations. This particular situation was at the source of much insti-
tutional dis-functionality, as faculty members would frequently fail to produce
the information that was required of them, purporting that they had already
given it out.

From the decision-support point of view, the availability of a general-purpose
information repository is desirable, structured so that that complex queries can
be made pertaining to the whole system. The full benefits of the availability of
the information can only be reaped if it is integrated.

Having a Logic Programming representation for an information system goes
a long way in allowing for maximal flexibility in expressing concepts as well as in



2 Salvador Pinto Abreu

providing a natural specification language for complex queries, as the full power
of first-order logic may be employed.

It is our belief that, in an actual implementation, the benefits of Logic Pro-
gramming can indeed be made effective, by allowing incremental extensions to
be developed with relatively little work, when compared with other methods.

In section 2 we introduce the overall system architecture, of which some
components are further detailed in section 3. In section 4 some applications of
SIIUE are briefly described. In section 5 compares the approaches used in SIIUE
to others. In sections 6 and 7 we discuss our experience of actually using this
system in the day-to-day operation of our University and propose directions for
on-going and future development.

2 Architecture

The main goals for the development of SIIUE are:

1. To promote a declarative approach to the definition and manipulation of the
structure and data in the information system.
This need, together with the requirement that the system be easily proto-
typed, led to the use of a Prolog-based system both as a modeling language
and as the source for the generation of further components.

2. While allowing for multiple forms of access to the information, a single canon-
ical representation should be maintained for all items to be represented, in
order to ensure consistency.
An implication of this approach is that, while there may be several represen-
tations for some piece of information, each suited for one specific use, SIIUE
must provide mechanisms to ensure consistency and guarantee that every
change maps back to the canonical representation.

3. Provide means to represent both structured and unstructured information,
tying them up when appropriate.
The structured information component itself has two classes of information:
that which is essentially immutable (for instance the departmental structure
of the University) and the information that is subject to change, for instance
the students’ grades, the researchers’ publications or the registry of scientific
and cultural events.

We now proceed with a description of the main components of SIIUE, namely
the Logic Programming dialect DL in section 2.1, some features of the generated
SQL in section 3.2, the generated PHP3 code in section 3.3 and the Java code
in section 3.4.

2.1 The Logic Description Language DL

To describe the system’s classes, a modeling language can be used. Instead of
resorting to an existing modeling language such as UML [1], we decided to
implement a new such language, based on a first-order logic description of classes



A Logic-Based Information System 3

and inheritance, attributes and the values used to populate the classes. We feel
that this approach provides more flexibility at the meta-level than would be
feasible with other tools. Presently the only form of programming is textual but
there is on-going work geared towards developing a visual programming language
to satisfy the same design goals (see in section 6).

The approach chosen involves a stylized logic program where the relation
between the entities is described, in an object-oriented fashion. The entity tax-
onomy used for the information system are introduced as a type system with
inheritance.

For example, suppose we want to model the hierarchy described by figure 1.1

The (simplified) correspondig DL syntax could be that given in figure 2. As
can be gathered from this example, the DL syntax is fairly simple and can be
expressed as Prolog terms with a few operator definitions.

individuo
+nome: 
+bi: 

vinculo
+id: 

funcionario
+numero: 
+unidade: 

docente

aluno
+numero: 

Fig. 1. Sample hierarchy

From the logic description (DL) specification, several processings can be made
to generate different types of derived operating components:

1. An SQL file with all the instructions necessary to construct an object-
relational database which corresponds to the information described in the
DL source. This can map to several database backends, but is currently only
implemented for PostgreSQL [6] as it already provides the necessary con-
cepts, namely built-in inheritance. Future versions may interface to another
database such as Oracle 8, which also has object-relational features.

2. A set of PHP3 [5] class definitions, to be used for web page construction.
PHP3 (PHP Hypertext Processor) is an embedded scripting language for
web servers.

