
A methodology to create ontology-based

information retrieval systems

José Saias and Paulo Quaresma

Departamento de Informática,
Universidade de Évora,
7000 Évora, Portugal
jsaias|pq@di.uevora.pt

Abstract. Modern information retrieval systems need the capability to
reason about the knowledge conveyed by text bases.

In this paper a methodology to automatically create ontologies and class
instances from documents is proposed. The ontology is defined in the
OWL semantic web language and it is used by a logic programming
framework, ISCO, to allow users to query the semantic content of the
documents. ISCO allows an easy and efficient integration of declarative,
object-oriented and constraint-based programming techniques with the
capability to create connections with external databases.

1 Introduction

Modern information retrieval systems need the capability to represent and to
reason with the knowledge conveyed by text bases. This knowledge can be rep-
resented through the use of ontologies. In fact, ontologies allow the definition
of class hierarchies, object properties, and relation rules, such as, transitivity or
functionality. Using this knowledge it is possible to define instances of classes,
to associate them with documents, and to make inferences about them.

OWL (Ontology Web Language) is a language proposed by the W3C consor-
tium (http://www.w3.org [9]) to be used in the ”semantic-web” environment
for the representation of ontologies. This language is based in the previous
DAML+OIL (Darpa Agent Markup Language - [10]) language and it is defined
using RDF (Resource Description Framework - [5]).

In this paper a methodology to automatically create an OWL ontology and
OWL class instances from a set of documents is proposed. The methodology is
based on natural language processing techniques, namely, a syntactical parser
and a semantic analyzer able to obtain a partial interpretation of the documents.
Similar approaches aiming to create a daml+oil/owl ontology were presented in
[7, 8]. These approaches presented preliminary work in this area but they did
not propose a general methodology for the creation of OWL ontologies and the
enrichment of documents with OWL instances.

After the creation of the OWL ontology, documents are enriched with in-
stances of classes and a logic programming based framework is used to support

inferences over them. The logic programming framework is based on ISCO [1].
ISCO is a new declarative language implemented over GNU Prolog with object-
oriented predicates, constraints and allowing simple connections with external
databases.

Section 2 describes the natural language processing techniques used to create
the OWL ontology. 3 describes the NLP techniques used to create the OWL
instances associated with each document. Section 4 describes ISCO, the logic
programming framework. Section 5 provides an example of interaction. Finally,
in section 6 some conclusions and future work are pointed out.

2 OWL ontology creation

In order to be able to deal with documents from different domains, a method-
ology to automatically create basic ontologies of concepts is proposed. This
methodology allows the definition of a base ontology with the relevant concepts
but having few hierarchical relations. After having defined this ontology, it may
be necessary to develop manual work by human experts in order to fully organize
the set of extracted concepts.

The methodology to automatically obtain an ontology of concepts is based
on the output of natural language processing tools:

– Text syntactical parsing. The documents are analysed by the parser devel-
oped by E. Bick in the domain of the VISL project1 [2]. This parser is
available for 21 different languages, namely for the Portuguese language.

– Partial semantic analysis.

– Entities extraction. From the semantic analysis output, entities are extracted
and represented by ontology classes.

2.1 Syntactical analysis

The syntactical parser developed by E. Bick in the domain of the VISL project
is based in the Constraint Grammars formalism and it is able to cover a large
percentage of the Portuguese language. However, its output is in a non-standard
format and it was necessary to transform it into a structured form, like XML and
Prolog terms. A translation tool from the VISL output into XML and Prolog
terms was developed and it is available to the VISL users (a detailed description
of this tool was presented in [3]).

As an example, suppose the following sentence:

O bombeiro salvou a criança. The fireman saved the child.

This sentence has the VISL output:

1 http://visl.hum.sdu.dk/visl

STA:fcl

SUBJ:np

=>N:art(’o’ M S) O

=H:n(’bombeiro’ M S) bombeiro

P:v-fin(’salvar’ PS 3S IND) salvou

ACC:np

=>N:art(’a’ F S) a

=H:n(’crianca’ F S) crianca

As it can be seen, the subject, predicate and direct object were correctly
parsed. From this output, the XML translator produces three files:

