
Towards Temporal Reasoning in Constraint
Contextual Logic Programming

Vitor Beires Nogueira1, Salvador Abreu1, and Gabriel David2

1 Departamento de Informática, Universidade de Évora, Portugal
{vbn,spa}@di.uevora.pt

2 Departamento de Engenharia Electrotécnica e de Computadores, Universidade do
Porto, Portugal
gtd@fe.up.pt

Abstract There has been an increased interest in temporal reasoning
from areas such as database systems and AI. In this paper we propose
a temporal reasoning framework that bridges the paradigms of Con-
straint Logic Programming (CLP) and Contextual Logic Programming
(CxLP). CLP is used to build a rather simple, yet powerful temporal
algebra with points, intervals, durations and relations between these el-
ements. To associate the time given by the algebraic system above and
events or propositions, we build a framework that makes use of recent
developments in CxLP and propose the notion of temporal contexts.

1 Introduction

Temporal representation and reasoning is a central part of many Artificial In-
telligence areas such as planning, scheduling and natural language understand-
ing. Also in the database community, the relevance of the temporal issue is
widely acknowledged. Example of such relevance is the second–generation tem-
poral query language TSQL2 [1]. Constraint–based frameworks are widely used
to perform temporal reasoning [2] and there is even a temporal specialisation of
the Constraint Satisfaction Problems. Constraint Logic Programming(CLP) in
particular, has proven to be very suitable for such kind of reasoning [3,4].

The benefits of Logic Programming are well known: the rapid prototyping
ability and the relative simplicity of program development and maintenance,
just to name a few. Nevertheless, the Prolog language suffers from a serious
scalability issue when addressing actual applications. There have been several
efforts over the years to overcome this limitation. An interesting solution to this
problem is that of Contextual Logic Programming (CxLP), a model introduced
in the late 1980’s [5]. Informally, the main point of CxLP is that programs are
structured as sets of predicates, units, that can be dynamically combined in an
execution attribute called a context. Recent developments [6] extended CxLP to
attach arguments to units: these serve the dual purpose of acting as “unit-global”
variables and as state placeholders in actual contexts.

In this article, we joined CLP and CxLP to build a temporal reasoning frame-
work.

This paper is organised as follows. In Sects. 2 and 3 we briefly discuss some
temporal constraint–based frameworks and the Contextual Logic Programming
paradigm, respectively. Section 4 presents the formalisation and implementa-
tion of the temporal algebra adopted in our framework. The temporal reasoning
system is detailed in Sect. 5. Conclusions and proposals for future work follow.

2 Modular Logic Programming

A modular extension to logic programming has been the subject of research dur-
ing the last decades. Two different approaches have guided the research: one deals
with what is called programming–in–the–large and another with programming–
in–the–small. The former began with work by O’Keefe [7], and considers logic
programs as elements of an algebra, whose operators are the operators for com-
posing programs. Moreover, there was no need to extend the language of Horn
clauses, since composition was a meta–linguistic mechanism. The programming–
in–the–small approach is based on a work of Miller [8], and extends the Horn
language with logic connectives for building and composing modules.

For a comprehensive reading related to both approaches and their comparison
see for instance [9]. In the next subsection we shall present a brief overview of
Contextual Logic Programming, a language that fits in the latter approach and
is the basis for our temporal framework.

2.1 Overview of CxLP

Contextual Logic Programming [5] is a simple and powerful language that ex-
tends logic programming with mechanisms for modularisation.

In CxLP a finite set of Horn clauses with a given name is designated by unit.
Recent work [6] presented a revised specification of CxLP, together with a new
implementation for it, GNU Prolog/CX. Using the syntax of this implemen-
tation, consider a unit named teacher to represent some basic facts about the
teachers of an University:

Example 1 (Unit Teacher).

:-unit(teacher).

teacher(john, computerScience, phd).
teacher(bill, computerScience, msc).

name(Name):-teacher(Name, _, _).
department(Dep):-teacher(_, Dep, _).
degree(Deg):-teacher(_, _, Deg).

The only difference from a regular logic program is the first line that declares
the unit name.

Consider also another unit to represent information about classes:

Example 2 (Unit Class).