1 This example is a fragment of the hierarchy actually used in SIIUE.



4 Salvador Pinto Abreu

class individuo: entidade.

field nome. attr unique.

field bi.

class vinculo.

abstract.

field id: int. domain individuo.id.

class funcionario: vinculo.

field numero: int.

field unidade. domain unidade.sigla.

class docente: funcionario.

field carreira.

class aluno: vinculo.

field numero: int. attr unique.

Fig. 2. DL syntax for the hierarchy from figure 1

3. A Java package, basically a collection of Java classes which mirror the DL
hierarchy. These are fitted with constructors which interface to the SQL
database previously generated using JDBC. The goal is to simplify the con-
struction of applications which make use of the information system.

4. A document describing the class hierarchy, with comments on every class’
usage, on the attributes that are used as external keys, etc. This is especially
useful in describing the actual system to non-technical persons.

The derived components are detailed in sections 3.2 through 3.4, with particular
emphasis on the “programming components”.

2.2 Organization

In order to meet its stated goals, the design for SIIUE makes the following
assumptions:

1. The authoritative representation is the Logic (DL) one.
2. Updates to data (instances of classes) are performed through any interface

to the (object-)relational database.
3. Changes in the schema can only be performed at the DL level, possibly

through the use of more sophisticated tools such as structural editors.

3 Implementation

This section describes some of the issues involved in implementing SIIUE. These
have mostly to do with translating one representation into another.



A Logic-Based Information System 5

Section 3.5 addresses the issue of ensuring the global coherence of all repre-
sentations and section 3.7 deals with the aspect of coordinating the information
held within SIIUE with external representations thereof, contained in other,
more specialized, systems which do not directly rely on SIIUE’s information.

3.1 Preprocessing

All the derived components are generated from the DL representation with a
translator written in Prolog. This approach provides a large degree of freedom
at a stage where the exact syntax and semantics of DL are still in a state of flux.

The logic description language is preprocessed into several operational forms,
targeted at different uses:

– An SQL database. This will subsequently be used in the actual applications
to perform the work of accessing the information.

– Components for other programming languages. These will mimic some of the
information described in DL, but in a form more suitable for specific usages,
namely the construction of WWW interfaces. This issue is further discussed
in sections 3.3 through 3.4.

This process is presently carried out statically: the DL source is loaded into a
Prolog processor which then runs several different queries which will produce
the different derived programs.

3.2 SQL Generation

The classes introduced in section 2.1 are preprocessed into some dialect of SQL.
In the implemented prototype, we’re using PostgreSQL because of its object-
oriented features, basically inheritance.

PostgreSQL, as of version 6.4, has some restrictions as to the subset of
SQL92 it implements, in particular it does not allow foreign keys. This and
a few other restrictions can be worked around by generating the appropriate
domain-checking functions and constraints.2

The approach of using a logic description pays off especially well in the sit-
uation of having to generate SQL because:

– Classes may be directly translated to tables with inheritance in an object-
relational database such as PostgreSQL but, should we opt for a traditional
relational database without inheritance, the accessibility of the Prolog de-
scription of the hierarchy can be used to produce a flattened version of the
tables, possibly using views to (artificially) simulate superclasses.

2 This approach could be kept even in the situation where the database can provide
foreign keys, because it allows for a very fine-grained control over what is actually
performed as an SQL constraint.



6 Salvador Pinto Abreu

– Issues such as dependencies between otherwise unrelated classes (eg. by
means of integrity constraints) which may require a given class to be de-
fined before it is referenced, may be dealt with by performing a topological
sort on the references relation between attributes of different classes. This
approach is particularly simple to implement in a language such as Prolog.
A class A (which will map to an SQL table) is said to depend on another
class B if either one of the following conditions is true:
• A has an attribute whose domain is in the range of an attribute from

any superclass of B, provided A is itself not a subclass of B.
• A is a subclass of B.