1. The first file links each word with a word tag with a specific id.

<!DOCTYPE words SYSTEM "words.dtd">

<words>

<word id="word_1">O</word>

<word id="word_2">bombeiro</word>

<word id="word_3">salvou</word>

<word id="word_4">a</word>

<word id="word_5">crianca</word>

<word id="word_6">.</word>

</words>

2. The second file associates each word with its part-of-speech information.

<!DOCTYPE words SYSTEM "wordsPOS.dtd">

<words>

<word id="word_1">

<art canon="o" gender="M" number="S"/>

</word>

<word id="word_2">

<n canon="bombeiro" gender="M" number="S"/>

</word>

<word id="word_3">

<v canon="salvar">

<fin tense="PS" person="3S" mode="IND"/>

</v>

</word>

<word id="word_4">

<art canon="a" gender="F" number="S"/>

</word>

<word id="word_5">

<n canon="crianca" gender="F" number="S"/>

</word>

</words>

3. The third file has the parsing structure.

<!DOCTYPE text SYSTEM "text_ext.dtd">

<text>

<paragraph id="paragraph_1">

<sentence id="sentence_1" span="word_1..word_6">

<chunk id="chunk_1" ext="subj" form="np"

span="word_1..word_2">

<chunk id="chunk_2" ext="n" form="art" span="word_1">

</chunk>

<chunk id="chunk_3" ext="h" form="n" span="word_2">

</chunk>

</chunk>

<chunk id="chunk_4" ext="p" form="v_fin" span="word_3">

</chunk>

<chunk id="chunk_5" ext="acc" form="np"

span="word_4..word_5">

<chunk id="chunk_6" ext="n" form="art" span="word_4">

</chunk>

<chunk id="chunk_7" ext="h" form="n" span="word_5">

</chunk>

</chunk>

</sentence>

</paragraph>

</text>

2.2 Semantic analysis

Each syntactical structure is translated into a First-Order Logic expression. The
technique used for this analysis is based on DRS’s (Discourse Representation
Structures [4]). The partial semantic representation of a sentence is a DRS built
with two lists, one with the rewritten sentence and the other with the sentence
discourse referents.

At present, we are only dealing with a very restricted semantic analysis and
we only try to represent predicates with their subjects and direct objects.

From the XML structure, using XSL transformations, it is possible to obtain
the semantic representation of each sentence.

The semantic representation of the example presented in the previous sub-
section is:

sentence(doc1, [fireman(A), child(B), save(A,B)], [ref(A), ref(B)]).

This structure represents an instance of a fireman A and an instance of a child
B which are related by the action to save.

A general tool able to obtain similar semantic partial representations for every
sentence was developed and it was applied to the full set of legal documents of
the Portuguese Attorney General’s Office (7000 documents).

2.3 Entities extraction

From the sentence semantic representation, entities are extracted and they are
the basis for the creation of an ontology of concepts. In fact, for each new concept,
a new class, subclass of the Entity class, is created.

In the referred example it would be possible to extract the following entities:

– bombeiro fireman

– salvar to save

– criança child

These three entities would cause the creation of correspondent ontology
classes.

Figure 1 shows a graphical view of the top-level hierarchy:

Fig. 1. Top-level entity hierarchy

As it can be seen from the figure, the proposed procedure for the automatic
creation of ontologies is only able to obtain a simple two-level hierarchy of con-
cepts. At present, manual intervention is needed to refine this ontology and to
represent more complex structures.

As an example, we present the OWL code correspondent to these concepts:

<owl:Class rdf:ID="Entity">

</owl:Class>

<owl:DataTypeProperty rdf:ID="name">

<rdfs:domain rdf:resource="#Entity"/>

<rdf:type rdf:resource="&owl;FunctionalProperty"/>

<rdfs:range rdf:resource="&xsd;String"/>

</owl:DataTypeProperty>

<owl:ObjectProperty rdf:ID="entDoc">

<rdf:type rdf:resource="&owl;FunctionalProperty" />

<rdfs:domain rdf:resource="#Entity" />

<rdfs:range rdf:resource="#Document" />

</owl:ObjectProperty>

<owl:Class rdf:ID="child">

<rdfs:subClassOf rdf:resource="&pgr;Entity" />

</owl:Class>

<owl:Class rdf:ID="fireman">

<rdfs:subClassOf rdf:resource="&pgr;Entity" />

</owl:Class>

3 OWL instance

After having defined an ontology of classes, it is necessary to extract and to
represent instances of those classes and to associate them with documents.

This association is presently done via a new class Action, which relates sub-
jects, predicates, and direct objects with specific documents. The overall archi-
tecture is presented in figure 2.

Fig. 2. Top-level classes

The following OWL code defines class Document with two properties: number
and title.

<owl:Class rdf:ID="Document">

</owl:Class>

<owl:DataTypeProperty rdf:ID="number">

<rdfs:domain rdf:resource="#Document"/>

<rdf:type rdf:resource="&owl;FunctionalProperty"/>

<rdfs:range rdf:resource="&xsd;integer"/>

</owl:DataTypeProperty>

<owl:DataTypeProperty rdf:ID="title">

<rdfs:domain rdf:resource="#Document"/>

<rdf:type rdf:resource="&owl;FunctionalProperty"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DataTypeProperty>

This code defines class Action:

<owl:Class rdf:ID="Action">

</owl:Class>

This code relates Action and Entity through four different object properties:
subject, verb, object, documentId. This means that each action is characterized
by the document where it appears and by its subject, verb,and object entities.