:-unit(class).

class(ai, 6, 4).
class(logic, 6, 3.5).

name(Name):- class(Name, _, _).
ects(Ects):- class(_, Ects, _).
hours(Hours):- class(_, _, Hours).

A set of units is designated by a contextual logic program. With the units
above we can build a program P = {teacher, class}.

Given a CxLP program, we can combine its units into sequences, leading
to the notion of context. To build such sequences there is a special predicate
u :> G that extends the current context with unit u and resolves goal G in the
new context. For example, the goal "?- teacher :> class :> degree(D)."
starts by extending the initially empty ([]) context with unit teacher, obtaining
context [teacher]. This context is extended with unit class obtaining the
context [class teacher], and it is in this last context that goal degree(D) is
derived.

To derive an atomic goal G in a context u1u2 . . . un a search for the smallest
1 ≤ i ≤ n, such that G can be derived with a clause of ui, is made. The derivation
of the body of that clause is considered in the reduced context ui . . . un. In the
example above a search is made for the first unit in the context [class teacher]
where the goal degree(D) can be derived (unit teacher since unit class has no
clauses for degree/1). Moreover, the body of the clause (teacher(_, _, Deg))
is derived in the reduced context [teacher], and we obtain through backtracking
phd and msc.

Units with Arguments. In [6] there is claim that units arguments are an es-
sential addition to this programming model. A unit argument can be interpreted
as a sort of ”unit global” variable, i.e., which is shared by all clauses defined in
the unit. This way, unit arguments help solving the annoying proliferation of
predicate arguments whenever a global structure is to be passed around, but
also give the context a more transparent form, allowing to be explicitly manip-
ulated in the course of a program’s regular computation.

As an illustration, for the unit teacher above we could have:

Example 3 (Unit teacher with arguments).

:-unit(teacher(NAME, DEPARTMENT, DEGREE))

name(NAME).
department(DEPARTMENT).
degree(DEGREE).

teacher(john, computerScience, phd).
teacher(bill, computerScience, msc).

item:- teacher(NAME, DEPARTMENT, DEGREE).

In this modified version, we have three unit arguments: NAME, DEPARTMENT
and DEGREE. Facts for teacher/3 remain equal, but predicates name/1, department/1
and degree/1 are simplified (they just access the corresponding arguments). A
new predicate, item/0, that instantiates all the unit arguments using facts from
the database, is added.

As mentioned above, units arguments can also be used to give contexts a
more transparent form. For instance, to obtain Bill’s department we can in-
voke the goal "?- teacher(bill, D, _) :> item." and variable D would be
instantiated with computerScience.

3 Temporal Constraint Formalism

Constraint–based frameworks are widely used to perform temporal reasoning.
There is even a temporal specialisation of the Constraint Satisfaction Problems 3,
where variables represent time and constraints stand for sets of allowed temporal
relations between the variables. Different types of variables such as time points,
time intervals or durations define different temporal constraints frameworks.

In the following subsections we are going to summarise the most relevant
aspects of the frameworks that inspired our proposal (for a general overview see
for instance [2]).

3.1 Point Algebra

The Point Algebra was introduced by Vilain and Kautz [10]. In their proposal,
the domain elements are the temporal points and define the three basic relations
that can hold between temporal points, i.e., before, equal and after. Moreover, the
Point Algebra defines two operations between point–point relations: composition
and intersection.

3.2 Interval Algebra

The Interval Algebra was proposed by James F. Allen [11]. In his work, domain
elements are temporal intervals, and constraints are built using the thirteen
basic relations between intervals: before, after, meets, met by, equal, overlaps,
overlapped by, during, contained by, starts, started by, finishes, finished by.

3 A Constraint Satisfaction Problem is basically a tuple < V, D, C >, where V is the
set of variables, D their domains and C the set of constraints to be satisfied.

4 Temporal Algebra

4.1 Formalisation

In this section we formalise the temporal algebra that is the basis of our frame-
work. On one hand, we wanted our algebra to be capable of dealing with a large
spectrum of temporal problems (common database applications, circuit analysis,
etc.), and on the other hand, to be simple and with an efficient implementation.