This information can then be used to initialize the database but is also
important when it is necessary to rebuild it partially or entirely.

3.3 PHP Code Generation

Universidade de Évora adopted PHP3 [5] as a scripting language for its dynamic
web pages. PHP is used extensively to construct server-side applications with
access to the data and structures available through the information system.

As the structure of the information system is described as a class hierarchy
which can be altered, it is important to keep this form of access synchronized
with the definitions actually in effect.

From each class declared in DL, a corresponding PHP3 class is created which
follows the DL inheritance structure, provides each attribute as an instance
variable and defines a few automatically configured methods, which include:

– A constructor method, which can optionally behave as a query to the un-
derlying database in which the query result is used to initialize the class
instance. Access to the database is performed using the corresponding PHP
library, for PostgreSQL it’s the pg * functions.
The constructor method may be directed to perform the database query over
the set of all subclasses of the given class or to stick to the instances of the
class itself only.
The queries performed are restricted to simple ones, in which all the at-
tributes of the table are fetched, allowing for an optional where clause.3

– Traversal methods (more() and next()), which provide an interator con-
struct for use in PHP scripts, similar to a cursor. These are useful for instance
to produce listings or selection lists.

– Update methods (update() and insert()). These map to their SQL coun-
terparts and are used to alter the data in the underlying database.

The generated PHP code relies upon the availability of database access func-
tions. In the prototype implementation, the database is PostgreSQL but PHP3
provides access functions which allow for other database engines to be used.
3 In fact it’s a suffix of the SQL select query which may be specified, thereby allowing

slightly more complex queries to be constructed.



A Logic-Based Information System 7

Another category of PHP code that is generated are components for the
construction of user interfaces. Initially this includes methods which generate a
list-box (or a pop-up menu or two list-boxes) for selecting one or more items
from a set, defined by the instances of a given class.

3.4 Java Code Generation

Generating Java classes is not much different from generating PHP classes. The
advantage of these is to allow for more client-side work to be performed, thereby
relieving the server system from the duty of having to parse long declarations
for each page, as happens with the PHP code.

The access to the database component is acheived through JDBC.
Besides creating a Java class for each DL class, the java code base includes

classes which use the Swing [3] toolkit in order to create interface components
which can be used throughout a wide range of different applications.

With the perspective of having a Java constraint solver, 4 it will be increas-
ingly interesting to utilize the Java interfaces as these will be endowed with a
powerful computational mechanism, akin to what can be done in DL.

3.5 Synchronisation

The issue of maintaining the information in its various representations (the
database as well as the Logic Programming versions) coherent has to be ad-
dressed carefully because the information system (both its schema and the data
therein) can be updated frequently.

The main form of updates is to the database, with incidence on a limited set
of relations. Each update made must be reflected on the logic representation.
This goal can be acheived in one of two ways:

1. An “off-line” method, where the database is periodically queried for changes
and these are translated by an external program into logic form, to be sub-
sequently integrated into the logic representation.

2. An “on-line” method which requires a direct SQL/Prolog interface.

In either case, and considering that the updates are performed exclusively on the
database5 it is reasonable to have the updates at the logic level initiated from
updates and insertions and deletions at the database level.

The relations which can be updated are explicitly marked as such at the DL
level. For these, the SIIUE engine will generate SQL statements which ensure
that:

– The tables may be updated.
4 We are presently developing such a system.
5 The logic representation is presently used to rebuild the database and construct the

operational interfaces described in sections 3.3 through 3.4. Changes at this level are
not tought of as “updates” because they may be arbitrary.



8 Salvador Pinto Abreu

– Changes get propagated back to the DL level.

With PostgreSQL this can be implemented via the trigger mechanism, in which
auxiliary tables can be used to indicate what changes were made. These can
then be read back to DL in order to guarantee that both representations are
consistent with each other.