<owl:ObjectProperty rdf:ID="subject">

<rdf:type rdf:resource="&owl;FunctionalProperty" />

<rdfs:domain rdf:resource="#Action"/>

<rdfs:range rdf:resource="#Entity"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="object">

<rdf:type rdf:resource="&owl;FunctionalProperty" />

<rdfs:domain rdf:resource="#Action"/>

<rdfs:range rdf:resource="#Entity"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="verb">

<rdf:type rdf:resource="&owl;FunctionalProperty" />

<rdfs:domain rdf:resource="#Action"/>

<rdfs:range rdf:resource="#Entity"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="documentId">

<rdf:type rdf:resource="&owl;FunctionalProperty" />

<rdfs:domain rdf:resource="#Action"/>

<rdfs:range rdf:resource="#Document"/>

</owl:ObjectProperty>

As it was referred, the next step was to add semantic information to each
document.

– For each sentence,
• For each predicate belonging to the entity ontology and relating two

concepts,
∗ an instance of the correspondent action with its subject and direct

object instances is created.

For example, suppose in document 555 the verb to save and the entities fireman

and child are related by the already presented sentence:

sentence(doc1, [fireman(A), child(B), save(A,B)], [ref(A), ref(B)]).

Using our methodology, an instance of a new action will be created, relating
new instances of concepts fireman, child, and to save.

<pgr:Action rdf:ID="a1">

<pgr:subject rdf:resource="#e142"/>

<pgr:object rdf:resource="#e21"/>

<pgr:verb rdf:resource="#e32"/>

<pgr:documentID rdf:resource="#d2"/>

</pgr:Action>

<pgr:Fireman rdf:ID="e142">

<pgr:name>fireman</pgr:name>

</pgr:Fireman>

<pgr:Child rdf:ID="e21">

<pgr:name>child</pgr:name>

</pgr:Child>

<pgr:ToSave rdf:ID="e32">

<pgr:name>to save</pgr:name>

</pgr:Entity>

<pgr:Document rdf:ID="d2">

<pgr:number>555</pgr:number>

</pgr:Document>

This code means that in document 555 there is an instance of an action with
verb to save and having a fireman as subject and a child as direct object.

4 ISCO

After having represented documents through an ontology on concepts and in-
stances of those concepts it is necessary to be able to support inferences about
the represented knowledge.

As basic formalism to support knowledge representations and knowledge in-
ferences we propose the use of ISCO. ISCO [1] is a logic based development
language implemented over GNU Prolog that gives the developer several dis-
tinct possibilities:

– It supports Object-Oriented features: classes, hierarchies, inheritance.
– It supports Constraint Logic Programming. Specifically, it supports finite

domain constraints in ISCO queries.

– it gives a simple access to external relational databases through ODBC. It
has a back-end for PostgreSQL and Oracle.

– It allows the access to external relational databases as a part of a declar-
ative/deductive object-oriented (with inheritance) database. Among other
things, the system maps relational tables to classes – which may be used as
Prolog predicates.

– It gives a simple database structure description language that can help in
database schema analysis. Tools are available to create an ISCO database
description from an existing relational database schema and also the opposite
action.

Taking these ISCO features into account, a translator from OWL into ISCO
class definitions and Prolog facts and rules was developed. This translator was
applied to every OWL class described in the previous section and, as a conse-
quence, correspondent ISCO classes definitions were obtained. Moreover, each
OWL class instance was transformed into ISCO logic programming facts.

As an example, the action a1 presented previously is translated into the
following fact:

action(ID=a1, subject=’#e142’, object=’#e21’,

verb=’#e32’, documentID=’#d2’).

fireman(ID=e142).

child(ID=e21).

tosave(ID=e32).

document(ID=d2).

Variables occurring in queries may carry CLP(FD) constraints. For example,
suppose variable X is an FD variable whose domain is (1..1000), the query

document(number = X, title = Y) (1)

will return all pairs (X, Y) where X is a document number and Y is the docu-
ment’s title. X is subject to the constraints that were valid upon execution of the
query, ie. in the range 1 to 1000.

ISCO class declarations feature inheritance, simple domain integrity con-
straints and a global integrity constraints.

5 Interaction Example

The interaction is based on the ISCO logic programming framework.
As final goal, we aim to handle the following kind of questions:

– Documents where action A is performed
– Documents where action A is performed having subject S
– Documents where S is the subject of an action

Note that the inference engine needs to be able to deal with the ontology rela-
tions. For instance, the question ”documents where action A is performed having
subject S” means ”documents where action A (or any of its sub-classes) is per-
formed having subject S (or any of its sub-classes)”.