Temporal Systems. With the goals above in mind, we defined a temporal
system to be just a Cartesian product of finite subsets of ZZ∗ 4, i.e.,

Definition 1 (Temporal System). TS is a temporal system ⇔
∃ k1, . . . , kn ∈ IN ∃ TU1, . . . , TUn ⊂ ZZ∗ : TS = TU1× . . .×TUn and |TUi| =

ki, ∀i, 1 ≤ i ≤ n .

To be more intuitive and comply with the standard for dates and time [12],
in the Definition 1 we assume that TUj stands for a greater temporal unit than
TUj+1, ∀j, 1 ≤ j ≤ n− 1.

Example 4 (24–Hour). The 24–Hour timekeeping system can be represented by
24–Hour = Hour×Minute×Second, where Hour = {0, . . . , 23} and Minute =
Second = {0, . . . , 59}.

Example 5 (Gregorian Calendar). The commonly used Gregorian calendar can
be seen as Gregorian = Y ear × Month × Day, where Day = {1, . . . , 31},
Month = {1, . . . , 12} and, assuming the standard four digit notation of year,
Y ear = {0, . . . , 9999} 5.

However, not all elements of the Cartesian product above are valid dates:
(2003,6,31) is an example of such. Therefore, a temporal system can have a set
of constraints that a tuple must satisfy in order to be a valid element of the
temporal system. As it should be clear, these constraints are defined in the finite
domain. We leave the mathematical formalisation of this constraint domain for
the interested reader [13] and present an illustrative example of these constraints
for the case of the Gregorian calendar:

Example 5 (cont.) A tuple (y, m, d) ∈ Gregorian is valid if it satisfies the fol-
lowing constraints:

(m = 4 ∨m = 6 ∨m = 9 ∨m = 11) ⇒ d ≤ 30 ∧
(¬(y\400 = 0 ∨ (y\4 = 0 ∧ y\100 > 0))) ⇒ max feb = 28 ∧
max feb ∈ [28, 29] ∧m = 2 ⇒ d ≤ max feb.

Of course that the Gregorian calendar and the 24–Hour timekeeping system can
be trivially concatenated into a larger one, that expresses both date and time.
4 The nonnegative integers 0, 1, 2,
5 For clarity reasons, we simplified the Gregorian calendar, allowing not only year 0

but also to represent dates after October 5, 1582.

Time Points. It is obvious that not all the applications need the full granular-
ity/precision available in the temporal system. For instance, an application that
deals with class schedule information just needs minutes precision, whereas in
a stock exchange application the seconds precision might be crucial. Therefore,
we decided that the basic elements of our algebra be tuples of varying size, that
satisfy the constraints of the temporal system:

Definition 2 (Time Points). Given a temporal system TS = TU1×. . .×TUn,
a tuple x = (x1, . . . , xi) ∈ TU1 × . . . TUi is a time point with granularity i ⇔ x
is consistent with the constraints of TS.

Moreover, if we don’t specify the time point granularity, the maximum gran-
ularity of the temporal system is assumed. With the temporal system of Ex-
ample 5, we represent the year 2004 with the tuple (2004) and for the ”2nd of
January of 2003” we use (2003, 1, 2).

Durations. To add the concept of duration to the temporal system presented,
no changes have to be done, since our time points can be considered as durations.
For instance, the tuple (2003, 1, 1) could be interpreted as 2003 years, 1 month
and 1 day (in this case there is no need for constraints).

Basic relations. In our temporal algebra we have two basic relations for time
points (equal and before), and each one of these relations has a strong and a
weak version. To see if a pair of time points belongs to one of these relations we
check the satisfiability of a constraint:

Definition 3 (Strong Equality). Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , ym)
be two time points x =s y ⇔ m = n ∧ xi = yi,∀i, 1 ≤ i ≤ n .

Definition 4 (Weak Equality). Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , ym)
be two time points and p = min(n, m), x =w y ⇔ xi = yi, ∀i, 1 ≤ i ≤ p .

According to the definitions above, (2004, 1, 10) 6=s (2004, 1) and (2004, 1, 10) =w

(2004, 1).