With the on-line approach, the trigger-based architecture remains applicable
but the method used to convey the changes to the Logic Programming repre-
sentation can be different: the DL system is made to appear as a procedural
language in the PostgreSQL database, thereby allowing us to specify actions at
the Prolog level from the database specification.

3.6 Authentication

Given the diverse nature of the information contained within SIIUE, it is crucial
to ensure that it is correct. To enable this we constructed an authorization system
which:

– Encodes within SIIUE itself the access rights to mutable data. The entities
that can change information are themselves represented as data.

– Defines validation paths which are required in order for a change to a relation
to become effective. This models the workflow process insofar as certain types
of information may be provided by one entity, but require an approval by
other entities before becoming effective.

At present, the entire authentication mechanism lies within SIIUE. We plan on
integrating this with the Kerberos servers within the University.

3.7 Interface to Other Systems

SIIUE is not planned to be a stand-alone information system. It must allow for
the interaction with legacy applications which will act as both producers and
consumers of information.

This goal is presently satisfied through ad-hoc solutions, programs which
import the definitions from SIIUE and interact with the external programs.

4 Applications

The goal of SIIUE is to provide a framework in which several applications can
be developed. The main characteristic of the SIIUE-based applications is that
the data they rely on is permanently kept up-to-date.

In this section we briefly describe some of the applications presently in use
or in development.



A Logic-Based Information System 9

4.1 The Academic Services System

The Academic Services at Universidade de Évora provide access to academic
information and records for the whole university, namely for students and faculty.
The present system was developed before SIIUE came into being, but has been
reworked to integrate into SIIUE: the technology used is essentially compatible
(relational database).

At present, the Academic Services application feeds SIIUE with information
related to student performance as well as the academic calendar. It relies on
SIIUE to provide it with the present constitution of the University, in terms of
its institutional structure (eg. departments) and its personnel, especially faculty.

4.2 The ECTS Guides

The European Credit Transfer System (ECTS) establishes rules whereby the
academic performance of undergraduate students in any adhering University may
be assessed in any other such academic institution. The requirements are that
the guides provide information — in at least two languages — to a prospective
student on the courses offered for any undergraduate program.

The mechanisms that were provided to meet the ECTS guides requirements
are such that the information on specific courses, provided by the faculty mem-
bers, may be used for other purposes. Such is the case with the on-line course
descriptions presented on the University’s web site. This issue is further exem-
plified in section 4.5.

4.3 Institutional Evaluation

Portuguese public Universities are currently undergoing an external assessment
process, which requires that much information (esp. academic) be available in
a timely and flexible manner. This process focusses on specific graduation pro-
grams, which usually share many courses with other programs, and requires that
all manner of statistics be gathered from the academic data provided in SIIUE.

The course and staff descriptions used for the evaluation is shared with
the ECTS guides, thereby achieving one of the stated goals of SIIUE, ie. non-
redundancy at the user level.

4.4 Computing Services User and System Support

One of the most obvious users of SIIUE are the University’s computing services,
who make use of the information contained within SIIUE to manage accounts for
faculty, staff and students. This circumvents the previous requirement imposed
upon users that they fill in a (paper) form with their personal information.
This information is then used to automate the process of creating user profiles,
covering aspects such as e-mail, personal web pages, remote access, etc.

A branch in SIIUE’s type hierarchy which is currently being developed deals
with all the information pertaining to hardware and networks: the goal is to be



10 Salvador Pinto Abreu

able to describe the University’s network and produce the various configuration
files needed for DNS, routing configurations and SNMP, among others. This
work is currently well under way and will be the subject of another article.

It is also in our plans to use SIIUE to describe the University’s network and
maintain information on installed hardware and software. SIIUE will also be
used in the next version of the Computing Services’ helpdesk system.

4.5 The University’s Web Site

One of the driving goals was to be able to provide up-to-date information on the
University’s web site, whilst avoiding the duplication of such efforts. The new
web site relies heavily upon the information contained within SIIUE to refer
to such concepts as Departments, faculty and staff, courses and their contents,
graduation programs, research activities, etc.