The translation of natural language queries into correspondent logic forms
will not be discussed in this paper (see for instance [6]) and it will be assumed
to be handled by some external module.

For the questions presented above, we would have:

– Documents where action A is performed
• A(id=V), action(verb=V, documentID=ID).

– Documents where action A is performed having subject S
• A(id=V), S(id=E), action(verb=V, subject=E, documentID=ID).

– Documents where S is the subject of an action
• S(id=E), action(subject=E, documentID=ID).

5.1 Fireman example

Suppose the following query:

Quais os documentos em que bombeiros salvaram crianças?
“Which are the documents where firemen saved children?”

This query is transformed into its pragmatic interpretation:

Q = [document(id=A),fireman(id=B), tosave(id=C), child(id=D),

action(subject=B, verb=C, object=D, documentID=A)].

Using this query, the ISCO inference engine is able to constraint variables A, B,
C, and D to its possible values accordingly with the existent OWL instances.

A =# (123 : 145) – A is constrained to the documents that have instances of the

correspondent actions

6 Conclusions and Future Work

A methodology to automatically create ontologies and ontology instances from
general documents was proposed. The methodology uses a syntactical analyser to
obtain sentence parse trees and XSL transformations to obtain partial semantic
analysis. From these semantic analysis it is possible to extract triples of subject-
verb-objects. These triples are used to define and to create instances of entities
and actions. The obtained ontology and the inferred instances are represented
in the OWL language and are used to enrich the initial documents.

On the other hand, translators from OWL into ISCO/Prolog were developed
and the ISCO/Prolog inference engine may be used to answer queries about the
documents content.

At present, the system is in a prototype phase and it needs work in many
areas:

– Ontology creation. The ontology was created automatically but it was not
possible to create many hierarchical relations between the classes. In order
to be able to define these relations we intend to have two approaches:
• Create connections with existent ontologies
• Manually define ontologies for specific sub domains

– Normalisation of concepts. The parsing process was not able to eliminate all
entities duplicates and incorrections.

– OWL translation into ISCO/Prolog. A full translation of the OWL language
needs to be implemented.

– Evaluation. The system needs to be evaluated and to be tested by users.

References

1. Salvador Abreu. Isco: A practical language for heterogeneous information system
construction. In Proceedings of INAP’01, Tokyo, Japan, October 2001. INAP.

2. Eckhard Bick. The Parsing System ”Palavras”. Automatic Grammatical Analysis
of Portuguese in a Constraint Grammar Framework. Aarhus University Press,
2000.

3. Caroline Gasperin, Renata Vieira, Rodrigo Goulart, and Paulo Quaresma. Extract-
ing xml syntactic chunks from portuguese corpora. In TALN’2003 - Workshop on
Natural Language Processing of Minority Languages and Small Languages of the
Conference on ”Traitement Automatique des Langues Naturelles”, Batz-sur-Mer,
France, June 2003.

4. H. Kamp and U. Reyle. From Discourse to Logic. Kluwer, Dordrecht, 1993.
5. O. Lassila and R. Swick. Resource Description Framework (RDF) - Model and

Syntax Specification. W3C, 1999.
6. Paulo Quaresma and Irene Pimenta Rodrigues. A natural language interface for

information retrieval on semantic web documents. In E. Menasalvas, J. Segovia,
and P. Szczepaniak, editors, AWIC’2003 - Atlantic Web Intelligence Conference,
Lecture Notes in Artificial Intelligence LNCS/LNAI 2663, pages 142–154, Madrid,
Spain, May 2003. Springer-Verlag.

7. José Saias and Paulo Quaresma. Semantic enrichment of a web legal information
retrieval system. In T. Bench-Capon, A. Daskalopulu, and R. Winkels, editors,
JURIX’2002 - Fifteenth Annual International Conference on Legal Knowledge and
Information Systems, volume 89 of Frontiers in AI and Applications, pages 11–20,
London, UK, Dezember 2002. IOS Press.

8. Jos Saias and Paulo Quaresma. Using nlp techniques to create legal ontologies in a
logic programming based web information retrieval system. In Workshop on Legal
Ontologies and Web based legal information management of the 9th International
Conference on Artificial Intelligence and Law, Edinburgh, Scotland, June 2003.

9. Michael Smith, Chris Welty, and Deborah McGuinness. Owl web ontology language
guide. Technical report, www.daml.org, 2003. http://www.w3.org/TR/owl-guide/.

10. www.daml.org. DAML+OIL – DARPA Agent Markup Language, 2000.