Definition 5 (Strong Before). Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , ym)
be two time points, x <s y ⇔ n = m ∧ ∃i, 1 ≤ i ≤ n : ∀j, j ≤ i, xj < yj .

Definition 6 (Weak Before). Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , ym)
be two time points, x <w y ⇔ ∃i ≤ min(m,n)∀j, 1 ≤ j < i : xj = yj ∧ xi < yi .

Although the constraint for the weak before may seem tricky, it stands for
something quite simple: the time point x is before y if there is a temporal subunit
of x that is smaller than the same subunit of y and all the other more significative
subunits of x and y are equal. Since there is no imposition for the tuples to be
of the same size, and assuming the Gregorian calendar, (2004, 1, 1) is before
(2004, 2).

Actually, since the weak definitions include the strong ones, from here on we
assume the weak ones as the default and use the symbols = and < for them.

Other relations. As we already saw, each basic relation has one equivalent FD
constraint. Therefore, one can easily build all the other common relations (>
,≥,≤, 6=) simply using logical negation, logical connectives ∧,∨ and the already
defined constraints.

Intervals. Continuing with the discrete approach, intervals are defined by two
time points: start and end of the interval, and stand for the set of time points
between those bounds. Therefore, our intervals are just a special kind of sets of
time points.

Definition 7 (Closed Interval). Suppose that TS is a temporal system and
istart, iend ∈ TS, with istart < iend. Then [istart, iend] = {x ∈ TS : x ≥ istart ∧
x ≤ iend}.

Definition 8 (Open Interval). Suppose that TS is a temporal system and
istart, iend ∈ TS, with istart < iend. Then]istart, iend[= {x ∈ TS : x > istart ∧
x < iend}.

Although it is possible to keep both definitions, for simplicity, from here on
we shall use least restrictive definition, closed intervals.

Interval relations. The thirteen basic relations between intervals (before, af-
ter, meets, met by, equal, overlaps, overlapped by, during, contained by, starts,
started by, finishes, finished by) are again defined using some constraint ma-
nipulation. For instance, Constraint(overlaps([i1start, i1end], [i2start, i2end])) =
Constraint(i1start < i2start) ∧ Constraint(i2start < i1end).

4.2 Temporal Algebra Implementation

The implementation of the algebra formalised in Sect. 4.1 is divided in two parts.
In one part we handle the issues that are common to every temporal system,
namely the evaluation of temporal expressions and the definition of intervals.
In the other part, we specify some temporal systems together with their time
points.

Since we already formalised the Gregorian calendar and the 24–Hour time-
keeping system, we will just say that our framework has three units for them: unit
date for the Gregorian calendar, unit time for the 24–Hour and unit date_time
for the combination of the previous two. For an illustration of their the usage,
consider the following example:

Example 6 (Weekends of January and February, 2004).

date(D) :>* (year(2004), month(M), M < 3,
weekday(WD), member(WD, [sat, sun])).

In this example, we extend the initially empty context with the unit date,
and argument variable D. The context extension used, typed context extension
(:>*), is an improvement of the regular one that besides extending the context,
checks the arguments type. In this case it stands for constraining variable D to
be a valid date, i.e., a tuple of CLP(FD) variables (YEAR, MONTH, DAY) that
are consistent with the constraints of the Gregorian calendar. A more formal
definition of this context extension is given in Definition 10.

Afterwards, we constrain YEAR to be equal to 2004 and MONTH to be equal to
1 or 2, i.e., less than 3. Finally we restrict DAY to be a Saturday or Sunday, i.e.,
a weekend.

To deal with intervals there is a unit interval with one argument (the in-
terval) and two access predicates: start/1 and end/1. For instance, to represent
the recurring interval between 9 AM of the 1st day and 11 AM of the 5th day of
every month in 2004:

date_time(S) :>* (year(2004), month(M), day(1), hour(9)),
date_time(E) :>* (year(2004), month(M), day(5), hour(11)),
interval(I) :>* (start(S), end(E)).