From the SIIUE perspective, the web site (http://www.uevora.pt/) is a
consumer-only application. It draws on the information provided by SIIUE to
present a highly-connected set of pages, where just about every mention of a
term that has a representation within SIIUE is also a hyperlink.

5 Related Work

The University of Porto’s Faculty of Engineering has developed a similar infor-
mation system [7]. However, their approach seems to be restricted to academic
and personnel information, lacking the open nature of SIIUE.

At Universidade Nova de Lisboa, a system sharing some aspects with SIIUE is
currently being developed: both SIIUE and UNL’s system rely on a logic-based
description of the type hierarchies involved and generate SQL for the actual
application.

6 Future Directions

To promote SIIUE’s development and general usefulness, we plan on extending
its functionality along the following lines:

– Wider coverage of issues and concepts in an organization such as Universi-
dade de Évora.
The purpose is to extend the hierarchy described by SIIUE in order to cover
concepts such as spaces (building, classrooms, etc.), timetables, research ac-
tivities, internal document circulation, inventory-related information, net-
work topology information, etc.
This kind of development is continuously being made, as the system’s use
reaches further into the organization’s structures.



A Logic-Based Information System 11

– Further refinements of DL language.
DL is presently very incomplete insofar as its ability to describe properties of
the data model are concerned. We plan on revamping the DL language itself,
so as to include abstract types, some form of modular design mechanism
(such as contexts [4]).

– Implementation of the on-line DL.
The present implementation of SIIUE ties the DL and SQL representations
off-line only, with the updates performed on the database being propagated
to the DL representation in batch and at periodic intervals. It is our goal
to ensure that the synchronization is performed on-line, as described in sec-
tion 3.5.
To carry this out, we plan on using a lightweight implementation of Prolog
such as GNU-Prolog [2], as the basis for our extensions to PostgreSQL.
Ironically, Prolog will appear as a procedural language from the SQL point
of view.

– Mapping of some SQL types as Finite Domains.
The point is to be able to rely on a CLP system’s ability to compute solutions
for CSPs. This is highly desirable in an environment such as ours, where
many problems may be formulated as CSPs; class schedules are only one
such example.

– Higher level interface components on the generated (Java and PHP) code.
The components presently being generated are fairly low-level; further ex-
perience with building applications with SIIUE suggests that more complex
components may be constructed.

– Natural language interface.
One of the most challenging issues when constructing database applications
is the ability to automatically generate useful queries from a specification
created by a non-technical user.
It is within our plans to provide support for queries specified in a simplified
natural language (we will be targeting Portuguese, obviously), with concepts
and vocabulary appropriate for the information contained within SIIUE.

– Visual Programming language to edit the class hierarchy and other aspects
of SIIUE.
With grounds similar to those that motivate a natural language interface, to
which we can add the desire to ease the definition process for the concepts
which underlie SIIUE (ie. the class hierarchy), SIIUE may prove a fertile
ground on which to experiment with visual programming. Work is presently
underway to explore this line of research.

7 Conclusions

SIIUE is actively being used at Universidade de Évora; its flexibility has al-
lowed us to address a variety of problems on relatively short notice. Even with
a restricted subset of its applications, SIIUE has already gathered enough mo-
mentum to prove useful as exhibited by, for instance, the reuse of information



12 Salvador Pinto Abreu

between the ECTS guides (see section 4.2) and the Institutional Evaluation (see
section 4.3).

When compared to a previous experience we had using the same lower-level
tools (PHP3 and PostgreSQL) this approach has proved itself able to cope with
the many incremental changes which are bound to happen when dealing with
this kind of problem. In particular, changes to the database which can be quite
chaotic when directly using the DBMS, tend to be much more controlled if they
have to be performed at the DL level. This contrasts clearly with the previous
experience we had when designing and implementing a web-based system for the
University’s Academic Services [8].