Finally, there is a unit called temporal_expressions to evaluate temporal
expressions. This unit accepts expressions from the following grammar:

Definition 9 (Grammar for temporal expressions). Assuming the defi-
nitions for (time) points and intervals given above, the grammar for temporal
expressions is:

EXPRESSION → POINT POINT RELATION POINT
| INTERVAL INT RELATION INTERVAL
| POINT POINT INT RELATION INTERVAL

POINT RELATION → = | <
INT RELATION → before | meets | equal | overlaps

| during | starts | finishes
POINT INT RELATION → member | not member

Example 7 (Temporal expressions).

?- date(DT1) :>* (year(2004), month(1)),
date(DT2) :>* true,
temporal_expressions(before(DT1,DT2)) :>* true.

In this example, DT2 stands for every possible date after January, 2004.

5 Temporal Reasoning System

It is in the temporal reasoning system that we join the paradigms of Constraint
Logic Programming and Contextual Logic Programming. As we already saw in
Subsect. 4.2, CLP(FD) is used for implementing the temporal algebra, allowing
for instance to talk about the period of time between year 2000 and now. To

associate time with events and propositions, we rely upon CxLP and its recent
developments. Since CxLP is used not only in the temporal aspects of our rea-
soning system, but runs through the entire framework, we decided to give an
uniform approach to all units in CxLP. More specifically, a common interface to
all units (with arguments) was created. To see what that interface is, consider
the unit teacher of Example 3:

:-unit(teacher(NAME, DEPARTMENT, DEGREE))
For this declaration, we define the following set of predicates:

– one ”access” predicate for each unit argument. In this case we have the
predicates: name/1, department/1 and degree/1.

– one predicate item/0 that returns through backtracking all instances of the
unit, by instantiating their arguments.
The query "?- teacher(Name,Dep,Deg) :> item." would answer

Name = john
Dep = computerScience
Deg = phd;

Name = bill
Dep = computerScience
Deg = msc

– one predicate args/0 that enforces each unit argument to the set of values
allowed for it. For the unit given, that predicate could be:

Example 3 (cont.)[Predicate args/0]

args:- member(DEPARTMENT, [math, computerScience]),
member(DEGREE, [bsc, msc, phd]).

The goal "?- teacher(NAME, DEPARTMENT, DEGREE) :> args." would con-
strain variables DEPARTMENT and DEGREE to be a valid University department
and academic degree, respectively.
Due to the importance of this predicate and to the fact that he is so recurrent,
we defined a new context extension, typed context extension, that verifies if
the unit arguments are valid. This new extension is denoted by :>*, can be
easily stated:

Definition 10 (Typed context extension).
U :>* G :- U :> (args, G).

with this operator, the goal above is simplified to
"?- teacher(NAME, DEPARTMENT, DEGREE) :>* true."

– two predicates insert/0 and delete/0 for inserting and deleting tuples from
the relation represented by the unit. For instance, the goal
?- teacher(_, _, _) :> (degree(’BSc’), delete).
removes, through backtracking, all teachers that hold a BSc.

5.1 Temporal Units

Temporal units are those that represent the propositions whose truth may vary
with time. The difference from these units and the regular ones is the fact that
at least one unit argument is a temporal timestamp. According to the semantics
given to the temporal tags it is quite trivial to establish a parallelism to temporal
database notions of valid time (the time when this fact is true in the modeled
real world), transaction time (time of storage of the fact in the database) or even
bitemporal time [14]. This way, we have valid time, transaction time and bitem-
poral units. Moreover, following our approach to units (with arguments), we also
have a set of predicates (valid_time/1, transaction_time/1) for ”accessing”
those temporal arguments.

Definition 11 (Temporal Unit). A unit u with parameter variables p is a
temporal unit ⇔ at least one parameter is a temporal timestamp.

Moreover, due to the fact that valid time is the most commonly used notion,
from here on we are going to consider only that notion of time, and name it
simply by time. Please notice that we don’t loose expressiveness since everything
is still applicable to transaction time, etc.

It is assumed, that if the unit is not temporal, then its time is infinite (neutral
element of intersection of times).

As an example, consider that we want to represent that a given lecturer, John,
teaches Logic every Monday from 9 to 11, during the even semester of 2003/2004.
Assuming that there is a unit called semester that stores, for each academic
year, the start and end of each semester, the intended fact can expressed by:

1 semester(S) :>* (year(2003), type(even), time(I)),
2 date_time(D) :>* (weekday(mon), hour(H), H >= 9, H <= 11),
3 temporal_expression(member(D, I)) :> * true,
4 class_schedule(CS) :>* (lecturer(john),
5 course(logic), time(D), insert).

We start by defining variable I as the temporal interval corresponding to the
even semester of 2003/2004 (1). We then specify variable D to be the recurring
interval between 9AM and 11AM, of every Monday in the calendar (2). After
this we restrict D to be within the interval I (3). Finally, we insert the intended
fact in the class_schedule database (4-5).

Now if we ask when John teaches
"?- classe_schedule(C) :>* (lecturer(john), time(D))."

then variable D should contain (at least) all the the Mondays of the even
semester of 2003/2004, between 9AM and 11AM.

Finally, as the reader might have noticed, unit teacher is also a temporal
one, since the teacher academic degree along with the department can change
over time.

5.2 Temporal Contexts

In the previous section we saw that units can be regarded as the temporal rela-
tions in Contextual Logic Programming. However, during a CxLP computation
we don’t have isolated units but contexts made of units (or empty).

Therefore, if a context contains temporal units, we can consider such a con-
text has some kind of temporal information. But what is the time of a context ?
To build the answer to that question, let us start by considering a context with
just one temporal unit:

"?- semester(_) :>* (year(2003), type(even), :> C)."

In this example, a context operator to obtain the current context, :> C, was
used. Roughly speaking, C can be regarded as the context of the even semester
of 2003/2004. Therefore it should be natural to say that the time of context C
is the interval [(2004,2,23), (2004,6,18)]. Indeed, the goal:

"?- C :< time(I)."
instantiates the variable I with the interval above.
Now consider that we extend the previous context in the following way:

"?- semester(_) :>* (year(2003), type(even),
agenda(_) :>* (person(john), :> D))."

Again, we can say that the final context is the context of John’s appointments
and the even semester, 2003/2004. But what should the time of this new context
be? The goal:

"?- D :< time(I)."

would instantiate variable I with the time of John’s appointments, ignor-
ing everything about the semester. Therefore, and since the standard context
extension is time–independent, we decided to create a temporal extension:

Definition 12 (Temporal extension). The operation of temporal extension
of the current context with unit U, before attempting to reduce goal G is denoted
by U :>/ U and this operator is defined as if by the Prolog clause:

1 U :>/ G :-
2 time(TC),
3 [U] :< time(TU),
4 temporal_algebra(intersection(TC, TU, TC_U)) :>* true,
5 U :> time(TC_U) :> G.

Succinctly, to obtain U :>/ G we start by finding the time of the current
context (2) an the time of unit U (3), afterwards, we intersect those times (4),
and use this intersection as the time for the context after extending it with U.
Finally, we call goal G in the new context.

To keep the coherence, also the non–temporal units define predicate time
that gives always the same answer: infinite (that is, the time of a non-temporal

tuple is infinite). This way, the temporal extension with a non–temporal unit
maintains the time of the context, as it should be.

Now we can give a more formal definition of a temporal context:

Definition 13 (Temporal Context). Given a CxLP context γ we say that γ
is a temporal context ⇔ all the extensions to obtain γ were temporal extensions.

This way, we built the notion of implicit time, that is, the time given by
tuples currently valid in the context.

Finally, and to illustrate this concept consider that we want to find who
taught Logic during John’s sabbatical leave::

"?- classes_schedule(_) :>/ (lecturer(Name), class(logic),
agenda(_) :>/ (lecturer(john),

desc(sabbatical)))."

The reader should notice that there is no explicit mention of time, but rather
an implicit temporal synchronisation between the tuples of unit classes schedule
and agenda. This way, we built the notion of implicit time, that is, the time given
by tuples currently valid in the context.

6 Conclusions and Future Work

We defined a temporal algebra with time points, durations and intervals and
provided an efficient implementation for it based on CLP(FD). To associate
the time given by this algebraic system and events or propositions, we built a
framework that makes use of recent developments in CxLP, proposing the notion
of temporal units and contexts. We illustrated the framework with simple, yet
comprehensive examples.