It is noteworthy that, so far, only two people have been involved part-time
in the design and implementation of all of SIIUE, one of these dealt exclusively
with user interface issues. The entire process of design and implementation has
nevertheless led to a production release in about a year, even with such lim-
ited human resources. This would certainly not have been feasible if not for
the expressiveness of the logic programming tools, as witness the related aca-
demic services system which required two full-time programmers to develop and
maintain during a similar time period.

The system encompasses about 2500 lines of Prolog code, these concern the
preprocessing, PHP, SQL and documentation generation as well as the DL source
for SIIUE’s classes. There are about 100 different classes in the present state of
the implementation, these deal with only a fraction of the intended coverage of
SIIUE (see the section on future work). The generated SQL schema amounts to
approximately 2000 lines of PostgreSQL, including table definitions and various
sorts of integrity constraint support functions. The generated PHP support code
amounts to about 6000 lines, this is slightly larger than the size of the whole of
the hand-written interface code for about 10 different applications, which is also
in PHP3.

The issue that, so far, has proved the most troublesome relates to making
changes in the schema which apply to information already in the database. The
situation seems unavoidable in the incremental development of a system such as
this, because the specification is not fully known or even understood by anyone
beforehand. The issue has been dealt with manually (painfully so) but we are
working towards automating the process: the ability to specify rewrite rules
relating different versions of the schema will hopefully highlight our option of
using a higher-level description tool such as DL.

As a concluding remark, it must be said that in a traditional university with
little CS tradition such as ours, the implementation of a system such as SIIUE
has led to a moderate culture-shock situation. Most users of the system (Faculty
and Staff, but mostly the former as they constitute a more vocal group) initially
failed to grasp the benefits of the electronic fulfillment of their academic duties,
and took this requirement as yet another request to provide the information
they already had supplied in the recent past. As of this writing and as the
second “production” year begins, these misunderstandings are starting to clear



A Logic-Based Information System 13

up as much information which is common from one year to the next doesn’t have
to be provided anew.

8 Acknowledgements

The author would like to thank Luis Quintano (Universidade de Évora Com-
puting Services) for his cooperation in the construction of the user interfaces for
SIIUE. Universidade de Évora’s administration is also acknowledged for the sup-
port they provided during the early stages of the project’s deployment, without
which the work described in this article would have remained a purely academic
exercise.

References

1. Grady Booch, Jim Rumbaugh, and Ivar Jacobson. Unified Modeling Language
User Guide. Addison Wesley, December 1997. ISBN: 0-201-57168-4. See URL
http://www.awl.com/cp/uml/uml.html.

2. Daniel Diaz. GNU prolog. URL http://pauillac.inria.fr/d̃iaz/gnu-prolog/, 1999.
3. Sun Microsystems. The Java Foundation Classes. URL

http://java.sun.com/products/jfc/tsc/index.html.
4. Lúıs Monteiro and António Porto. A Language for Contextual Logic Programming.

In K.R. Apt, J.W. de Bakker, and J.J.M.M. Rutten, editors, Logic Programming
Languages: Constraints, Functions and Objects, pages 115–147. MIT Press, 1993.

5. PHP hypertext processor. URL http://www.php.net/.
6. PostgreSQL www site. URL http://www.postgresql.org/.
7. Ĺıgia Maria Ribeiro, Gabriel David, Ana Azevedo, and José Marques dos Santos.

Developing an information system at the engineering faculty of porto university. In
Proceedings of the EUNIS’97 – European Cooperation in Higher Education Infor-
mation Systems, 1997.

8. Ana Graça Silva and Mário Filipe. O Sistema Informático dos Serviços Académicos
da Universidade de Évora. Technical Report, Universidade de Évora, 1998. (in
Portuguese).


	A Logic-Based Information System