We intend to prove the soundness and completeness of the computation
schema with respect to the intended model. There is ongoing work to enrich
the temporal algebra with operators like add, subtract, . . .

Since there is already some work [15] in adding a temporal dimension to
a logic language ISCO [16], future work will take that extension further, by
incorporating the temporal mechanism described in this paper. Finally, it is our
goal to apply the outcoming temporal language to a real system like SIIUE [17].

References

1. Ilsoo Ahn, G.A., Batory, D., Clifford, J., Dyreson, C.E., Elmasri, R., Grandi, F.,
Jensen, C.S., Käfer, W., Kline, N., Kulkarni, K., Leung, T.Y.C., Lorentzos, N.,
Roddick, J.F., Segev, A., Soo, M.D., Sripada, S.M.: The TSQL2 Temporal Query
Language. Kluwer Academic Publishers (1995)

2. Schwalb, E., Vila, L.: Temporal constraints: A survey. Constraints 3 (1998) 129–
149

3. Frühwirth, T.: Annotated constraint logic programming applied to temporal rea-
soning. In Hermenegildo, M., Penjam, J., eds.: Programming Language Imple-
mentation and Logic Programming: 6th International Symposium (PLILP’94).
Springer, Berlin, Heidelberg (1994) 230–243

4. Lamma, E., Milano, M., Mello, P.: Extending constraint logic programming for
temporal reasoning. Annals of Mathematics and Artificial Intelligence 22 (1998)
139–158

5. Porto, A., Monteiro, L.: Contextual logic programming. In Levi, G., Martelli, M.,
eds.: Proceedings 6th Intl. Conference on Logic Programming, Lisbon, Portugal,
19–23 June 1989. The MIT Press, Cambridge, MA (1989) 284–299

6. Abreu, S., Diaz, D.: Objective: in minimum context. In: Proc. Nineteenth Inter-
national Conference on Logic Programming. (2003)

7. O’Keefe, R.: Towards an algebra for constructing logic programs. In Cohen, I.J.,
Conery, J., eds.: Proceedings of IEEE Symposium on Logic Programming, IEEE
Computer Society Press (1985) 152–160

8. Miller, D.: A Logical Analysis of Modules in Logic Programming. Journal of Logic
Programming 6 (1989) 79–108

9. Bugliesi, M., Lamma, E., Mello, P.: Modularity in logic programming. Journal of
Logic Programming 19/20 (1994) 443–502

10. Vilain, M., Kautz, H.: Constraint Propagation Algorithms for Temporal Reasoning.
In: Proc. Fifth National Conference on Artificial Intelligence, Philadelphia, PA,
USA (1986) 377–382

11. Allen, J.F.: Maintaining Knowledge about Temporal Intervals. Communications
of the ACM 26 (1983) 832–843 ACM.

12. International Organization for Standardization: ISO 8601:2000. Data elements
and interchange formats — Information interchange — Representation of dates
and times. International Organization for Standardization, Geneva, Switzerland
(2000)

13. Jaffar, J., Maher, M.J.: Constraint logic programming: A survey. Journal of Logic
Programming 19/20 (1994) 503–581

14. Clifford, J., Isakowitz, T.: On the semantics of (bi)temporal variable databases. In:
Proceedings of the 4th international conference on extending database technology
on Advances in database technology, Springer-Verlag New York, Inc. (1994) 215–
230

15. Nogueira, V., Abreu, S., David, G.: Towards temporal reasoning on isco. In
Juan José Moreno-Navarro, J.M.n.C., ed.: Proceedings of the Joint Conference on
Declarative Programming APPIA-GULPE-PRODE, Madrid, Spain (2002) 311–
324

16. Abreu, S.: Isco: A practical language for heterogeneous information system con-
struction. In: Proceedings of INAP’01, Tokyo, Japan, INAP (2001)

17. Abreu, S.: A Logic-based Information System. In Pontelli, E., Santos-Costa, V.,
eds.: 2nd International Workshop on Practical Aspects of Declarative Languages
(PADL’2000). Volume 1753 of Lecture Notes in Computer Science., Boston, MA,
USA, Springer-Verlag (2000) 141–153

